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COMPOSITE ADAPTIVE SMC OF NONLINEAR BASE
ISOLATED BUILDINGS WITH ACTUATOR DYNAMICS

Ningsu LUO*, MaNUEL DE LA SEN*, JosE RODELLAR**

This paper addresses the problem of designing a robust active controller for
nonlinear base isolated building structures in the presence of unknown seismic
excitations, parametric uncertainties and actuator dynamics. A simple adapta-
tion law is introduced to get available upper bounds for the unknown seismically
excited nonlinearities. Adaptive composite output feedback sliding mode control
schemes are proposed to drive the displacements of the base and structure to
their zero equilibrium positions. A numerical simulation example is presented to
illustrate the effectiveness of the proposed strategies to a ten-storey base isolated
structure under the El Centro earthquake.

1. Introduction

One of the main objectives in the design of civil engineering structures is to keep the
response of the structure within the limits defined by safety, service and human com-
fort conditions in the presence of seismic excitations. This objective can be achieved
by applying traditional seismic design principles which assume that earthquakes act
upon the structure across its fixed base, to assure partial dissipation of the induced
energy. However, the plastic deformation of certain members can occur and, as a
consequence, the structure is damaged to a certain degree. This disadvantage can
be avoided by using passive control systems such as isolators (Kelly, 1986) to uncou-
ple the structure from the seismic excitation by means of replaceable devices, placed
between the structure and the foundation, capable of absorbing part of the energy
induced by earthquakes and thus providing in certain circumstances a level of perfor-
mance beyond the normal design requirements. The most important disadvantage of
such systems is the dependence of their effectiveness on the frequency of the seismic
excitation. Moreover, they cannot be applied in the case of tall or heavy structures, .
due to the size of the dynamic forces involved and to the risk of endangering the
global stability of the structure.

- In order to overcome the above problems, the idea of cooperatively combining
both passive base isolators and active feedback controllers (applying forces to the
base) has been increasingly considered in the last years (Dyke et al, 1995; Kelly
et al., 1987). Since those active forces react to the absolute motion, they are able to

* Dept. of Electricity and Electronics, Faculty of Science, University of Basque Country, 48940
Leioa, Bizkaia, Spain, e-mail: ningsu@we.lc.ehu.es.

** Dept. of Applied Mathematics III, School of Civil Eng., Technical University of Catalunya,
08034 Barcelona, Spain, e-mail: rodellar@etseccpb.upc.es.



184 N. Luo, M. De la Sen and J. Rodellar

supply an additional resistant scheme not attainable by purely passive means when
the structure is under ground excitation. Within the above scheme, recent works have
approached the problem of designing active controllers through the understanding of
the interaction between the base isolation system and the structure by considering
both as two coupled systems (Barbat et al., 1995; Inaudi et al., 1992; Luo et al.,
1995; 1996). In these works the objective was to ensure a form of stability of the
overall system resulting in a significant reduction of the motion of both the structure
and the base. Important issues of this approach are that the system parameters
and the seismic excitation do not need to be known (only their bounds do) and the
base isolation may behave nonlinearly, thus resulting in a robust control scheme.
This paper goes in the same direction but it takes into account a new element: the
actuator dynamics. The importance of the interaction of the actuator producing the
active forces with the structure has been recognized in the literature and ways to
account for it have been proposed (Ghaboussi and Joghataie, 1995; Nikzad et al.,
1996). )

This paper addresses the problem of designing a robust active controller for a
class of nonlinear base isolated buildings in the presence of unknown seismic excita-
tion, parametric uncertainties and actuator dynamics. Composite output feedback
SMC (sliding mode control) schemes are proposed by using some simple adaptation
laws for the upper bounds of the unknown seismically excitated nonlinearities. The
paper is organized as follows. In Section 2, the control problem is formulated and
some preliminary results on the stability of the base isolated structure subsystem are
given. In Section 3, design methods for composite adaptive output feedback SMC are
proposed. Conditions for the generation of sliding motion and the asymptotic stabil-
ity of the closed-loop system are given. In Section 4, a numerical simulation example
is given for a 10-storey base isolated structure under the EI Centro earthquake to
show the effectiveness of the proposed control scheme. Finally, some conclusions end
the paper.

2. Problem Formulation

Consider an active controlled nonlinear base isolated structure with a hydraulic actu-
ator, as shown in Fig. 1, whose dynamic behavior is described by the following model
composed of three coupled subsystems:

¢ Main Structure
Mg, (1) + Cq,(t) + Kq.(t) = p(gc, 4c) (1a)
P2, Gc) =: p1dc(t) + pagct), py =[a1,0,...,0]T, p, = [k1,0,...,0]7 (1b)
¢ Base Isolation
mode(t)+(co+e1)de(t)+ (ko +k1)ge () —c1Gr1 (t) k101 (8) + £ (gc, de, d, d) = v(t)  (2a)

.f(q07 qc, d’ d) = _COd(t) - kOd(t) + fN(qca QC7 d) d) (2b)
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Fig. 1. Base isolated structure with active control.

e Hydraulic Actuator (Ghaboussi and Joghataie, 1995; Nikzad et al., 1996)

C, Ci
= — P,
1P, >0, B 2 >0, >0 (3)

P,o(t) + Pu(t) + Pug.(t) =u(t), P, =:

where ¢,(t) = [gr1(t), gr2(t), -+, ¢n(®)]T € R* with g.:(¢) (i=1,2,...,n) being
the horizontal displacement of the i-th floor and g.(¢) € R represents the horizontal
displacement of the base with respect to an inertial frame, which can be measured
by using some recently developed technique (Ida et al, 1996). The coupling effect
between the main structure subsystem (1) and the base isolation subsystem (2) is
described by a vector function p(g,d.) € R?, as defined in eqn. (1b). Scalars mg, ¢
and ko are the mass, damping and stiffness of the structural base, respectively. M,
C and K € R™" are positive definite matrices corresponding to the mass, damping
and stiffness of the main structure and are of the following form:

M = diag (m;), t=1,2,...,n (4)
c1 + ¢ —C2 0 0 k1 + ko —ky 0 0
—C3 ca+ec3 —c3 O —ko ko +ks —ks O
C= . : .., K= : , : (5)
0 0 —Cn  Cp 0 0 ~kn kp
where m;, ¢;, ki (i = 0,...,n) are unknown positive constant values with known
upper bounds m;, ¢, ki (i =0,...,n), respectively. Equation (3) represents the

internal dynamics of a hydraulic actuator’s chamber, with v(t) being the average
output actuator force, u(t) the total fluid flow rate of the actuator’s chamber, P,
the actuator effective piston’s area, C, the chamber’s volume, A the bulk modulus of
the hydraulic fluid and C; the coefficient of leakage. For simplicity, in the subsequent
sections v(t) and w(t) will be called the actuator control force and actuator com-
mand control, respectively. The seismic excitation is characterized by a displacement
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function d(t) and its velocity d(t), which are assumed to be uniformly bounded for
all ¢ > 0. The scalar function fn(gc,gc,d,d) € R represents an additional horizontal
force produced on the structural base by nonlinearities of the isolator.

Assumption 1. f(q.,d.,d, d) € R is an unknown scalar function such that the
following relationship holds:

‘f(qCaq.mCL d)| S Tlo + ﬂl”z(t)[]
2(t) = [ge(t), 4e()]” (6)

@)l =: [a2() + @2(®)]"*

with 79 and 7; being some unknown non-negative constants. The following results
on the stability of the main structure subsystem are obtained.

Proposition 1. The unforced main structure subsystem (1) (i.e., with zero coupling
term p(ge,qc)) is globally exponentially stable, provided that M, C and K are
positive definite matrices, as defined in eqns. (4) and (5).

Proof. 1t follows from the assertion that no eigenvalues associated with a system
mode can have positive real part. First, taking Laplace transforms with zero initial
conditions in the unforced main structure subsystem (1), we obtain

(M + sC + K)q,.(s) =0 (7
where s is the Laplace operator. Consider any eigenmode sg = A + jw. For any

nonzero solution q,.(s) in (7), det(s?M + sC + K) = 0 so that

rank [(/\2 —w? + 2jwNM + (A + jw)C + K]

= rank [(/\2 — WM +XC + K + jw@\M + C)] <n (8)

Thus the ranks associated with the real and imaginary parts in (8) should be less
than n, i.e.,

rank [()\2 —~w?)M +AC + K] <n | 9)
rank [w(2/\M + C)] <n (10)

Consider two cases. Let w # 0 (i.e.,, s = A+ jw). Then (10) implies A < 0,
since rank[w(2AM + C)] =n for all A > 0, which contradicts (10) with M and C
being positive definite matrices. For w = 0 (i.e., so = A) the same reasoning can
be used with (9) to yield A < 0 since M, C and K are positive definite matrices.

|

For the forced main structure subsystem (1), the next stability result can be
proved by using Proposition 1 about the exponential stability of the unforced main
structure subsystem.



Composite adaptive SMC of nonlinear base ... 187

Proposition 2. If the coupling term p(g.,q.) is uniformly bounded for oll t > 0,
then the main structure subsystem is stable and the state variables q,.(t) and ¢,.(t) of
the structure are uniformly bounded for all ¢ > 0 and any bounded initial conditions.

3. Main Results

The objective of robust control design is to drive the state variables g.(%), ¢.(t) of
the base and ¢, (t), ¢,(t) of the structure to their zero equilibrium positions in the
presence of unknown seismic excitations, parametric uncertainties and actuator dy-
namics. In the control design, the base isolated structure with actuator dynamics
(eqns. (1)—(3)) is regarded as being formed by two cascade loops: the structure loop
(i.e., the main structure subsystem (1) plus the base isolation subsystem (2)) and the
actuator loop (i.e., the actuator subsystem (3)). Unlike the dynamic model without
actuator dynamics, the virtual actuator control force v(t) in eqn. (2) cannot be syn-
thesized directly. Instead, v(t) is the output of a first order actuator loop (eqn. (3)).
In this paper, the control design is organized as a two-step procedure in accordance
with the composite control strategy. First, v(t) is regarded in the structure loop as
a control variable for the subsystems (1)-(2) and a “desired” actuator control force
v4(t) will be designed to make the base isolated structure without actuator dynam-
ics to be asymptotically stable. Second, a robust command controller u(t) will be
designed in the actuator loop such that the “real” actuator control force v(t) tracks
asymptotically the “desired” actuator control force vg(t) and thus the global asymp-
totic stability is achieved in the base isolated structure with actuator dynamics. The
overall closed-loop control system is shown in Fig. 2.

CONTROL SYSTEM ISOLATOR + STRUCTURE + ACTUATOR
| mi . |
Vd Command w Hydraulic v Base Isolated
Controller Actuator Structure

“Desired” Actuator (gr1,4r1, e, de)

Controller

Fig. 2. Overall closed-loop control system.
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3.1. Design of the “Desired” Actuator Control Force vq(t)

Now, a “desired” actuator control force v,(t) is designed such that the control objec-
tive is achieved for the base isolated structure without actuator dynamics. A robust
control scheme based on the sliding mode principle (Utkin, 1992) is chosen to drive
the state variables ¢.(t) and ¢.(t) of the base to zero so that the coupling term
p(gc,gc) between the main structure subsystem (1) and the base isolation subsys-
tem (2) vanishes asymptotically. Thus the state variables gq,(t) and ¢,(t) of the
structure are uniformly bounded for all ¢ > 0 and any bounded initial conditions
according to Proposition 2.

The first step of the control design is to define a sliding function o.(t) € R for
the base isolation subsystem (2):

oc(t) = ¢e(t) +0gc(t), 20 (11)

where d is a scalar to be chosen to guarantee the closed-loop stability of the base iso-
lation subsystem (2). Suppose that a sliding motion is generated in the base isolation
subsystem (2) at the time instant ¢;. Then we have the following relationship:

Uc(t) = q.c(t) + 5QC(t) =0, t >t (12)

The equation of the motion of the base isolation subsystem in the sliding mode can
be obtained by using the technique of equivalent control (Utkin, 1992). From eqns.
(2a) and (11), an equivalent actuator control force veq(t) is found as follows:

Veg(t) = (—dmo + co + €1)qe(t) + (ko + k1)ge(t) — c1dr1(2)
- qu'rl(t) - ng(t) - kod(t) + f(Qm q.c; d7 d); t 2 tS (13)

The sustitution of v(t) = veq(t) from (13) into (2a) leads to the following closed-loop
state equation of the base isolation subsystem:

‘jc(t) + (5‘]c(t) =0, 2>t (14)
From (12) and (14), one gets
QC(t) = QC(ts)e_é(t_t’)a QC(t) = _(sqc(ts)e_é(t_t’)a t>ts (15)

Then it is known from (15) that by choosing é > 0 the base isolation subsystem (2) is
exponentially stable when a sliding motion is generated. Moreover, the state variables
qc(t) and ¢.(t) are uniformly bounded for all ¢ > ¢; > 0 and converge exponentially
to zero as t — co.

Now, a “desired” actuator controller is designed for the generation of a sliding
motion in the base isolation subsystem (2). Note that if the upper bounds ny and
m related to the unknown seismically excited nonlinearity f(gc, e, d,d) were known
a priori, the following output feedback SMC law could be chosen for the “desired”
actuator control force vg(t) by using g¢.(t), ¢.(t), gr (t) and g, (¢):

ve(t) = — {770 +m|z@)] + 772”.’13(t)“] sgnfo.(t)] (16)
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where
T
2(t) = [2:(0), @lt), 419, drs ()] .
17
1/
0l = [0+ 200+ a0+ Ea00]
79 > mMax [ko +2ki 4+ ¢+ lcot+c— dmol :
k: € [0, ki, ¢ € (0,8, mo € [0,ma], i =0, 1] (18)
and
1 if (>0
sgn(-) = 0 if ()=0 (19)
-1 if (<0

with 7m0, m, 2(t) and ||z(t)|| defined by eqn. (6). Note that the implementation of
the SMC law (16) requires the knowledge of the upper bounds 7o and M related to
the unknown seismically excited nonlinearity f(ge, e, d,d), which may not be easily
obtained in practice. In order to avoid such a requirement, some simple adaptation
laws are proposed below to obtain upper bounds for the unknown scalars 7o and m1
and then these adaptive upper bounds are used in the following SMC law:

va(®) = o) - [1o(®) + MO 1201 + e o] sen foe] (20

where A is a positive scalar; fo(t) and 7 (t) are adaptive upper bounds for the
unknown scalars mg and 7. Note that the “desired” actuator control force va(t)
is uniformly bounded for all ¢ > 0 since the uniform boundedness of the equivalent
control ensures that of the corresponding SMC. Define

fot) = o(t) =m0, T1(t) = () —m (21)

as the parameter adaptation errors and choose the following simple adaptation laws
to get upper bounds for the unknown scalars 1o and 7; such that

Fiot) = holoe®)], () = haloe@)] Iz (22)

where hg > 0 and hy > 0 are adaptation gains. Since 7o and 7 are positive
constants, one has 7y(t) = 7jo(t) and 7y (t) = 7, (t). Thus the above parameter
adaptation laws can be written as

fo(t) = holoe(®), () = haloe(®] 2O (23)

Then the adaptive parameters 7jo(t) and M (t) can be obtained by integrat-
ing (23). The rate of parameter adaptation can be adjusted by choosing properly the
initial values of 7;(0) and h; (i=0,1).
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Theorem 1. Under Assumption 1 and by using adaptive SMC laws (20) and (23)
with A > 1/6, a sliding motion is asymptotically generated in the base isolation sub-
system (2) and the state variables q.(t) and ¢.(t) of the base are uniformly bounded
for all t > 0 and any bounded initial conditions. They converge asymptotically to
zero as t — 00.

Proof. Consider the following Lyapunov function candidate:
- 1 1 . 1.,
V(e s lo, ) = 5 mod2(8) + 262(0) + 5 by R(0) + 5 B R (24)
Differentiating Vi(oe, gc,fjo, ) with respect to time ¢ yields

Vi (Uc: qc, To, ﬁl) = ml)o'c(t)dc(t) + 4‘16(t)qc (t)

+ hg o (8)io(t) + hi i (4)7 (¢) (25)

Note from (11) that
de(t) = oc(t) — 6gc(t) ’ (26)
c(t) = Ge(t) + 0qc(t) (27)

According to (2), (6), (18), (20)—(21) and (27), one gets
moge(®)0e(t) = — Ao2(0) = 0e(t) fo(t) + DIzl + mle(t)]] senloe (1)
+ o.(t) [(—dmo + co + ¢1)Gc(t) + (ko + k1))gc(2) |

- Cl(jrl (t) - qurl(t) - Cod(t) - kod(t) + f(qc, qc’ d7 d)]

IN

= 22(t) = [7o(®) + MOl + mallz(®)l] loe()]
+ [0+ mllz®1 + nellz @] lo=(2)
= —2a2(t) - [io(®) + m@Ol2®)]] loe(®) (28)
Substitution of (26) and (28) into (25) leads to
Vi(0c,4e,flo, 1) < = Aoa (t) + 4o ()ge(t) — 4007 (¢)
+iio()hg" [fio t) = holoe(8)]]
+ @O [ () ~ mloe(®)] I2®)] (29)

Taking (23) (i.e., (22)) as the adaptation laws and noticing that A > 1/6, we get
I./1 (Um e, Mo, ﬁl) < _)‘UZ (t) + 4Uc(t)QC (t) - 46q3(t) <0 (30)
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for all [o.(t),q.(t)]T # 0 and any o(t) and 7:(t). Thus eqn. (30) is negative
semidefinite in the (o¢,qc,7o,%1) space and the global stability of the origin is im-
plied. Therefore, a sliding motion is asymptotically generated in the base isolation
subsystem (2). Note that Vj(o¢,qc,o,1) is uniformly bounded, so the state vari-
ables q.(t) and ¢.(t) are uniformly bounded for all ¢ > 0 and any bounded initial
conditions. Since Vi(oe,qc,70,71) — 0 as t — 00, we have o.(t) = 0 and g.(t) = 0
as t — 0o, which implies that ¢.(t) = 0 as t = oo from (26). |

3.2. Design of the Command Control u(t)

Now, a command control law wu(t) is designed for the base isolated structure with
actuator dynamics such that the “real” actuator control force v(t) tracks asymptoti-
cally the “desired” actuator control force vg(t) obtained in the previous section. Thus
the global stability is achieved in the overall base isolated structure with actuator dy-
namics. The following two cases will be studied:

e The parameters of the actuator subsystem are known constants, and

e The parametérs of the actuator subsystem are unknown constants but with
known upper bounds.

3.2.1. Actuator with Known Parameters

Let
9(t) =: v(t) — va(t) (31)

Suppose that the actuator parameters P,, F; and P, are known positive constants
and the absolute accelerations §.(t) of the base and §pr,(t) of the first floor are
measurable. Then the following command control law is proposed:

u(t) = Pyiq (t) + Pl’Ud(t) + P,q. (t) (32)
with vg(t) defined by egns. (20) and (23).

Remark 1. Note that the control law (32) contains impulses at the time instants
when o.(t) changes its sign from (20). However, since o.(t) is continuous from (11),
its sign only changes after finite time intervals. As a result, there is no accumulative
point (time instant) of impulses. Note that, in general, isolated control impulses are
admissible by two reasons, namely, (a) from a conceptual and theoretical point of
view, they only contribute to the system output with finite isolated discontinuities
from the properties of Dirac delta, which describes impulses and is used for com-
puting derivatives of discontinuous function (Simeonov and Bainov, 1985), and (b)
from a practical point of view, impulses are implemented via control actions with
bounded magnitude and very short duration. In active control of structures this kind
of bounded impulse control has been considered and tested in experimental settings
(Miller et al., 1988). Furthermore, note that the real control law (42) generated (see
Section 3.3) is approximately impulsive and does not exhibit any chattering since
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sgn[o.(t)] is replaced with o.(t)/(oc(t) + €), which is a very common approach used
in variable structure control systems. Also, it is common in practice to generate real
impulses as derivatives of step functions even on analogue computers.

A direct extension of Theorem 1 for the command control law (32) is given below.

Theorem 2. By applying the command control law (82) to the base isolated structure
with actuator dynamics (eqns. (1)-(3)) and choosing A > 1/ in (20), a sliding motion
is asymptotically generated in the base isolation subsystem (2) and the state variables
q:(t) end ¢.(t) of the base are uniformly bounded for all t > 0 and any bounded
initial conditions. They converge asymptotically to zero as t — oo.

Proof. Consider the Lyapunov function candidate

. o . . 1_
V(UCiqC7’F]0,ﬁ1’U) - Vl(Uc;ch;ﬂo,ﬂl) + VQ(U)a Vz(’U) =: §Pv’l)2 (t) (33)

where Vj(oc,qc,7o,71) is defined by eqn. (24). By differentiating V5(%) with respect
to time and using (3) and (31)-(32), one has

12(8) = [Puo(t) = Pta()]3(2)

Il

[ — P(t) — Page(t) + u(t) — ond(t)] 3(t)

| = Pro(t) = Padelt) + Putia(t) + Poa(t) + Pade(t) = Pota(t)] 5(¢)

= — P*(t) (34)
Thus, using (30) and (34), we get

V(0c,er o, i, B) < — A02(t) + 4o (t)qe(t) — 40g2(t) — Bi? (1)
< —B#*(t) <0 (35)

for all [o.(t),qc(t),5(t)]” # 0 and any 7io(t) and 7 (¢) since A§ > 1. Thus eqn. (35)
is negative semidefinite in the (o, g.,7o,71,7) space and the global stability of the
origin is implied. Here ¥(t) converges asymptotically to zero as ¢t — oo and thus
the “real” actuator control force v(t) tracks asymptotically the “desired” actuator
control force vg(t) such that the sliding motion is asymptotically generated in the
base isolation subsystem (2). Note that V(o¢,q.,7o,71,?) is uniformly bounded,
so the state variables ¢.(¢t) and ¢.(¢) are uniformly bounded for all ¢t > 0 and
any bounded initial conditions. Since V(o¢,gc,70,71,9) — 0 as t — oo, we have
oc(t) = 0 and ¢, (t) — 0 as ¢ — oo, which implies that ¢.(t) = 0 as t — oo
from (26). |

The following result is a direct consequence of Theorem 2 and Proposition 2.

Corollary 1. The state variables q,.(t) and q,(t) of the structure are uniformly
bounded for all t > 0 and any bounded initial conditions.
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3.2.2. Actuator with Unknown Parameters

Now, suppose that the absolute accelerations ¢.(¢) of the base and gy, (t) of the
first floor are measurable and the actuator parameters FP,, P, and P, are unknown
positive constants which satisfy the following relationships:

|P'U.—_P"U|SUI)7 |Pl_?li§0la ;Pa_?al <o, (36)

where P,, P;, P,, 0,, 0; and o, are some known positive constants. In this case,
it is assumed that the “real” output actuator control force v(t) is measurable. Then
the following command control law is proposed:

u(t) = Pyia(t) + Proa(t) + Pade(t)

~ [oulba®)] + aulva(®)l + aldc (8)]] sem [5()] (37)
with vg(t) and @(t) defined by (20) and (31), respectively.

Theorem 3. By applying the command control law (37) to the base isolated structure
with actuator dynamics (eqns. (1)-(3)) and choosing X > 1/6 in (20), the sliding
motion is asymptotically generated in the base isolation subsystem (2) and the state
variables g.(t) and g.(t) of the base are uniformly bounded for all t > 0 and any
bounded initial conditions. They converge asymptotically to zero as t — co.

Proof. Consider the Lyapunov function candidate (33). Differentiating V5(9) with
respect to time and using (3), (31), (36) and (37), we have

Vo(¥) = — Po2(t) + [(FU — P,)ia(t) + (P; = P)va(t) + (Pa — Pa)de (t)] o(t)

= [oula®)] + arfva(®)] + oalic(®)] 1ol < ~P*(2) (38)
Thus, using (30) and (38), we get
V(0¢,qes o, i, B) < — Ao2(t) + doe(t)ge () — 40 () — P52 (t)
< = P#?(t) <0 (39)

for all [o.(t),qc(t),5(t)]T # 0 and any 7jo(t) and 7 (t) since A§ > 1. Thus eqn. (39)
is negative semidefinite in the (o, q.,7o,71,7) space and the global stability of the
origin is implied. Here @(t) converges asymptotically to zero as ¢ — oo and thus
the “real” actuator control force v(t) tracks asymptotically the “desired” actuator
control force v4(t) such that the sliding motion is asymptotically generated in the
base isolation subsystem (2). Note that V(o,gc,%o,71,9) is uniformly bounded,
so the state variables q.(t) and ¢.(¢) are uniformly bounded for all ¢ > 0 and
any bounded initial conditions. Since V (o, gc,%o,71,7) — 0 as t — oo, we have
o.(t) = 0 and ¢.(t) - 0 as ¢ — oo, which implies that ¢.(t) = 0 as t = oo
from (26). [ |

The following result is a direct consequence of Theorem 3 and Proposition 2.

Corollary 2. The state variables q.(¢t) and q.(t) of the structure are uniformly
bounded for all t > 0 and any bounded initial conditions.
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3.3. Continuous SMC Schemes

In the implementation of discontinuous SMC laws (20) or (37), non-ideal effects may
cause chattering and high control activity which can sometimes excite high-frequency
unmodelled dynamics in the system. In order to alleviate the chattering phenomenon,
continuous SMC laws can be obtained by making the following substitution in the
corresponding discontinuous ones:

sgn [o.(")] +— ﬁ%‘_& (40)
5] s 70
= POL = Fora )

with € and e; being a small positive constants. Thus the control laws (20) and (37)
become

o.(t)

wlt) = o) = [1o() + m Ol + e O] 25— (a2
u(t) = Puba(t) + Proa(t) + Page(t)
oot + o) + onlac)] =2 (43)

4. Numerical Example

Consider a ten-storey base isolated building structure described by eqns. (1)—(3). The
mass of each floor, including that of the base, is 6.0 x 10° kg. The stiffness of the base
is 1.184 x 10" N/m and its damping ratio is 0.1. The stiffness of the structure varies
in 5.0 x 10" N/m between floors, from 9.0 x 108 N/m on the first one to 4.5 x 108 N/m
on the top one with the damping ratio 0.05. The actuator dynamics is described by
eqn. (3) with C, = 1.518x1072m3, 8 =2.1x103N/m?, C; = 1.0 x 10~®m®/Ns and
P, = 5.06 x1072m?2. A frictional device is used for the base isolation, so that the
nonlinear force fn(qe, ge,d, d) is described by the following equation:

fN(qCa qc,d,’l)) = —Ssgn {qC(t) - d(t)] {/meax — Aue—u[(jc(t)—d(t)]} Q (44)

where @) is the force normal to the friction surface, v = 2.0, u stands for the friction
coefficient, pmax = 0.185 is the coefficient for a high sliding velocity, Ay = 0.09
denotes the difference between pp., and the friction coefficient for a low sliding
velocity. In the simulation, the seismic excitation has been that of the El Centro
(1940) earthquake (Kelly et al., 1987) as shown in Fig. 7. Then we have the following
relationship:

|F(e> e, dy d)| = | = cod(t) — kod(t) + fn (g, der d, )] < mo (45)
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where 7o is an unknown constant. The composite adaptive SMC laws (42), (23)
and (32) are used with & = 387.3, A = 1.0, no(0) = 1.0x 10%, ho = 10.0, 7:(0)
hi =0, 7o = 1.0x10° ¢ = 0.1, P, = 3.57x107%, B = 1.99x107°% and P, =
5.06 x 10~2. Both the passive case (pure base isolation) and the hybrid case (base
isolation plus composite adaptive SMC) are studied. In Figs. 3 to 6, the time histories
of the absolute displacement of the base and the relative displacement of the top
floor are shown. The actuator control force v(t) is plotted in Fig. 8. The absolute
acceleration of the base and top floor are shown in Figs. 9 and 10, respectively. It
is seen from the simulation results that, by using the proposed composite adaptive
SMC schemes, the absolute displacement of the base, the relative displacements and
absolute accelerations of the structure have been significantly reduced and the steady
dynamics of the absolute base acceleration has been improved as compared with the
purely passive case. The supplied control force is of a reasonable magnitude when
compared with the mass of base where it is applied.

= -
= S T
= -
o i | l = | | l
0. 5. 10. 13. 20. 0. 5. 10. 15. 20.
time ¢ (second) time t (second) 7

Fig. 3. Absolute base displacement [cm)] Fig. 4. Absolute base displacement [cm]
(passive case). (hybrid case).

=
(]

=

2.0

0.1

time ¢ (second) time ¢ (second)

Fig. 5. Relative displacement of the top Fig. 6. Relative displacement of the top
floor [cm] (passive case). floor [cm] (hybrid case).
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Fig. 7. El Centro earthquake ground ac-
celeration [m/s?].
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-4.0

0. 5. 10. 13. 20.

time ¢ (second)

Fig. 9. Absolute acceleration of the base
[m/s*]: passive case (discontinu-
ous line) and hybrid case (contin-
uous line).

5. Conclusions

time ¢ (second)

Fig. 8. Actuator control force [kN] (hy-
brid case).

1.2

time ¢ (second)

Fig. 10. Absolute acceleration of the top
floor [m/s?]: passive case (dis-
continuous line) and hybrid case
(continuous line).

In this paper, composite adaptive output feedback sliding mode control schemes have
been proposed for a class of nonlinear base isolated structures in the presence of
unknown seismic excitations, parametric uncertainties and actuator dynamics. Only
the information on the state variables of the base and the first floor has been used
in the control design. It is shown by a numerical simulation for a ten-storey base
isolated structure under the El Centro earthquake that the absolute displacement
of the base, relative displacements and absolute accelerations of the structure under
seismic excitations have been significantly reduced by using the proposed composite
adaptive SMC schemes, as.compared with the purely passive case.
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