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A NEW SLIDING MODE APPROACH TO ASYMPTOTIC
FEEDBACK LINEARISATION WITH APPLICATION
TO THE CONTROL OF NON-FLAT SYSTEMS

X1ao-Yun LU*, SAraH K. SPURGEON*

A dynamic sliding mode controller design method is proposed. The method uses
a novel choice of the sliding surface to effect asymptotic linearisation of nonlinear
differential input output systems and a class of state space systems. The stability
of the overall system, i.e. a canonical state space form with a dynamic feedback,
is analysed. This method is shown to be able to control a fairly general class
of systems, including some which are not linearizable by dynamic feedback,
using a chatter free control. The theoretical results are applied to the control of
a particular single input system which is not dynamic feedback linearizable.

1. Introduction

The development of techniques for the linearisation of nonlinear systems is a topic
of considerable interest to the control engineer. There are currently three broad ap-
proaches. Firstly, there are approximate techniques such as Jacobian linearisation.
This method may only be applied to slowly varying systems which do not have a high
degree of nonlinearity and has the inherent disadvantage that local controllability and
observability may be effected by the linearisation process. Alternative approximate
linearisation approaches seek to approximate a class of nonlinear systems with feed-
back linearisable nonlinear systems (Hauser et al., 1992) and approximate slightly
non-minimum phase systems with linearisable minimum phase systems (Hauser et
al., 1989). However, the range of problems to which these approximate methods may
be applied is limited. The second main approach considers exact linearisation using
static or dynamic feedback and coordinate transformation. Some conditions for such
linearisation are given in (Charlet et al., 1989; Isidori, 1989; Marino, 1988; Nijmeijer
and van der Schaft, 1990). Again the range of problems which may be effectively
solved using this method appears limited because the linearisability conditions are
rather restrictive. Dynamic feedback linearisable systems are also called flat systems
(Fliess et al., 1993). The final approach involves an asymptotic feedback linearisation
and is applicable for the control of both flat and non-flat systems. Sliding mode con-
trol methods have already been employed for effective asymptotic linearisation (Lu
and Spurgeon, 1995; Sira-Ramirez, 1993a; 1993b).
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In this paper a new approach to asymptotic linearisation of nonlinear systems is
developed using sliding mode control concepts. Traditional sliding mode methods as in
(Sira-Ramirez, 1993a; 1993b) select a control independent sliding surface and as such,
only produce dynamic sliding control policies when the differential input-output (I-O)
system has control derivatives present. Such dynamic policies are desirable as they
effectively reduce the chattering of the control signal which is an inherent disadvantage
of many sliding mode schemes. This work uses a control dependent sliding surface
which produces a broader class of dynamic controllers and thus presents a useful
and more global approach to chatter-free sliding mode control. It will also be seen
to produce a method for controller construction which is more widely applicable;
essentially the method circumvents the usual restriction including the need for the
system of interest to be expressible in ‘regular form.’

The method will be employed to control a particular non-flat system. This sys-
tem is thus not directly linearisable using static or dynamic feedback and provides
a challenging problem for the design method. The asymptotic sliding mode control
method under consideration here is shown to provide an alternative method to the
high frequency control methods which have been previously employed to control such
systems (Fliess et al., 1995b).

The paper is structured as follows. Section 2 presents the necessary background
regarding sliding mode control, develops the class of systems which are to be consid-
ered and contains the statement of a stability result which will be used for later proofs.
The new sliding mode control approach is developed in Section 3. This includes a full
stability analysis. Section 4 contains a detailed comparison of the proposed approach
and traditional sliding mode methods. In Section Five, the method will be illustrated
by considering asymptotic linearisation of a non-flat system.

The following notation will be used throughout the paper:
Ns(zo) = {x ERY| Iz — o] < 5}

where ||| is the Euclidian norm.

2. Background

2.1. Class of Systems Considered

For a given SISO system in state-space form which is locally observable,
& = f(z,u) (1)
y = h(z,u) (2)

where z € R*, v € R and f(z,u), h(z,u) are sufficiently continuously differentiable,
the following locally equivalent differential I-O system exists (van der Schaft, 1989):

y(n) = (Y, G,1t) 3)
Where U= (’U,, e >u(ﬂ))7 EJ\: (yu te ’y(n_l)).
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Assumption 1.
(1) ¢(-,+,) is a C'-function;

(2) (Regularity Condition)

Op

is satisfied with 7 € Ns(0) for all ¢ > 0, some & > 0 and generically for .

Remark 1. Note that a large class of nonlinear systems, especially mechanical
systems, are naturally in the form (8). Additionally, they may be in a combination
of form (3) and a dynamic compensator which in the simplest case is a series of
integrators of the control.

The design method considered in this paper is based on I-O systems of the
form (3) which satisfy Assumption 1.

The system (3) has the GCCF (i.e. Generalized Controller Canonical Form) re-
alisation (Fliess, 1990)

=40
. (5)
Cn—'-l = Cn
G = (¢, 4,1)
where ¢ = ((1,...,(.). The associated zero dynamics is defined as
(0, d,1) = 0 (6)

Here (3) is called minimum phase if there exist § > 0 and 4y € R? such that (6)
is uniformly asymptotically (exponentially) stable for any initial condition %(0) €
N;(Tg), where @ = (u,...,ulf~V). Otherwise, it is non-minimum phase (Fliess,
1990).

2.2. Flatness

Flatness is a notion of dynamic feedback linearisability proposed by Fliess et al.
(1994; 1995a; 1995b). It is generally recognised that the problem of linearisation
via dynamic state feedback and coordinate transformation is equivalent to that of
linearisation with dynamic output feedback and associated properly chosen fictitious
outputs. These outputs are called linearizing or flat outputs. More formally, consider
nonlinear systems of the form

& = f(z, ) (7)
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where z = (z1,...,2,), 4= (u,0,...,u®), f=(f1,..., fn) are differential polyno-
mials of z and 4. It is clear that the feedback involved is dynamic rather than static.
The generalised nonlinear control system (7) is called flat if some fictitious output

y=y(z,0)

exists such that the state z and control variable u can be expressed, without inte-
grating any differential equation, in terms of the flat output and its associated finite
order of derivatives.

The works (Fliess et al., 1994; 1995a; 1995b) demonstrate that some systems
of practical significance are non-flat and hence non-trivial to control. Fliess and co-
workers introduce the use of a particular high frequency control method to control
such systems (Fliess et al., 1995b). Fliess and Sira-Ramirez (1993) suggested a link
between flatness and nonlinear sliding modes. Such non-flat systems thus provide
an appropriate design case study for nonlinear sliding mode schemes.

2.3. A Brief Review of Sliding Mode Control

Much of the published work in sliding mode control employs a ‘static’ feedback ap-
proach (DeCarlo et al., 1988; Utkin, 1992). The resulting controllers can be either
continuous or discontinuous. It is generally recognised that the sliding mode control
design strategy may be divided into two independent procedures which are concerned
with the choice of the sliding surface and the choice of a reachability condition to
ensure the sliding surface is reached.

Two particular choices of the sliding surface are given below:

(a) Choosing s = s(z). This may be considered as a single geometric manifold
which may be determined by a set of geometric equations (DeCarlo et al., 1988;
Utkin, 1992). This is termed a static sliding surface.

(b) Choosing the sliding surface which is a set of differential equations (Lu and
Spurgeon, 1995; Sira-Ramirez, 1993a; 1993b; Slotine and Coetsee, 1986). This
is, in fact, a bundle of geometric manifolds and is termed a dynamic sliding
surface. Consider, for example, the work of Sira-Ramirez which will be used to
draw a comparison with the work presented here (Sira-Ramirez, 1993a; 1993b).
The sliding surface is chosen as

k3
s=Y ai; (8)
t=1
where (ai,...,an—1,a,) are the coefficients of the Hurwitz polynomial

S a1 of degree m — 1. In order to distinguish this method from the
proposed sliding mode method, this approach will be called the direct sliding
mode method.

Having selected an appropriate sliding surface, a reachability condition must be
employed to ensure that the sliding mode is reached. Perhaps the most popular
reachability condition is to select a control such that ss < 0 if s # 0. There are
many possible reachability conditions which may be broadly defined as follows:
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Definition 1. A general sliding reachability condition is defined as
§= _7(57 S, t) (9)

where & = [K1,..., k] is a set of constant parameters such that for some fixed x the
following conditions are satisfied:

(1) v(k, s,t) is continuous and bounded with respect to s if s# 0;
(2) 7(%,0,8) =0, t > 0;

(3) equation (9) is globally uniformly asymptotically stable or s — 0 in a finite
time.

For most sliding mode design approaches, the following specific sliding reacha-
bility condition will be appropriate.

Definition 2. The sliding reachability condition is defined as
5= —(k,9) (10)
where & = [k1,..., ] is a set of constant parameters such that for some fixed &
(1) y(s,s) is a C'-function of s if s # 0;
(2) v(k,s) is a bounded for s € Ns(0);
(3) 7(5,0) = 0;
(4) sy(k,8) > 0if s #£0.

For a sliding mode controller design using static feedback, it is necessary that
the system assume a regular form and that the control variables appear linearly in
the system in order to recover the control parameters from the reachability condition
(Utkin, 1992). Thus far there is no global method which is practically implementable
for nonlinear systems with nonlinear controls.

In addition, the sliding reachability condition may provide a discontinuous control
signal which is often undesirable for a practical implementation. Further work has
considered methods to reduce the chattering caused by the high frequency switching
of the control signal. There are several effective ways to accomplish this task:

(a) Introduce a layer of thickness 0 < € < 1 around the sliding surface such that,
when ||s|] > ¢, the controller developed from the sliding mode reachability
condition is employed, and when ||s|| < ¢, an alternative continuous control
policy is employed (Slotine and Coetsee, 1986; Utkin, 1992).

(b) Adopt a dynamic sliding mode feedback where the effective filtering of the
control reduces chattering naturally (Levant, 1993; Lu and Spurgeon, 1995;
Sira-Ramirez, 1993a; 1993b; Slotine and Coetsee, 1986).

(c) Adopt a continuous reachability condition (Lu and Spurgeon, 1995).

Method (b) is natural only when a dynamic sliding mode approach is adopted.
However, relatively little work has been done in this new and exciting area. The
next section will show how to develop a dynamic sliding mode controller, with all
the attendant advantages, which will also perform asymptotic linearisation of a broad
class of nonlinear systems by employing a particular choice of the sliding surface.
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It may be concluded that (15) and (21) are equivalent in stability if the matrix

A b
22
] )
is non-singular. This is the case because k > 0 (Corollary 1) and A is Hurwitz. Now
setting ¢ =0 and replacing b with —b in (16) leads to (19). [ |

Theorem 1. (Overall stability of the indirect sliding mode) Consider the system (5).
Let the following conditions be satisfied:

(1) System (3) fulfils Assumption 1;
(2) The highest order derivative of control
uB+D) — p(¢, G, 1)
is solved out from
§ = —vy(k, ks)
where y(k,-) is as in Definition 2;
(8) k is chosen such that
k> (Bb)TC~1(Bb) | @$

where B satisfies eqn. (17), A is the companion matriz of the Hurwitz polyno-
mial determined by (14) and

b=10,...,0,1]"
(4) The zero dynamics (6) is locally uniformly asymptotically stable.

Then the closed-loop system (13) is locally uniformly asymptotically stable.

Proof. Let z = (z1,...,23). Under the regularity condition in Assumption 1, and the
coordinate transformation (¢,z) — (¢, s, 2), (13) is equivalent to

C:1 = (2
G = (3

) n (24)
¢n = - Z ;G + s
i=1

§ = —y(k, ks)
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together with

21 =29

: (25)
Zﬁ = q((a s,%2, t),
where
uP = ig=q((,s,2,1)

is obtained from (11).

Lemmas 1 and 2 guarantee the local uniform asymptotic stability of (24). Con-
dition (4) guarantees the local uniform asymptotic stability of (25) when setting
¢ =0, s = 0. On the other hand, ¢((,s,z,t) is a C!—function because ¢ and s
are C!-functions. Thus conditions (A1) and (A2) in Theorem 1 (Vidyasagar, 1980)
are satisfied and the assertion is then deduced from Theorem 1 about the stability of
triangular systems by letting wy = (¢, 5), we = 2. |

Now it will be shown that under slightly more restrictive conditions, global results
can be obtained.

Corollary 2. Suppose that

(1) no derivatives of the control appear in (3);

(2) the Regularity Condition in Assumption 1 holds globally for 7 and u, and t > 0;

(3) for any 1 > 0 there exists an r2 > 0 such that if ||7]| <r1 and (7, u,t)—y™ =
0 then [jull < ro;

(4) v(k,-) is chosen as in Definition 2;

(5) [ ¥(k,2)dz is radially unbounded for s.

Then there exists at least one dynamic sliding mode controller such that the closed
loop system (13), where the dynamic feedback is of first order, is globally uniformly
asymptotically stable.

Proof. By the results in (Sanderberg, 1981), conditions (2) and (3) guarantee the
existence of at least one global solution (12) in Step 3. (¢,u) — (¢, s) is a global
coordinate transformation. The result is obvious from Theorem 1 because there is no
zero dynamics in this case. n

Remark 2. Even if the derivatives of the control do not appear in (5), the indirect
sliding mode method still produces a dynamic feedback of dimension 1. This low pass
filter will effectively eliminate the high frequency chattering caused by a discontinuous
sliding reachability condition and/or disturbances.
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3.3. Proper Choice of Initial Conditions

The zero dynamics of dimension f in (6) are used for a theoretical analysis only.
For a practical application, the dynamic feedback in (13) resulting from the design
method is of dimension £+ 1, and the properties of these higher order dynamics must
be explored.

Definition 3. The zero dynemics associated with the design method is defined as

[s' +y(k, ks) = o] o =0 (26)

where k is as in Theorem 1.

Note that these zero dynamics are equivalent to (6) in stability if the regularity
condition is satisfied and if y(«,s) is as in Definition 2.

This zero dynamics results in a further step of the design procedure which is
associated with the proper choice of initial conditions for the closed-loop system (13).

‘Step 4. Choose @y € R°*! and a 6 > 0 such that, for the initial condition 4(0) €
N (ao)a

(1) the Regularity Condition is satisfied;

(2) the zero dynamics (26), or equivalently (13) when ¢ = 0, are uniformly asymp-
totically stable;

(3) all the initial conditions for (13) are compatible.

4. Comparison with Traditional Sliding Mode Approaches

Traditional sliding mode approaches usually employ a control independent sliding
surface. It follows that dynamic sliding schemes only result when I-O systems which
contain control derivatives are considered as in (Sira-Ramirez, 1993b). It should be
noted that such dynamic sliding mode policies are desirable as they filter possibly dis-
continuous signals resulting in an effective reduction of control chattering. Further, if
the highest order derivative of the control appears nonlinearly in the I-O system, then
it may be difficult to recover expressions for the control from the chosen reachabil-
ity condition using traditional sliding mode approaches. By using the new approach
presented in this paper, the sliding surface is control dependent and therefore a dy-
namic controller which provides the chattering reduction can result regardless of the
particular I-O system representation. In addition, the highest order derivative of the
control always appears linearly in the expression for §, which facilitates the controller
design. The proposed method restricts the class of reachability conditions which may
be used and provides extra constraints upon the design parameter % in the auxiliary
equations (15) and (20). In the traditional sliding mode approach the system becomes
equivalent to an n — 1 dimensional linear asymptotically stable system when sliding.
In the new approach presented in this paper, the sliding mode technique has been
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used to asymptotically linearise the original nonlinear system; in the limit the slid-
ing system thus becomes equivalent to an n-dimensional linear asymptotically stable
system.

5. Control of the Gas Jet System

Angular velocity control of a Gas Jet Actuator with one control is modelled by the
Euler equations (Example 6.9 of (Nijmeijer and van der Schaft, 1990)):

Ty = Azozs + au
T9 = —Azi123 + Sfu (27)
T3 = Yu

The reference trajectory is (0,0,h), h # 0. It is proved in (Nijmeijer and van der
Schaft, 1990) that in a neighbourhood of z(0) = (0,0,h), h # 0, if v # 0, A # 0,
a=0 and 8 #0:

(a) (27) is locally strongly accessible (p.90 in (Nijmeijer and van der Schaft, 1990));

(b) (27) is not feedback linearisable by a static state feedback (p.189 of (Nijmeijer
and van der Schaft, 1990)). Thus according to (Charlet et al., 1989), (27) is
not feedback linearisable by dynamic feedback. It is therefore non-flat.

Choose y = z; as the artificial output, and z3 = v as the control. Then

y = Azqv

i = Av(—Aziv + 8 0) + Aze0
Thus an I-O system is obtained as
i =@ = Av(—Ayv + B0) + yo/v (28)

The function ¢ in (28) is smooth in a neighbourhood of (y,y,v,7) =
(0,0, h,v (0)). Thus the conditions (A1) and (A2) of Theorem 1 in Vidyasagar (1980)

are satisfied. Moreover,
2] e
Y 1 (9,9,0,)=(0,0,0(0),5(0))

so the regularity condition is satisfied. Thus (28) is a proper I-O system.

The sliding reachability condition § = —ks (where k = 1) will be used for
constructing the controller.

Consider the sliding surface
s=a1y+ay+o
When s = 0with (y,9) = (z1,22) = (0,0), the zero dynamics is
ABvo =0 ‘ (29)

which is trivial, and so asymptotically stable for any v(0).
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To determine the initial conditions for the dynamic compensator, {$ + ks],_, =0
yields the following zero dynamics:

v + 20% = —(k + ap)vd
Dividing both sides by vv and integrating with respect to t gives
lnlqbvzl = —(k+a2)t+Incy, a>0

or equivalently

2 = cpe (et

9(0)2(0) = ¢
Integrating again, we obtain

1 s
g’Us = —(k + ag)'lcle_(H“z)t -+ Co
This leads to

o(t) = 3] (t = o0)

Note that z3 = v. If (z1,72) tends rapidly to zero, the dynamic behaviour of z3 is
dominated by the zero dynamics. Thus to force z3 — h, it is necessary and sufficient
that [302]1/ ® = h, which determines c,. Then

9(0)v?(0) = ¢, >0

1/3

[h3 —-3a (k + ag)—l] = ’U(O)

determine v(0) and ©(0) if h and ¢; are given.

All the conditions of Theorem 1 are thus satisfied. Note that

oy |1 0

O(z1,z2) | 0 Av
which is control dependent. It follows that in a neighbourhood of (y,%,v) = (0,0, h),
the transformation (y,y,z3) <+ (z1,22,73) is non-singular, i.e. regulation of (y,%)
implies that of (z1,z2), and finally (z1,72,73) — (0,0,h) as t — oo. The de-
sign parameters are chosen as k =8, 8 =25, A =05 v =125 h =
0.6, ¢t = 5, (21(0),z2(0)) = (—1.13,1.52). Tt is determined from the above that

v(0) = 0.6704, 5(0) = 11.1265. Let (a1, as,1) = (110,21,1), and C = Io,o. Then,
according to (23),

k > (Bb)TC~(Bb) = 7.2347

where B is obtained from (17) and b = [0,1]T. Simulation results are shown in
Fig. 1.
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Fig. 1. Gas Jet with one control for the decoupled sliding reachability condition.

Remark 3. (i) The importance of the choice of initial conditions for the closed-loop
system is seen when dynamic feedback is used to control nonlinear systems.

(ii) In this design method, z3 is not observed by y and g. Thus the effect of
the control signal on z3 is rather weak. The simulation results are reasonably good
because the initial conditions (z(0),z2(0)) are very small and (z1,22) — (0,0)
sufficiently quickly for the dynamic behaviour of z3 to be dominated by the zero
dynamics.

(iii) The application of this method to general nonlinear systems in state space
form needs further considerations.

6. Conclusions

A large class of nonlinear systems can be modelled by differential input-output equa-
tions. Such models can then be used to develop dynamic controllers. This paper has
addressed the application of sliding mode methods to this dynamic controller design
problem. A particular choice of sliding surface is shown to provide asymptotic lin-
earisation of the resulting closed-loop system. Note that this may be achieved with
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a chatter-free control signal. The stability analysis has also been performed. The
method has the advantage that the highest order derivative of the control always
appears linearly in the sliding mode reachability conditions which greatly facilitates
controller construction; this is not the case in many previous methods for nonlinear
sliding mode controller design. The application of sliding mode methods to the control
of a single input non-flat Gas Jet system with one control has been used to illustrate
the theoretical results. Note that this system is not linearisable using conventional
dynamic feedback and thus provides a pertinent example.
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