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ADAPTIVE REDUCTION OF THE CONTROL EFFORT
IN CHATTERING-FREE SLIDING-MODE CONTROL
OF UNCERTAIN NONLINEAR SYSTEMS'

Giorcio BARTOLINT*, ANTONELLA FERRARA**
ALESSANDRO PISANO*, ELio USAT*

In previous papers, the authors presented a control procedure, based on second-
order sliding modes, for the solution to the chattering problem in variable-
structure control of uncertain systems. When the extremal values of the sliding
variable are estimated by using a digital device with time delay 4, only a §2-
vicinity of the sliding manifold can be reached. This fact implies that the result-
ing continuous control has residual oscillations which are the higher the larger
the amplitude of the discontinuous derivative of the actual control plant is. In
this paper, Utkin’s concept of equivalent control is extended to second-order
sliding modes and a method to evaluate their estimate by means of a proper
high bandwidth filter is discussed. The knowledge of the estimate of the equiv-
alent control is the basis of an adaptation mechanism which is able to modulate
the amplitude of the discontinuous control so that a reduction in the boundary
layer and in the corresponding oscillations of the plant input is attained. The
proposed adaptive procedure is applied to a simple mechanical system as an
example.

1. Introduction

The sliding-mode control methodology is characterized by a semi-group property (in
time, one has an unreversible operator) when the trajectories are on the sliding man-
ifold (Drakunov and Utkin, 1992). Any system, belonging to a proper set, during
the sliding motion on a prespecified manifold is characterized by the same differen-
tial equation, and this property is regular to the sense that any motion close to the
sliding manifold has phase trajectories close the ideal ones. This means that different
systems have theoretically the same behaviour or, practically, very similar behaviour
so that they are not distinguishable. This fact appears to prevent the use of sliding-
mode control in identification of plant uncertainties, e.g. with the aim of reducing the
control effort.
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In contrast, Utkin (1992) has shown that discontinuous control acting on any
system of the set, during the sliding motion, can be used to identify, with an a-priori
evaluable error, an equivalent control. The latter is defined as a continuous control
guaranteeing the condition $(¢) = 0 on the sliding manifold s(¢) = 0. This condi-
tion has a solution which is strictly related to the r.h.s, of the differential equation of
any system actually controlled. In other words, the state trajectories are not distin-
guishable, but discontinuous control contains hidden information regarding the actual
system, which can be revealed by linear high bandwidth filters, with an approximation
which is, more or less, the smaller the closer the system trajectories are to the ideal
ones and the smaller the time constant of the filter is. Thus the practical availability
of the equivalent control could be used to reduce the uncertainties of the system.

If the measured approximated equivalent control is suitably combined with dis-
continuous control, a reduction of the uncertainties is performed so that the control
effort needed to maintain the system in sliding motion, i.e. discontinuous control
amplitude, can be reduced, in principle. The reduction of discontinuous control am-
plitude generates a set of benefits in practical implementation and in simulation of
real control systems, which ranges from the attenuation of chattering effect to the
shortening of the simulation time.

The idea of using equivalent control for identification and adaptation purposes
is obviously not new since it appears in Utkin’s book (Utkin, 1992) and in the works
of other researchers (Bartolini et al., 1996b; Fu, 1991; Hsu and Costa, 1989). In
this paper, this problem is faced for a particular second-order sliding mode approach
recently introduced, with the aim of eliminating the chattering phenomenon (Bartolini
et al., 1998). In Sections 2 and 3 this approach is presented in the ideal and real
cases, respectively. The ideal case means that an infinite-bandwidth peak detector is
assumed to be available, while the real case is relevant to a practical implementation of
this device. In Section 4, a procedure for achieving a reduction of the uncertainties’
bound analogous to that presented in Utkin (1992) is described. In Section 5, an
adaptive scheme exploiting this fact to reduce the control effort is presented, and,
finally, in Section 6, a simulation example illustrating the performance improvement
is provided.

2. Chattering Elimination Problem for Uncertain
Nonlinear SISO Systems

When the sliding-mode approach to the control of a real plant is considered, the chat-
tering problem, arising from nonidealities of real actuators, must be faced. The finite
frequency control arising from various kinds of nonidealities could excite unmodelled
oscillatory modes with unpredictable effect on the system behaviour. Any attempt
to smooth the discontinuity of the control could even worsen such a situation. One
approach to chattering reduction, by maintaining a very high commutation frequency,
is based on the use of observers for the modelled part of the system (Utkin, 1992).
The sliding mode is attained in the observer state space with a motion which is close
to the ideal one. The resulting high-frequency control is filtered out by the fast dy-
namics of the plant so that a practical continuous control is fed to the slow dynamical
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subsystem. In the case of known nonlinear systems, a general framework has been
proposed in (Sira-Ramirez, 1992) and then extended to uncertain systems in (Bar-
tolini and Pydynowski, 1993; 1996). Recently, the authors presented a chattering-free
control scheme based on second-order sliding modes (Bartolini et al., 1998), reported
here for the sake of clarity.

Given the system

jii(t)=$i+1(t), i:l,...,n—l ( )
1
£(t) = F[2(t)] + gl2(®)]u(t)
with @(t) = [£1,%2,...,7n]7 representing the completely available state, f[z(t)]

and g[z(¢)] being uncertain smooth functions satisfying the classical conditions for
the existence of the solution, and the following inequalities:

0<G1 < g[z(t)] <G 2)
[Flz®]] < Pr+Qsfx(t)] (3)
T
ng‘c‘[g;(i] < Py + Qur||z(0)| (4)
T
el [ < Pug+ Qu|l20)] ®)

where G, G2, Py, Qf, Pas, Qar, Pig, Qa, are known real positive constants, the
problem is to find a continuous control wu(¢) such that, in spite of the uncertainties
(2)—(5), the state of (1) is steered exponentially to zero.

In order to determine the desired continuous control, the following procedure has
to be followed (Bartolini and Pydynowski, 1996):

1. Differentiate the second equation of (1), setting
Tna1(t) = flz(t)] + g[z()]u(t)
and consider the augmented-order system
ii(t)=$i+1(t), 7::1,2,...,174—1
i?nt = Tn+1 (t) (6)
i = 5o [o0] + ol @]u(t) + o[2(0)] Su()
d¢ dt d¢

2. Choose an n-th order sliding manifold

slz(t)] = zn(t) + i cizi(t) =0 (7)
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with ¢;, i=1,...,n —1 being real positive constants such that the character-
istic equation 2" + 37! ¢;2"~! = 0 has all roots with negative real parts.

3. Consider the first and second time derivatives of s[z(t)], namely
S[m(t)] = f[ ( )] + g + Zczmz«H (8)
. d d
ila) = L fla®)] +u@®)gole®)] + cn_l{ flz®)]

glz(®)]u } Zcz$z+2 + g[z(®)]u(t) 9)

If it is possible to steer s[x(¢)] to zero in a finite time by using a discontinuous
control signal #(t), then the corresponding u(t) is continuous, thereby eliminating
the undesired high-frequency oscillations of u(¢) (the chattering effect) typical of the
standard Variable-Structure Control (VSC) design. Once on s[z(t)] = 0, the system
performs like a reduced-order linear system with stable transfer function. Assume
y1(t) = s[z(t)] and y2(t) = $[x(¢)]. Then, relying on (7), the system dynamics (1)
and the relevant uncertain dynamics (8), (9) can be rewritten as

Z(t) = AZ(t) + By, (t)
To(t) = —CZ + y1(2)

(10)
Y1(t) = ya(t)
Y2(t) = Fla(t),u(t)] + g[z()]v(t)
where & = [z1,22,...,Zn-1]7, C = [c1,¢2,...,Cn-1], A isan (n—1) x (n—1)-matrix
in companion form whose last row coincides with the vector —C, B =[0,...,0,1]7

€ R*1, v(t) = 4(t) and F[,] collects all the uncertainties not involving v(t). The
first two lines of (10) correspond to a linear system controlled by y;(t), and this
system is stable by assumption. The second two equations of (10) correspond to a
nonlinear uncertain second-order system (y»(t) is not available for measurement) with
control v(t). If the control v(t) steers both y;(t) and y2(t) to zero, then the linear
system becomes an autonomous system evolving on the manifold defined by (7). Note
that the last two equations of (10) are coupled with the previous ones through the
uncertainties Flz(t),u(t)], g[z(t)].

2.1. The Auxiliary Problem

It is worth noticing that the system state x(t) in (10) is an implicit function of the

sliding variables y(t) = [y1(t),y2 (t)]T. Furthermore, the system input u(¢) can be
represented as a function of time, so that, in general, F[z(t),u(t)] = F[y(t),t] and
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glz(t)] = g[y(t),t]. As a preliminary step of our treatment, we assume that, instead
of bounds (2)-(5), the following particular bounds:

|Fly(t),1]| < F (11)
0< G <gly(t),t] <G (12)

are considered. With this assumption, which will be dealt with in the next section,
the dynamics relevant to y;(¢) and ys(t) can be isolated and the following auxiliary
problem can be solved separately.

Problem 1. Given a second-order system

U1(t) = ya(?)

(13)
2(t) = Fly(t),t] + gy (), t]u(t)

with unmeasurable ys(t), and F[y(t),t], g[y(¢),t] being uncertain functions with
bounds (11), (12), respectively, find a control law v(t) such that yi(t) and y»(t) are
steered to zero in a finite time in spite of the uncertainties.

Since y2(t) is not available and F[y(¢),t], g[y(t),¢] are uncertain, this problem
is not easily solvable by any consolidated theory.

A possible solution is derived from a suboptimal version of the well-known bang-
bang time-optimal control for a double integrator in which, instead of defining the
commutation line as the line on which the quantity yi(¢) — Sy2(t)ly2(t)| changes
its sign, it is equivalently defined as the line on which the difference between the
current value of y;(¢) and half of its last extremal value yi,, changes its sign. The
corresponding suboptimal control algorithm can be obtained by setting a* =1 in
the following.

Algorithm 1.
i) Set a* € (0,1]N(0,3G1/G2).
ii) Set Y1, =y1(0).
Repeat, for any ¢ > 0, the following steps:
i) If [y1(¢) — 2910 ]W1n — y1(8)] > 0, then set a = a*; else set o = 1.
iv) If y1(¢) is extremal, then set y1,, = y1(%).
v) Apply the control law

v(t) = *aVMsign{yl (t) — %ylM} (14)

until the end of the control time interval.
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This algorithm is equivalent to the traditional one if y;(0)y2(0) > 0, while it has
only one more commutation if y;(0)y2(0) < 0, in the case when a double integrator
is considered. In the case of the uncertain second-order systems under consideration,
it is still possible to reach the origin of the y; Oy2-plane in a finite time provided that
some slight modifications to the algorithm are introduced. To this end, the following
lemma was proved (Bartolini et al., 1997).

Lemma 1. Consider the state equation (18) with bound as in (11)—(12) and y2(t) not
available for measurements. If the extremal value of y1(t) is evaluated with ideal pre-
cision, for any y1(0) and yo(0), the sub-optimal control strategy defined by Algorithm
1 with the additional constraint

. 3G,
a* € (0,1]n (0i a )

F 4F
Ol*Gl’ 3G1 —OA*GQ

(15)

VM>max(

causes the generation of a sequence of states with coordinates (y1 »; ,0) which has the
following contraction property:

|y1M,i+1| < iylMl»L i=1,2,... (16)

Moreover, the convergence of the system trajectory to the origin of the error state
plane takes place in a finite time.

The results of Lemma 1 are also valid in case the bound of the uncertain function
Fly(t),1] is not constant, e.g. |Fly(t),t]l < N + k(lya| + [yzl), provided that F
overestimates the maximum of |F[y(¢),t]] between two subsequent extremal values
of the available variable y;(t), that (15) holds and that a proper initialization phase
is implemented (Bartolini et al., 1996a; 1997).

2.2. Chattering Elimination

Now, it will be shown that it is possible to solve the chattering elimination problem by
relying on the results obtained with reference to the auxiliary problem of the previous
section. To this end, consider eqn. (10) which can be viewed as the connection of
two systems coupled through the signal y;(t) and the nonlinear term F[z(t), u(t)] +
glz(t)]v(t). Simply assume that (2) holds, which is reasonable in many practical
situations, while F[z(t),u(t)], though bounded in any bounded domain, cannot be a
priori assumed to be bounded, since proving the boundedness of its arguments is an
objective of this treatment. Thus, the aim of the following analysis is to prove that,
after an initialization phase, the state trajectories reach regions of the state space
including the origin. Once such regions are reached, the application of Algorithm 1,
with miror modifications, leads to a contractive process steering y;(t) and y»(t) to
zero in a finite time. After that time, the further evolution of the system states is that
of an autonomous linear exponentially stable system. In order to describe formally
this procedure, the following lemma has been proved (Bartolini et al., 1998).
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Lemma 2. Given the state vector x(t), its norm can be bounded in any bounded
interval by a function of its initial values and of the mazimum value assumed by
1 (t), whose evolution is represented by (10), in such an interval. In other words,

=@ < Beoll= )] + QaYag, (17)
with

Y1 = max |y1(7')l

18 7 <<t
On the basis of previous relationships and lemmas, F[z(t),u(t)] can be written
as

Flz(t),u()] = 01[2(t)] + O2[zx(t)]u(t) + Os[z(t)]u?(t) (18)

Using (2)—-(5) and (17), we express the upper bounds of |©;[-]|, i = 1,2,3, in any
finite interval (¢;,ts), as

|@1,|:(B(t)]| < Fi[}fl(t‘-,tf)]7 i=1,...,3 (19)

F[-] being an increasing positive function of its argument, i.e. of the maximum value

of y1(t) in the interval (t;,t;). Hence, in any finite interval, one can define an upper
bound of |F[z(t),u(t)]| as

F*[Y,, )] = FilYig ) + BalYig, ) llu®] + B[V, Ju?(t) - (20)

Note that the term depending on w%(t) would not appear in case g[z(t)] were not
dependent on z,(t).

From the previous analysis, to go on with the treatment it must be proved that the
chattering elimination problem, after an easily implementable initialization procedure,
has the same feature as Problem 1 provided that the control 4(t) is modified according
to the following lemma (Bartolini et al., 1998).

Lemma 3. Consider the system (10), provided that for t € [tMmaos:»tMazisr)s
(1 =1,2,...), where tpae; ond trraz,y, ore the time instant corresponding to two
subsequent extremal values of y1(t), y1,, and Yin,,, the control signal u(t) is cho-
sen as

. . 1
u(t) = —aVM,mmgn{yl(t) - §y1M‘,}

~{ Palyrae, ) Ju(®) = ultras)

 Fyfyn [02(2) = w2 (tvrass) | }sign{ynag ) (21)

where a is defined according to Algorithm 1, and Ve, s chosen as specified in (15)

with F given by
F = F*[ylMi]

= Fi[y1,,] + Foly1p,] ’U(tMami)

+ F3 [y1MI.]u2 (tMaz,-) (22)
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Then the trajectories of y1(t) and ya(t) in the considered time interval lie between
the abscissa azis and the “external” limiting curve defined by Algorithm 1.

Previous results cover a large class of uncertain systems and are semi-global. An
effort to extend the developed theory to more general uncertain cases and to exploit
some form of learning and adaptation to reduce the control efforts is in progress. In
(Bartolini et al., 1996a) some steps in this direction are reported.

3. Approximate Second-Order Sliding-Mode Control

Algorithm 1 relies on the availability of a device capable of detecting the maximum
or minimum value of a function of time. This device is obviously an idealization with
infinite bandwidth of peak detectors with very high bandwidth which are available
on the market. In practical situations, the extremal values of the function can also
be evaluated by an approximate differentiator

A@t) = s (t = 6) — y()]12 (t) (23)

where ¢ is an arbitrarily small time delay, and evaluating the time instant when A(t)
changes its sign. In particular, the following algorithm, which is a modified version
of Algorithm 1, and the related theorem can be regarded as an extension to this
approach of the approximability property offered by standard sliding-mode control.

Algorithm 2.
l) Set a* € (O, 1] N (O, 3G1/G2)
11) Set & > O, Y1y = iL’l(O)

Repeat, for any t > 0, the following steps:
iii) If [y1(t) — 3y1ae) (W10 — y1(t)] > O then set a = a* else set a = 1.
) If (t—6) <0 then set yi(t —4) =0.
v) If A(t) <0 then yi,.. =v:1(t) else y1,..., =1, ..
)

If A(t) <0 then

i {Y1mem¥1ae > 0} and {|y1,,al < [Y15,]} then y1,, = y1,.... else y1,, = y1,,
else Y1, = Yimem-

vii) Apply the control law (14)

iv

V1

until the end of the control time interval.

Theorem 1. Consider the state equation (13) with bounds as in (11)-(12), ya(t) not
available for measurements, and evaluation of the extremal values of y1(t) correspond-
ing to the time instants when A(t) in (23) changes its sign according to Algorithm 2.
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Then, for any y1(0) and y2(0), the control strategy defined by Algorithm 2 with the
additional constraints

. 3G,
a* € (0,1]N (0, G )

F
Vum € }max (*_§ Ve, (é;ylM)) Vi, (6;y1M) {
(6 G1

c . F 4F oo
m . .
- & o*G’ 3G1 — a*Gy )’

Vs, Vs Vs,
VM,.:[(3G1—a*G2)%-4}ZI{_}—§;— 81‘;; [G1+G2(2—a*)]<G2—%{i+1):0

(24)

causes the finite-time convergence of the system trajectory to a J§-vicinity of the ori-
gin. Moreover, a sequence of states with coordinates (Tpfqq;,0) is generated with the
following contraction property:

N e Nt . Wins | < [Y1ag, |5 i=12,...,N-1 (25)
and

ly1a, | = 0(8%), i=N,N+1,... (26)
with

[Y1a, — 12, | = O(6), i=1,2,... (27)

Y1, being the actual i-th extremal value of y1(t), and §1,, being the corresponding
value determined by storing the value of y1(t) when (23) changes its sign according
to Algorithm 2.

Proof. The sketch of the proof is reported in the Appendix. ]

Actually, in this case, inequality (15) is slightly modified in the sense that Vi
in (24) does not belong to a semi-infinite but to a finite interval depending on the
time delay 4, nevertheless the following limit properties are verified:

. 4F
%lj)IéVMl (65910) = 3G; — a*Gy
lim Viz, (0;91,,) = +00

6—0

The effect of the approximated evaluation of the extremal point of y;(¢) due to the
time delay ¢ in (23) is similar to that of real commutation devices which introduce a
delay in the commutation of the control. Yet, by using the proposed procedure, the
dimension of the vicinity of the sliding manifold within which the state trajectories
are constrained when the real sliding motion is reached is O(62) instead of O(6).
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4. The Equivalent Control in Second-Order Sliding-Modes

Second-order sliding modes are characterized by the fact that the control input of the
plant u(t) is such that, once the system reaches the sliding manifold s[z(¢)] = 0 at
time instant 77, the following relationships hold (Levant and Fridman, 1996):

s(t)=5t)=0, t>T (28)

If the system (1) is considered, the dynamics of the sliding variable s(t) is character-
ized by the second-order uncertain system (13) in which s(¢) = y1(t) and $(t) = y2(2),
and when the system is in a second-order sliding mode, the switching frequency of the
control v(t) = 4(t) = tends to infinity. The concept of equivalent control introduced
by Utkin for the first-order sliding modes (Utkin, 1992) can be extended easily to
the considered case of second-order sliding modes. Such an extension and the related
properties are reported here for the sake of clarity.

Definition 1. Given the system (1), the equivalent control generating a second-order
sliding mode on the sliding manifold (7) is the continuous control wveq(t) = %(t) such
that the condition (28) is verified with §(t) =0, ¢ > T;.

In the case considered, by means of (2)—(13), the equivalent control can be triv-
ially determined as

vea(t) = —gly(t),t] Fly(t),1] (29)

In Section 3, it has been shown that, by applying Algorithm 2 with the conditions
defined by Theorem 1, it is possible to reach in a finite time 77 a boundary layer of
the sliding manifold (7) whose dimensions are such that

s()] < 0(8?)
5()] < 0()

The switching frequency of the control v(t) defined by Algorithm 2 tends to infinity
as the time delay ¢ in (23) tends to zero, i.e. the switching imperfections vanish and
the system motion tends to an ideal sliding mode. Actually, the time delay § can
be very small when using proper electronic devices, but only a “real” sliding motion
can be attained, so that, in practice, the effect of the control v(t) always differs from
that of the equivalent control veq(t).

(30)

Now, define the average control v, (t) as the output of a first-order filter whose
input is the discontinuous control ©(¢) defined by Algorithm 2, i.e.

TOay (t) + vay (t) = 0(2) (31)

with the time constant 7 small enough compared with the slow component of 9(t),
and yet large enough to filter out the high-rate component. By means of the results
of Theorem 1 and following the approach in (Utkin, 1992), from which the following
is true:

-1,

D(t) = veq(t) + g[y(t),t] 3(t) (32)

we can prove the following,.
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Theorem 2. Given a real second-order sliding motion (138) within a boundary layer
such that (30) holds, and subject to (2)-(5) and to the additional constraint

210

<F 33
at |= (33)

P being a positive constant, it is possible to find a first-order filter of type (31) such
that its output is an O(v/3) approzimation of the ideal equivalent control, i.e.

Vay (1) = veq(t) + Av(2)

t> Ty (34)
|Av(t)| = O(V6)

Proof. Consider the output of the filter (31) from the time instant ¢; > T} on,
VI S L
Vav (t) = vay(ts)e™ ™ + —eT e=9(0)dé

ti

By substituting the value of 4(t) in (32), the following relationship defines v,y (2):

A
A

1 . [t & 1 t o, 8(0)
Vav (1) = vav(ti)e™ +—e_?/ €T Ueq(0)dl + —e™ / er ————df
a ( ) ( ) T b eq( ) T ¢, g[y(e)’g]
The two integrals can be integrated by parts so that

1 a() e 1 s()
Tg[y(ti),ti]] et Tg[y(t)at]

- /t,'teg {i)eqw) " S(T_G) [Gg[y(lé’),ﬁ] - z%zﬂ } 4

The uncertain terms of the integral argument can be upper bounded by means of
(2)-(5) and (33), and it is possible to define three positive constants 4;, (i = 1,2,3)
such that the following relationship holds:

11

—t 6
Vav (ti) — Veq(ti) — ;G—l] 6T+A1;+A2T+A35, t>t; (35)

Vay (t) = veq(t) + [Uav (t:) — veq(ts)

[Vay (t) — veq(t)| <

This difference is characterized by a time decreasing exponential term and by a con-
stant term; the latter is minimized by the following choice of the time constant 7 of

the filter:
—_ Al

and, by substitution into (35), the following relationship holds:

11 —t
I'Uav(t) — ’Ueq(t)l S [Uav(ti) — Ueq(ti) — ;G— e + 2\/ (SAlAz + A36, tZ t.i (37)
1

Hence there exists a time instant ¢, > ¢; > 77 such that (34) is true. ]
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Remark. The choice of the filter time constant as in (36) is such that the condition

lim vay (t) = veq(2)

§/7—0

still holds, i.e. the real sliding mode tends to the ideal sliding mode as the nonideality
vanishes.

5. Adaptive Reduction of the Discontinuous Control

In the previous section it has been proved that the discontinuous control causing an
approximate second-order sliding mode yields, at the output of a linear filter, the
same effect of the equivalent control plus an error depending on the dimension of the
neighborhood of the sliding manifold to which the system motion is confined (in our
case O(46?)). In this section this fact is exploited to adaptively reduce the amplitude
of the discontinuous control needed to maintain the system in sliding motion on the
chosen surface. Indeed, an approximate cancellation of the uncertain “ drift” term
Fly(t),t] can be performed if the signal v,y is part of the derivative of the input
of the plant, v(t). This cancellation, in turn, reduces the uncertainty bounds and,
consequently, the amplitude of the discontinuous control deriving from the solution of
the inequalities (15) or (24) could be reduced. Indeed, the upper bound F' appearing
in such inequalities could be substituted by a new upper bound, a-priori evaluable
from (35) and from the knowledge of G3; which can be made arbitrarily small by
suitably choosing 7 and 4/7.

The problem is to identify a way to reduce the control amplitude according
to the new bound without reducing the robustness of the controlled system whose
trajectories need to remain on or close to the sliding manifold.

Assume that the derivative of the plant control input, v(t), can be expressed as

v(t) = A)0(t) + 0(t)vay (1) (38)

where 9(t) is the discontinuous control whose amplitude is evaluated from (15) or (24)
and is related to the a-priori known bounds of Fly(t),t] and g¢ly(¢),t], and vay(t)
is the output of a filter of the type (31) which will be defined later on. The actual
control is therefore the weighted sum of 4(t) and v, (t) with weights A(¢) and 6(2),
respectively, to be adapted during the control phase. From the previous section, when
the system is in sliding motion or it evolves within the O(6%)-vicinity of the sliding
manifold, the equivalent control method can be applied to the system with the new
control (38). The equivalent control ¥eq(t) is evaluated from

5(t) = Fly (), 1] + 9 [0, ] [\D)iea t) + () ()] = 0
so that

) = ~ LWL+ 00 )
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The equivalence between Filippov’s solution concept and Utkin’s equivalent con-
trol method for systems affine in the control law, and the approximability property of
systems whose trajectories are close to the sliding manifold, guarantee that the new
vay (f) evaluated from

TOay (8) + Vay (t) = B(t)
can be derived from
TUay (£) + Vay () = Teq(t)

since the discontinuous control ©(¢) has, on any differential equation coupled with
the original system, the same effect of Qeq(t). From (39), the equivalent filter repre-
sentation is

A(t) +6(t)

T’l-)av (t) + T’Ua\, (t) = —

9 y(@), t]F[y (), ]
X0

(40)

If A\(t) and 6(¢) are time-varying functions satisfying, at any time instant, the con-
ditions A(t) + () = 1 and Amin < A(t) < 1, with Apin being a lower bound to be
determined, the equivalent filter representation is

TA()Day () + vay (t) = —g [y (8), t] F [y(¢), ¢]

ie.

vay(t) = —g 7 y(2),t] Fy(2),t] + O(TA()) (41)

in the ideal case, § =0, or

o (®) = =57 O, Fly(0,] + 0(r30) + 0 () (42)

in the real case d§ # 0.

The foregoing derivations are valid under the assumption that with the change
of the control from u(t) = 9(t), which resulted from Algorithm 1 or 2 and the related
theorem and lemmas, to u(t) = A(£)(¢) + 0(t)vay () the system is able to reach the
sliding manifold in a finite time and to remain there until a new perturbation occurs.
This property is obviously dependent on the choice of the adaptation mechanism used
to modify A(t) which must be driven by an on-line evaluation of the discrepancy
between the effect of the discontinuous control and its filtered value.

The following treatment is aimed at identifying a proper procedure for achieving
the goal of reducing the amplitude of the discontinuous component of the control
derivative without loosing the property of counteracting disturbances and uncertain-
ties acting on the system at any unpredictable time instant.

Let us consider now the discontinuous signal

’U(t) = ’ﬁ(t) — Vav (t) (43)
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In the ideal situation 6 — 0. By applying Filippov’s theory, since in the ideal motion
§(t) = 0 and $§(t) = 0, the effect of the discontinuous signal (43) on any other first-
order system

Ca(t) = 2(t) + m(t) [0(2) — vay (£)] (44)

is equivalent to that obtained by substituting ©(t) with veq(t) as defined in (39)

(o) = 20+ () { OO 200l )

Taking into account the condition A(t) + () = 1, we have

) = =) + o { - ™ WO FlvO,1] - va (0]}

By introducing £(t) as the difference between the ideal equivalent control (29) and
the output of the filter (41), the above relationship changes into the following:

C(t) = (1) - %em

Once within the boundary layer, after setting m(t) = A(t) in (44), a reasonable way
to choose A(t) is as follows (Fig. 1):

C2(t) = —z(t) + M) [0(2) — vav ()]

z(t;) =1

1 it |z(t)] > 1 (45)
A) =4 |z()] i Amin < |2()] <1

)\min if lz(t)l S Amin
8(t) = 1 A(t)

Here Amin and the saturation level at A(t) = 1 are justified by the fact that the
various errors sources in filtering can be evaluated a priori so that a minimum control
weight Amin is evaluable in sliding motion. The saturation level A = 1 corresponds
to the fact that the discontinuous control signal 9(¢) is always able to guarantee the
reaching of the desired sliding manifold in finite time. ’

6. Example

We consider the position control of a trolley with a time-varying mass, connected
to a rigid structure by means of an active suspension, and subjected to an external
disturbing force d(t) (Figs. 2 and 3). The control aim is to constrain the system in
a fixed position in spite of external disturbances and system uncertainties, i.e. mass
variations.
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The dynamics of the system is defined by the following differential system:

$.1 (t) = T2 (t)

m(t)

u(t)  d(?)

- t Bk Sl WA

[km@+mﬂﬂ+m@ =)

where z;(t) is the variation of the trolley position with respect to the undisturbed
one.

Ta(t) =

The control objective is attained by defining the sliding manifold as s[z(t)] =
zo(t) + c1z1(t) = 0, so that, once the system is in sliding motion, it performs like a
first-order system, and by applying the proposed control procedure. Note that in this
example the function g[z(t)] = 1/m(t) is not actually dependent on «(t), and then
Flz(t),u(t)] assumes a simpler form than that in (17). Indeed, the system can be
expressed as

1(t) = 12(t)
J2(t) = Go[z(t)] + O1[2(t)]51(t) (47)
1 .
+0: [2(t)]y2(t) — mu(t)
and this fact implies that the second term of the control signal #(¢) in (21) is not
present.

The simulations have been carried out using Matlab Simulink v.1.3c with the
following values: m = 10+ 1kg, b = 10Nsm™!, k¥ = 500Nm~, z;(0) = 0.1,
22(0) =0, ¢; =557, § =1072s, Vjy =500Ns~! and o* = 1.

In the first case Algorithm 2 has been applied directly (without any adaptation
mechanism) and the results are depicted in Figs. 4-6. While the control signal (t)
is obviously discontinuous with a constant amplitude equal to Vs, the control force
actually applied u(t) is continuous but with some oscillations due to the approximate
evaluation of the extremal values of the sliding variable s(¢). The position of the
trolley remains constant after a transient phase. The convergence of s[x(t)] and
5[x(f)] to a vicinity of the origin of the sliding plane is achieved with a steady-state
error less than 10™* and less than 4 x 1072 as far as s(t) and $(t) are concerned,
respectively.

If the estimation of the equivalent control and the adaptation, with 7 = 0.5 s
and ¢ =10 s, is used once the boundary layer is reached, the derivative of the plant
input is discontinuous but with reduced amplitude (Fig. 7) so that the actual plant
input is continuous with a reduced amplitude of the residual oscillations (Fig. 8).
The trolley position and velocity, as well as the trajectory on the sliding plane are
depicted in Figs. 9 and 10, respectively. When the adaptation mechanism is used,
the steady-state error on the sliding variable s[x(t)] is less than 5x10~% and less
than 2x 1073 as far as s(t) and $(t) are concerned, respectively.
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Fig. 4. Plant control input (without adaptation).
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Adaptive reduction of the control effort in ... 69

Sliding variable derivative

Sliding variable

Fig. 10. Trajectory on the sliding plane (with adaptation)

7. Conclusions

The main criticism that sliding mode control detractors usually attribute to this ap-
proach when real applications are concerned, is related to the chattering phenomenon
and the high control authority, i.e. a high amplitude of the discontinuous control eval-
uated a priori to counteract uncertainties. Both these aspects have been addressed
in this paper and a feasible solution has been identified in the spirit of Utkin’s work
adapted to a second-order sliding mode control approach recently proposed by the
authors. Approximability and practical availability of the equivalent control at the
output of a high-bandwidth filter are the tools which allow for a satisfactory solu-
tion of the problem under consideration. This philosophy paves the way for practical
implementations of real control devices applicable in many fields ranging from the
control of mechanical systems and electronic drives to the control of power systems.

Appendix
Sketch of the proof of Theorem 1

Consider the k-th extremal value of y;(t), i.e. y; w, » and assume, for the sake of
simplicity, that it is positive. By applying Algorithm 2, its estimate will be evaluated
as soon as the device (23) changes its sign from negative to positive with a time delay
at most equal to §/2. Taking into account the uncertainties of the system dynamics
it is possible to show that the estimated extremal point PMk = (1}1 My y”ng) is such
that

. 1 -
Yin, € [yle 3 (F+GaVi) 6% yle]

(48)
R

o, € [o L (F+ GaVin) 5]
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At the same time instant at which the extremal point is estimated, the control mod-
ulation parameter a switches to o*, and it remains constant until the switching of
the control occurs at a point P, = (yl% ; yg%) such that, for y1,, = §1,,, /2,

1 1 - 9 1
Y1, € [ayle - E (F+ GzVM) 6°; EylM’“
:lszk € [— \/(O&*GIVM — F) Ying, s (49)

~ 62 o
-—\/(a*G2VM + F) Yl + —8— (GzVM + F) [F+ (2 - a*) G2VM]

Considering the worst-case trajectory on the y;Oys plane, the condition which as-
sures the decreasing of the modulus of the extremal values of y;(¢) is defined by the
following relationship:

(a*Gy — G1)Vu + 2F 8 _G1+Ga(2-a)
2(G1VM _ Fv) yle + ] VM(G2VM + F) ————-——2(G1VM — F) < yle (50)

Taking into account the dominance condition, i.e. a*G1Vas > F, by simple algebraic
computations, it is possible to show that inequality (50) possesses a solution with
respect to Vis within a real interval whose boundary is defined by the solution of
the second-order equation in (24). Given F' and 4§, such an interval depends on the
current extremal value of y;(¢) and it exists if the equation in (24) has distinct real
roots. .

As for the value of |y1,, | which implies the existence of a double real root for
the third relationship in (24), it is possible to compute the control amplitude V3
which assures the convergence of y;(t) to the zero-neighbourhood of minimum width
€1, i.e.

(51)

4F 3G1 - a*Go
vr o= i Sl
M 3G — a*Gy l:l tylt 4G, ]

with o* satifying the first constraint of (24) and such that V3; > F'/a*G1, so that

lip,| <1,  i=N,N+1,...

£1~ Fﬁzgi. ('y + 8G2 + 4\/G2(’7 + 4G2)]

B8=G; +G2(2—a*)

(52)

Y= 3G1 - OL*Gz

The finite-time convergence is a straightforward consequence of the finite time evolu-
tion between subsequent extremal values of the available variable v (t).
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