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A POLAR COORDINATE BASED SLIDING MODE
DESIGN FOR VIBRATION CONTROL

K. DaviD YOUNG*

A polar coordinate based sliding mode control design approach for solving vibra-
tion control problems is proposed. The phase plane in subdivided into multiple
sets, and a different sliding manifold can be chosen for each of the sets. This flex-
ibility in the design allows a different variable structure control law to be applied
depending on the phase angle of the vibration. Transient performance improve-
ments over conventional VSC with sliding hyperplanes are demonstrated.

1. Introduction

In sliding mode design, the sliding manifold is typically defined as the intersection
of linear hyperplanes of the state space of the plant (Utkin, 1977; 1992). While this
design approach is appealing due to the linear space characteristics of the sliding
manifold which allow the use of linear control design tools to optimize the sliding
mode dynamics, it is generally difficult to restrict sliding mode to occur only in
some subsets of the state space. Such design requirements arise in vibration control
where often it is desirable to restrict motion only in certain preferred directions due
to physical constraints (Young, 1993). In this paper, we propose a sliding mode
design approach which is based on polar coordinates of the phase space in mechanical
systems, encountered in vibration control problems.

2. A Single DOF Oscillator Illustration

We shall introduce this design approach with the sliding mode design for a simple
oscillator plant

T+kr=u (1)

where z,% denote the position and velocity, respectively, and w represents the gen-
eralized force which is also the control input. The natural frequency of this oscillator
is vk, and the bounds on the uncertain stiffness k can be estimated as <k<k,.
In a typical sliding mode design, the sliding manifold is given by

s(z, &) =z +cx =0, c>0 (2)
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resulting in a first order, stable sliding mode dynamics
&= —cx (3)

The design problem becomes complicated when the constraint = > 0 is enforced. If
the sliding mode reaching condition és < 0 is to be met, the phase trajectory for
initial conditions such that z() > 0, £(t¢) > 0, may enter the inadmissible region
z < 0. Although it is possible to enforce the reaching condition selectively such
that the phase trajectory avoids this region, however, for such situations, it would be
desirable to design a sliding manifold which excludes the inadmissible region of the
phase space entirely, i.e., the set

Se>0 = {z| & +cx =0, z >0} (4)
This can be accomplished by introducing polar coordinates r and 8

z =rsind, & =rcosf (5)
and constructing a sliding manifold in the form

5(0)=6—-04=0 (6)

Note that the phase trajectory is associated with the complex phasor
72 re? =g+ g, r = (z? + )1/ (7)

where r is the magnitude, and 6 is the phase angle. Convergence to the equilibrium
is governed by the variable r, whereas the oscillatory behavior is dictated by the
variable 6.

On the sliding manifold 6 = 84, dynamics are expected to depend on the constant
parameter #;. Furthermore, by using the method of equivalent control to eliminate
the variable 6, the sliding mode dynamics are reduced to first order,

F = tan(64)r (8)

Since #; is a real constant, stability of sliding mode is guaranteed in the second
and fourth quadrant of the phase plane, corresponding to —7/2 < 6; < 0 and
w/2 < Bg < 3n/2, respectively. This should not be surprising since it is well known
that the sliding line for a second order system must have negative slopes. That
the classical sliding line is further subdivided into two possible, and separate sliding
manifolds in the (r,0) space is an interesting result.

3. Polar Coordinate Based Sliding Mode

The above result for single degree-of-freedom mechanical systems can be generalized
to multiple degrees-of-freedom mechanical systems of the form,

MZy, + BnEm + KmZTm = Um, Tm € R™, u, € R™ (9)
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where the generalized mass matrix is positive definite, M > 0, the stiffness matrix is
positive semi-definite, K, > 0, and Raleigh damping is assumed, i.e.,

Bn=aM+pKn, 0<a<l, 0<f<l1 (10)

For all practical purposes, we shall deal with a mass normalized system where the
state space model corresponding to (9) is given by

T, = Zo, 1 € ]Rm, 9 € R™ (11)
Z9 = ~Kz1 — eBxs + u, K>0, B>0, ueR™ (12)

Note that in order to exhibit the intentional vibrational characteristics, ¢ should be
sufficiently small such that the roots of det(A\2I + eBX + K) =0 are complex.

Using the phasor representation, we express the generalized displacement and
velocity of each mechanical degree-of-freedom in the form,

ﬁ:rieﬁ*, i=1,...,m (13)

and introduce the following notations

r= [rl,...,rm]T, R £ diag(ri,...,™m) (14)

6= [91,...,6m]T, .- [cos&l,...,cosﬁm]T, so 2 [sin@l,...,sin()m]T (15)
A A . .

Cy = diag(cosby,...,cosb,y,), Sy = diag(sinfy,...,sinf,y,) (16)

to facilitate the following vectorized polar coordinate form of the states:

1 = Rey, To = Rsy (17)

3.1. Sliding Mode Dynamics in Half Spaces
The sliding mode manifold is chosen as
]T

oc=0-~-03=0, QERm,J‘—‘[O'l,.‘.,Um (18)

and 0; € R™ is a constant vector. The sliding mode dynamics on egn. (18) are
derivable using the method of equivalent control:

§ = ~SgR'zy + C4R™[~Kz; — By + tteg] = 0 (19)
which, upon simplifications yield the equivalent control,
Ueqg = (Tp + €B)zo + Kzy, Ty £ diag(tanfy,...,tanf,,) (20)

On the manifold, dynamics are of m-th order, and since Ty is a diagonal matrix,
they are decoupled,

r= T9|9:9dr (21)
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Furthermore, sliding mode is asymptotically stable if and only if

65 <0 or G4+ i=1,...,m, 63 =16,...,67] (22)

65<0’

This implies that stable sliding mode manifolds are defined in the half spaces PfﬂVi"
and P NV;" where

P& {gi|at >0}, Pr2{a|ai<0}, i=1..,m  (23)

Ve (ah|ai >0}, Vi E{zi|zh<0}, i=1...m  (24)
of = [z1,...,27"], 3 = [z3,...,27] (25)
whereas sliding mode manifolds in the other two half spaces P;"NV;* and P; NV,”
are unstable. -
3.2. Variable Structure Control Design

In the process of designing the variable structure control such that sliding mode occurs
on polar coordinate based manifolds, we encounter a number of interesting design
options which are directly related to the dynamic behavior outside the manifold. The
equation governing the dynamics outside the manifold is given by

6 = —Spsg — CoR™*[K Rcg + eBRsg — u] (26)

If the stiffness and damping matrices are known, then having a perfect compensating
component,

uP® = KRcy + eBRsy (27)
u=uP + ol (28)

reduce (26) to

6= —Spsg + CgR—l’U,a (29)
Since Sg,Cy and R are diagonal, the dynamics outside the manifold are decoupled,
6’,-:—56’?—}—%71?, i=1,...,m (30)
s0; £ sin 0;, cf; £ cos 0; (31)

Note that in contrast to a sliding mode manifold chosen as the intersection of hyper-
planes in the (z;,z2) space where a sufficiently large relay component can be effective
in ensuring that the system’s trajectory converges to the manifold, a relay component
in the current design does not guarantee convergence. From the above equation, it is
clear that for any constant @, the relay control component u? = asgn(o;) does not
guarantee ¢;0; < 0. Another crucial observation is that for o; > 0, if u? = 0, then
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&; < 0, and the manifold o; = 0 is reached from above. So the design is focused on
a feedback control for o; < 0. Let

’U.? _ aricld;, >0 lf o; <0 (32)
0 if ;>0
The value for @ such that ¢; < 0 is determined from the expression
U, = tan®6* (33)

where 8¢ denotes the critical value for 8; such that the condition ¢; = 0 is satisfied.
Note that the magnitude of the corresponding %, increases monotonically with |6%],
and is unbounded for ¢ = +r/2. Clearly, it is impossible to satisfy the sliding mode
reaching condition for o; < 0 near the vertical axis of the phase plane (#;,r;). A
practical solution is to estimate the largest permissible value for % from the bounds
on the control variables. Although this design would not satisfy the reaching condition
for some conic sector near the vertical axis, we can subdivide the phase plane into
two sets:

of = {(8:,m)| 6i+7% 20> 6}, 0<ri < oo} (34)
_ i T 3T i )
o7 ={(6:,74)] Oi+ 5 <0< 5+ 6, 0§n<oo} (35)
with
. ™ . .
0<6; <3, 03| < 6: (36)
For the set ©;, we choose the sliding mode manifold ¢; = 0 with 6% = —|6%], i.e.,

of = 6; + 104 = 0, and for the set ©;, we choose 0% = |0%| + /2, and define the
manifold as o; = 6; —|0%| — /2 = 0. With this assignment of different sliding mode
manifolds for the two different sets, the conic sector for which the reaching condition
is not satisfied for one of the sliding mode manifold falls into a region for which the
reaching condition is satisfied for the complementary choice of sliding mode manifold.
These two sets and their corresponding sliding mode manifolds are depicted in Fig. 1.

The remaining task is to replace the uP® component with a design which does not
require precise information on the stiffness and damping matrices. We first assume
that the stiffness matrix is composed of a nominal K and an uncertain part K¥. Let

uP = KRCg — G*Rcy — C*Rsy (37)

where G* € R™*™ and C* € R™**™ are variable structure feedback gain matrices
whose ij-th element is of the form

[G"Jij = gijsen(chs)sgn(chj)sgn(oi), [C*i; = cjjsgn(chi)sgn(sd;)sgn(o:) (38)
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Fig. 1. Choice of different sliding mode manifolds for different sets.

where the scalar gain parameters are chosen to satisfy the inequalities
g > |k, cij > eby (39)

where k}% and b;; are the ij-th elements of K and B respectively. The variable
structure control which guarantees that

oi0; < 0, 1=1,...,m (40)

can be written comprehensively as

u=U.z + K:El -Gz, —C%zy, U, é dlag(ﬂé, . ’,&21) (41)
. Ue if 0;<0

Ty = , 1=1,...,m (42)
0 if 6,20

3.3. Coupled Sliding Mode Dynamics

It is possible to generalize the above design such that the sliding mode dynamics are
coupled. In (17), replace the diagonal matrix R by NR, where N is a nonsingular
matrix, i.e.,

1 = N Rey, zo = NRsy (43)
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Another possible modification is on the parameterization of the sliding manifold.
Instead of (18), let

oc=0-F0;=0 (44)
where F' is a nonsingular matrix. Dynamics on this manifold are given by
F=N"Tg o g, 7 (45)

Clearly, given a desired sliding manifold dynamics characterized by a Hurwitz ma-
trix I, it is unnecessary to invoke the additional parameterizations in the matrix F.
For example, we can choose F = I, and for any nonsingular T, let

N=Tpl,_, T (46)

Note that a nondiagonal matrix N is still required to couple the sliding mode dy-
namics. The seemingly uncoupled sliding mode manifold with F = I is implicitly
coupled with respect to the physical phase angles, since

TL-T122
6; = tan™! | — , i=1,..., 47
' 8 <"T$1) ' " )

where n] denotes the i-th row of N.

4. Benchmark Comparison with Classical Sliding Mode

We shall examine the characteristics of the polar coordinate based sliding mode design
by applying the design approach to a simple vibration control problem, and comparing
the dynamic responses of the resulting feedback system with a sliding mode controller

which is designed using the classical sliding hyperplanes in the phase space. ‘

4.1. The Vibration Control Problem Description

An active vibration control system for a platform typically used in high precision
manufacturing can be modeled with the following second order dynamics:

mE + b2+ ksz = f +mg (48)

where ¢ is the gravitational constant, ks stands for the stiffness, b, denotes the
damping coeflicient of the spring support, and f is the active force applied to the
platform. Figure 2 shows a schematic diagram of this system where the reference
to the unsprung length of the spring from which the displacement of the platform is
measured is indicated. The spring support is designed to take compressive load only,
thus z > 0 is a physical constraint. The equilibrium # = mg/k, can be removed by
defining the state variables

T =2z — I, ZTo =1 (49)

and by defining

ks
T (50)
m m
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Fig. 2. Vibratory platform schematic diagram.

the dynamics in (48) are reduced to the standard form. Clearly, if additional mass is
loading the platform, the natural frequency of the system Vk decreases. So unknown
mass loading is a practical issue, however, maximum loading which is often included
in the rating of the platform is specified. Note that in the standard form, the control
variable is expressed in Newtons per unit mass, making the design scalable for different -
size platform design. The numerical values for this design are chosen to be

b = 0.04nw, k = 4n” (51)

corresponding to a resonant frequency of 1Hz.

4.2. Polar Coordinate Based Sliding Mode

The desired phase angle 6, is chosen to be 7/4 corresponding to a one second time
constant motion on the sliding manifold. Following the design procedures in the last
section, we subdivide the phase plane into two sets by choosing the value of the critical
angle 6,. We let 6. = 3w/8, and according to (33), @, = 5.83. The two sets @1 =0
and ©~ = 0 are separated by the line s, = z2 + tan(37/8)z; = 0. The variable
structure control can be designed as an on-off Pulse-Width-Modulation controller,

kri 4+ bzs + +G.21 if 07 <0 or 07 >0

u= (52)
0 if o¥>0 or 07 <0
where
172
6 = tan (971) (53)
t=0+T=0 o =0+T=0 (54)
4 ’ 4

Note that the exact values of the platform’s parameters are assumed known, and
this information is used in this controller as feedback compensation. Clearly, we can
introduce additional terms in this controller to mitigate the effects of the paramet-
ric uncertainties, we keep this controller simple so that we can make more effective
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benchmark comparisons with the classical hyperplane based sliding mode design. Im-
plementation of this controller also requires measurement of 8, the detection of the
phase trajectory with respect to the two sets, and the signs of the switching functions
ot and o~. Given z; and o, these implementation issues are readily solved with
additional logics to resolve the sign ambiguity and modulus 27 nature of any phase
angle measurements.

4.3. Classical Hyperplane Based Sliding Mode Design

When a hyperplane in the phase space is chosen as the sliding mode manifold,
s=xz9+cz; =0 (55)
we choose a variable structure control in the form
u = ka1 + bzy — (glze| + h)sgn(s) (56)

For benchmarking purposes, we let ¢ = 1 so that sliding mode on s = 0 also has
a one second time constant, and with g = 1.1 and h = 1, reaching of the manifold
s =0 is guaranteed for the dynamics in (48), and for any point on the phase space.

4.4. Dynamic Performance Evaluations

The two sliding mode control designs are evaluated using two test cases, both of
which include a pulse load introduced at 2 seconds for 0.1 seconds. For the first test
case, the initial conditions place the phase point just inside the ©@% set, whereas for
the second case, it is just inside the @~ set. These tests are chosen to illustrate
the selective switching behavior of the sliding mode manifolds in response to dynamic
loadings typically found in vibration control. The position and velocity measurements
are recorded for four seconds in all cases. The phase trajectories of these two cases
when a polar coordinate based sliding mode control design is used are shown in Figs. 3
and 4. In Case 1, the manifold o+ = 0 is active and the phase trajectory is driven
such that sliding mode occurs. Before sliding mode on this manifold reaches the
equilibrium Z or the origin of the phase space, the platform is excited by the pulse
load, and since the VSC is not designed to reject it, sliding mode is destroyed and the
phase trajectory is in the set ©~ when the pulse load expires. A different manifold
¢~ =0 becomes active, and as before sliding mode occurs on this second manifold.
A similar sequence of events takes place for Case 2 except sliding mode occurs on
o~ =0 before the pulse load, and on o =0 after.

~ The same initial conditions and pulse loads for the two test cases are applied for
the variable structure control which is based on the classical hyperplane design. The
respective phase trajectories are shown in Figs. 5 and 6. In both cases, sliding mode
occurs on s = 0 before the pulse load. However, at the end of the four-second period,
the phase trajectories are still in their reaching phases. We note that the behavior
outside the sliding manifold is identical as expected since there is only one sliding
manifold regardless of the location of the phase point. This is most clearly shown in
Fig. 6 where the slopes of the phase trajectories before and after the pulse load are
remarkably similar.
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Fig. 3. Polar coordinate based sliding mode phase trajectory {Case 1).
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Fig. 4. Polar coordinate based sliding mode phase trajectory (Case 2).
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Fig. 6. Classical hyperplane sliding mode phose trajectory (Case 2).
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With the additional complexities in the implementation of the polar coordinate
based sliding mode control design, the transient performance of the vibratory platform
has been shown to be dramatically superior to classical sliding mode control design.
Polar coordinate based manifolds offer the advantage of a more flexible adaptation of
the manifolds in vibration control problems where different feedback strategies may
be required depending on the phase of the oscillation. Furthermore, it allows sliding
mode to occur in the preferred quadrants of the phase plane, thus avoiding nonlinear
system characteristics due to physical constraints such as hard stops in vibratory
platforms.

5. Conclusions

In this paper, we propose a polar coordinate based sliding mode control design ap-
proach for solving vibration control problems. This design provides additional flexi-
bility in the design of the sliding mode control law, particularly in the reaching phase.
Since different variable structure control laws are devised for different sets of the phase
plane, improvements in the overall transient response of the vibration control system
over conventional sliding mode controllers with sliding hyperplanes have been shown.
While this approach is not easily generalized to other types of linear plants, it does
address a wide class of problems related to mechanical systems where the notion of
phase has special physical significance.
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