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A SYMBOLIC COMPUTATION TOOLBOX
FOR THE DESIGN OF DYNAMICAL ADAPTIVE
NONLINEAR CONTROLLERS

E. MicueL RIOS-BOLIVAR*, ALan S.I. ZINOBER**

We describe a new symbolic computation toolbox BACKDSMC developed us-
ing the MATLAB Symbolic Toolbox and intended for the design of dynamical
adaptive nonlinear controllers for regulation and tracking tasks of a class of
observable minimum phase uncertain nonlinear systems. This toolbox also al-
lows us to design non-adaptive controllers for systems without uncertainty, and
adaptive sliding mode controllers (SMC) to provide robustness in the presence
of disturbances. The design procedure employs the basic ideas of the adaptive
backstepping algorithm with tuning functions via input-output linearization,
and is applicable to both triangular and nontriangular systems.

1. Introduction

The computer technology advances of recent years have allowed the development of a
number of computer software systems intended for numerical and symbolic computa-
tion, such as MACSYMA, MAPLE and MATHEMATICA. The availability of these
packages has allowed the development of useful toolboxes for the systematic analysis
and design of feedback control systems. For instance, some of the toolboxes devel-
oped so far include analysis and control design for affine and non-affine systems (de
Jager, 1996; Glumineau and Graciani, 1996), modelling and nonlinear control design
(Blankenship et al., 1995), and analysis and design based on flatness (Rothfuss and
Zeitz, 1996). These toolboxes simplify the use of systematic and recursive control
design methods so that the design of stabilizing controllers may be carried out more
efficiently.

The various backstepping control design algorithms (Jiang and Praly, 1991;
Kanellakopoulos et al., 1991; Krsti¢ et al,, 1992) recently compiled in Krsti¢ et al.
(1995), provide a systematic framework for the design of tracking and regulation
strategies suitable for large classes of nonlinear systems. The adaptive backstepping
algorithm has enlarged the class of nonlinear systems controlled via a Lyapunov-based
control law to uncertain systems transformable into the parametric strict feedback
(PSF) form or the parametric pure feedback (PPF) form. In general, local stability is
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achieved for systems in the PPF form, whilst global stability is guaranteed for systems
in the PSF form (Kanellakopoulos et al., 1991). These two forms can be seen as special
structural triangular forms of nonlinear systems which are adaptively input-output
linearizable with the linearizing output y = x;. A more general algorithm has been
developed by Rios-Bolivar et al. (1995), which makes it possible to design dynamical
adaptive controllers following an input-output linearization procedure based upon the
backstepping approach with tuning functions (Krstié et al., 1992), and is applicable
to both triangular and nontriangular uncertain nonlinear systems.

This paper is organized as follows: Section 2 outlines the generalized backstepping
algorithm. Some features of the symbolic toolbox BACKDSMC are given in Section 3.
Section 4 presents examples of application of the dynamical adaptive backstepping
algorithm using the symbolic toolbox, and some conclusions are presented in Section 5.

2. Dynamical Adaptive Control Design

The Dynamical Adaptive Backstepping (DAB) algorithm proposed in Rios-Bolivar
et al. (1995) is based upon a combination of dynamical input-output linearization
and the adaptive backstepping algorithm with tuning functions (Krsti¢ et al., 1992).
Since it has been developed in a general context, without the use of canonical forms,
its applicability to both triangular (PSF and PPF forms) and nontriangular systems
is guaranteed, but it requires that the controlled plant be observable and minimum
phase. The observability condition is required to guarantee the existence of a local
nonlinear mapping which transforms the plant into a convenient form of the error
system, as shown below. The role of the minimum phase property is to allow the
applicability of the systematic algorithm presented here and to guarantee stability
of the closed-loop system. This general algorithm includes as a particular case the
adaptive backstepping algorithm with tuning functions (Krstié¢ et al., 1992) developed
for systems in PSF and PPF forms.

Consider a single-input single-output nonlinear system with linearly parameter-
ized uncertainty

i = fol@) + 2@)0 + (90(e) + L(a)6 ) (1)
y = h(z)
where x € R® is the state; v,y € R denote the input and output, respectively; and
6 =[64,... ,GP]T is a vector of unknown parameters. Here fy, go and the columns

of the matrices ®,¥ € R**? are smooth vector fields in a neighbourhood R of the
origin z = 0 with f5(0) = 0, go(0) # 0; and A is a smooth scalar function also
defined in Ry.

The steps leading to the the design of the dynamical adaptive compensator follow
an input-output linearization procedure in which, at each step, a control dependent
nonlinear mapping and a tuning function are constructed. The parameter update
law and the dynamical adaptive control law which stabilize the controlled plant are
designed at the final step. In order to characterize the class of nonlinear systems for
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which this procedure is applicable, we set up a nonlinear mapping by considering the
output y(¢) and its first n — 1 time derivatives as follows:

. Oh. Oh
1= 527 3, {fo(z) + ®(z)0 + (go(z) + \Il(z)H)u] (2)
Due to the presence of the unknown parameter vector 6, we rewrite (2) as

v =LL(z,0,u) = % [fo(z) + &(x)0 + (go(a:) + \I:(z)é)u] + w1 (6 — 6) (3)

where 6 is an estimate of 6, and the vector w; is defined as

Oh
o1 = 5 (2@ + 0¥ (@) @
In other words, (3) may be rewritten as
v =Lh(z,0,u) = L} (z,0,u) +wi (0 — ) (5)
with
LL(z,0,u) = % [ fo(z) + ®(z)6 + (go(x) + ‘P(x)é) u] (6)

The second time derivative of the output is

o), o(eh); a(ch)

Oz 50 o+ o
0 (£}) 0(Lh) 5, 0(Lh) .
= =5 [fo(a:) + ®(z)8 + (go(z) + ‘Il(a:)())u} + Py 0+ 5y U (7)
which can be rewritten as
i = L3(z,0,u,0) = L2(z,0,u, 1) + wy (6 — 6) (8)

with

a (Ll A : . 1y, 1
3= (Oih) [fo(:c) + ®(z)6 + (go(z) + ‘Il(z)g)u} + 9 E;éh) 0+ 9 E‘iih) w (9)

and

0 (£3)
wy = T(q)(a:) + u\Il(x)) (10)
By proceeding successively in this manner, we obtain the j-th time derivative of
the output

y(j) = Ei (m,é,u,u, .. .,u(j_l)) = Z?L (z,H,u,u, - ,u(j*l)) + w; (6 —é) (11)
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with
231 = i (fj;: ) [fg(a:) + ®(z)d + (go(x) + \Il(:c)é)u}
+ ’ (ﬁgl) g+ S ——8 gu%:) utD) (12)
and
wj = 8%# (q»(m) + u\I’(z)) (13)

The expression (11) is valid if the relative degree is one. The general expression for
systems with well-defined relative degree, i.e. 1 < p < n, has the form

y9 =i (g;,é,u,ﬂ, . ,uu*o)) = (m,é,u,u, . ,uu—ﬂ)) +wi(0—-68) (14)

with
j—1
Ll = 8—(2%—) [fg(x) + ®(z)f + (go(w) + \I’(w)é) u]
j—1 i p— j—1
. 0 (ffé ) §+ j—p-19 gff;k) )u(k+1) (15)

k=0

In other words, the time derivatives of the output are obtained by the application of
the following recursively defined operator:

L) = h(z)
o o(d™)
L = o [fg(x) + &(z)0 + (go(x) + \I'(a:)ﬂ) u]
oL, desto(Li
+ (—’1—)9 + —(—h—)u<’°+1> (16)
98 Oul®
k=0
which also characterizes the control dependent nonlinear mapping
y Ly
1 L1
A Y
z2=2E (x,@,u,...,u(n_p_l)) = . = ,h (17)

y(n-—l) ﬁzml
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Assumption 1. The system (1) is locally observable, i.e. the mapping (17) satisfies
the rank condition

agi') =n (18)

in a subspace Ry C Ry C R™.

rank

Assumption 2. The system (1) is minimum phase in R; C Ry C R™.

For observable minimum phase nonlinear systems of the form (1), the general
problem of adaptively tracking a bounded desired reference signal y,(t) with smooth
and bounded derivatives can be solved through the DAB algorithm summarized as
follows:

DAB Algorithm
Coordinate transformation
2 =y =4 (t) = hO(@) -y, (1)
2k = AU gD (@) fap (), 2<k<n (19)
with
. Ah(k—1) Sh(k—1) N N
Ak = . P Th)v,
% " o [fo+ 6 + (g0 + ¥O)uy
k—p—1 A% (k—_ S
oh(k-1) ohk—1)
S S (20)
i=1 g
OR*=1 a4
= v
Wi ( 5 + pe (<I>(.'E) +u (:1:)) (21)
k-1 k—1
ARG i
A = Zp— 1—1—(22:1 5 Z A)
2 =3 o0
kil O — 1 : 3ak~1T + Oag—1
v T R T
5 Oag—y
“p fo+®0 + (go + VO)vy | + crz (22)
k
Ty = I‘Zw;‘:zk (23)
i=1
Parameter update law
o=r :I‘WTz—I‘[wirwg...wZ]z (24)
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DAB Algorithm (cont.)
Dynamical adaptive compensator
U] = v
’[)2 = U3
1 Oh(n=1)  dq,,_
) = — {n) _ n—1
Un—p = (aim—l) aan_l) [ -1t Yy ( oz T o )
OVn—p Ovn—p
. R Oh=1)  Ha,_
X lifo + &0 + (90 + \I’H)U]_jl — N - 5 !
aﬁ("”l) Ot _1 = 6il(n_1) 001
- — )T, — . ")z, Twl
Car 5 )2+ 55)
n—p—1
dhin=1) L Bon
Z ( av S0 ! )'Ui+1 — CpZn (25)
i=1 1 1
with
m=u

where the ¢;’s are constant design parameters and ' = I'T > 0 is the adaptation ,
gain matrix. The control u is obtained implicitly as the solution of the nonlinear
time-varying differential equation (25). The overall closed-loop error system has the
form

t=Az+W(H -0) (26)
f=TWT2 @27)
where the matrix A, has the following skew-symmetric form:
[ —c1 1 0 0
-1 —ca 1+ 023 02,n
0 —-1-03 —c3 03,n
A, = . .
0 —02n—-1 —03,n-1 1+ o1
L 0 _92,11, —QS,n —Cp, ]
with
ail(i—l) aai_l T
0ij = - - Tw; 28
! ( 09 09 ’ 2)
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The skew-symmetric form of A, is important for the stability of the system
(26)—(27), since the relation

C1 0 v 0
0 ¢ -+ O
A+ Al =-20 . . (29)
0 0 Cn
yields
. n
V== Z iz} g (30)
=1
with the quadratic Lyapunov function
V= %ZTZ (31)

It has been proved in ( Rios-Bolivar, 1997; Rios-Bolivar et al., 1995) that the stability
of the overall system is guaranteed and also asymptotic tracking is achieved. These
facts are summarized in the following theorem (Rios-Bolivar, 1997).

Theorem 1. The closed-loop adaptive system consisting of the plant (1), the dynam-
ical controller defined by (25) and the update law (24), has a locally stable equilibrium
at (z,0 —60) = (0,0) and lim; ;o0 2(t) = 0, which means that asymptotic tracking is
achieved, i.e.

Jlim [v®) - 9:)] = 0 (32

Moreover, if limtﬂmyﬁi)(t) =0,1=1,...,n and [®(0) + w¥(0)] = 0, then
limy—, oo z(t) = 0.

.

Theorem 1 guarantees local asymptotic tracking in general. Nevertheless, global
asymptotic tracking can be achieved if the relative degree is defined globally, and
also Assumptions 1 and 2 are satisfied globally.

2.1. Dynamical Adaptive Sliding Mode Control

A particularly important aspect in regulation and tracking tasks for uncertain systems
is robustness in the presence of disturbances and unmodelled dynamics. In Rios-
Bolivar et al. (1996) a solution to this problem has been proposed, which is based
. on the combination of the above adaptive input-output linearization algorithm and
sliding mode control (SMC). It permits to design dynamical adaptive sliding mode
tracking controllers. The resulting control law achieves robust asymptotic stability
with considerably reduced chattering.

To provide robustness, the DAB algorithm can be modified for the design of
dynamical adaptive output tracking controllers (see (Rios-Bolivar et al., 1996) for
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details). The modification is carried out at the final step of the algorithm by incor-
porating the following sliding surface defined in terms of the error coordinates:

o=kiz1+kezo+- +kn12p—1+2, =0 (33)
where the scalar coefficients k; > 0, i = 1,...,n — 1, are chosen such that the
polynomial

p(s) =ki +kas+ -+ kp 18" 2451 (34)

in the complex variable s is Hurwitz. Additionally, the Lyapunov function is modified
as follows:

n—1

1Zz +2a 41 (9 6)TT-1(9 - 6) (35)

Differentiating (35), we can obtain the update law

. n—1
@ =71p = Tph_1 +Fa(wn + Zkiwi) = (ZzzwZ +a(wn + Zk Wi )) (36)
i=1
and the dynamical adaptive sliding mode output tracking controller

n—1 7(4 n—1
~ Bh(l‘l) Ooy;—
() - £“><t>+an(->+(§jzi DI ‘;9)

i=2 =3

n—1 n—1 i—1 -1
F<wn+zkiwi)—zki Zza h(]Al Z Oaj— 1) s
i=1

X
=1 =
nz—:l k. Bh i-1) 60&; 1 Z k
+ | ——— + + i—1 — CiZ + 2;
P\ T ol LT G )
= —k(o + Bsign(o)) (37)
with £ >0, § >0 and a, defined by
Oty _ Botp—
an() = 0;"9 L+ o; 1[f0+¢>9+(go+\1’0)u]
' a,, 5 O
n ,,) n—1
* Z Bu(*'l) ot (38)

This dynamical adaptive sliding mode control yields
n—1

- Z €2} + Zn-12n — ko — kW|o]| (39)

i=1

which guarantees asymptotic stability for su1tably chosen design parameters (Rios-
Bolivar et al., 1996).
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3. Symbolic Computation Toolbox

Since the DAB algorithm has been developed in a general context, its implementation
via the Symbolic Algebra MATLAB toolbox allows us to deal with various classes of
systems. The most general class corresponds to observable minimum phase systems
which may be in triangular or nontriangular form. Triangular systems in PSF or
PPF forms are particular subclasses of linearizable observable systems. On the other
hand, the DAB algorithm may be used for the design of non-adaptive controllers for
nonlinear systems without uncertainty by specifying null matrices & and ¥. Also,
the combined DAB-SMC algorithm of Section 2.1 may be implemented via a symbolic
computation toolbox.

We have developed the symbolic toolbox BACKDSMC which implements both
the DAB and DAB-SMC algorithms, for the synthesis of tracking and regulating
adaptive (and non-adaptive) controllers, while requiring a minimum effort by the
user. It has the following features (Rios-Bolivar, 1997):

e it automatises the backstepping control design procedure,
s it does not use transformations into canonical forms,
e it allows for the design of a number of adaptive and deterministic controllers,

o it does not require the user to have expert knowledge of the backstepping design
technique,

e it generates automatically MATLAB code programs for computer simulation of
the closed-loop systems.

The types of controllers designed by BACKDSMC for regulation and tracking prob-
lems include:

e static and dynamical non-adaptive linearizing controllers for deterministic sys-
tems,

e static and dynamical adaptive backstepping controllers for uncertain systems,

e robust static and dynamical combined backstepping Sliding Mode Control
(SMC) for uncertain systems (Rios-Bolivar et al., 1996).

The outputs generated by BACKDSMC consist of the feedback control low, the
coordinate transformation placing the system into the error coordinates, the parameter
update law for uncertain systems, the sliding surface for the combined backstepping-
SMC design, and the MATLAB code programs for simulation purposes.

The user has to provide the nonlinear functions of the mathematical model of the
system written in the general form (1), and the symbolic desired output. Depending
on the nature of y,, the problem to be solved is either a regulation or a tracking one.
Thus, when y, is constant, the designed controller is for regulation, otherwise vy, is
a time-dependent function and the controller is designed for tracking tasks.
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4. Exémples

The following three different examples illustrate the use of the symbolic toolbox
BACKDSMC corresponding to various classes of systems. The results are presented
in the form of m-files (MATLAB code programs) which can be directly used for nu-
merical integration.

4.1. I/0 Linearizable System

Consider the third order system without uncertainties

Z1 To + T1Z3 0
To = T3 +1 0 |u (40)
I3 0 1

Marino and Tomei (1995) have shown that (40) is locally input-output linearizable.
The linearizing output is

y = 1 exp(—x3) (41)

The symbolic expressions which characterize the mathematical model (40) are defined
by the following series of MATLAB commands:

f=sym(’[x2+x1*x3;x3;0]") % f(x)

g=sym(’[0;0;1]") % g(x)
phi=sym(’[0;0;0]") % Phi(x)
psi=sym(’[0;0;0]") % Psi(x)
h="x1*exp(-x2)’ % h(x)

yd="0’ % desired output yd

The linearizing static controller is obtained by the command line
[c,tau,z]=backdsmc(f,g,h,yd,phi,psi,’iolineam’,’iolinear’)

which also generates automatically the m-files ‘iolineam.m’ and ‘iolinear.m’. The
m-file ‘iolineam.m’ contains the system equations and the control law as shown below:

function xdot=iolineam(t,x);

global c;

h

% Control law

%

ul=(-c(2)*c (1) /exp (x(2) ) *x(2) -2/exp (x(2) ) *x (2) +x(3) *c (1) /exp (x(2) ) *x(2) -. ..
x(3)*c (1) /exp(x(2))-x(3)~2/exp(x(2)) *x (2) +2*x(3) ~2/exp(x(2) )+x(3) *c(2) /...
exp(x(2)) *x(2) -x(3) *c(2) /exp(x(2) ) -c(3) *c (1) /exp(x(2) ) *x(2)+c(3)*x(3) /...
exp(x(2)) *x(2)-c(3)*x(3) /exp(x(2))-c(3) *c(2) /exp (x(2) ) *x(2) -c (3) *c(2) *. ..
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c(1)*x (1) /exp(x(2))-c(3) *x (1) /exp(x(2))-c(1)*x (1) /exp(x(2))) /...
(~exp(-x(2)) *x(2)+exp(-x(2)));

A

% System equations

h

xdot (1)=x(2)+x(1)*x(3);

xdot (2)=x(3);

xdot (3)=ul;

As shown in Marino and Tomei (1995), the value z5 = 1 is a singular value for the
above linearizing feedback control.

The m-file ‘iolinear.m’ is generated to run the numerical simulation of the closed-
loop system in ‘iolineam.m’ and allows us to specify the initial conditions, the param-
eter design values and the initial and final times for simulations, as follows:

A

% This program runs iolineam.m

pA

global c;

A

YA Parameter values

A

c=[3;1;

t0=; % Initial time
tf=; % Final time
h

% Initial conditions
%

x0=[,,];

[t,x]=0de23(’iolineam’,t0,tf,x0);

4.2, Uncertain PSF System

Consider the third order nonlinear system
1 = T3+ 9:13%
Ty = T3 (42)
I3 = U

where 6 is an unknown scalar parameter. This system-is already in the PSF form and
therefore global adaptive regulation is achieved. The results obtained by BACKDSMC

include the coordinate transformation z, the update law @ for the unknown param-
eter, and the control law w.
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The symbolic expressions which characterize the mathematical model (42) are
defined by the following series of MATLAB commands:

f=sym([x2;x3;0]") % f(x)

g=sym(’[0;0;1]’) o g(x)
phi=sym(’[x1~2;0;0]") % Phi(x)
psi=sym(’[0;0;0]") % Psi(x)

h="x1’ % h(x)

yd='0’ % desired output yd

The regulating adaptive controller is obtained by the command line
[c,tau,z]=backdsmc(f,g,h,yd,phi,psi,’psfmod’)

which generates the m-file 'psfmod.m’ for simulation purposes:

function xdot=psfmod(t,x);

global c ad theta;

4

% Auxiliary variables

4

thi=x(4);

%

% Update law

%

taul=x(1) ~3*ad (1) +(x (2)+th1*x (1) ~2+c (1) *x (1)) *ad (1) #x (1) ~2* (2*thl*x (1) +...
c(1))+(2%th1#x (1) *x (2) +2*th1~2*x (1) ~3+c (1) *x(2) +c (1) *th1*x (1) ~2+x(3)+. ..
x(1)~2%(x(1) ~3*ad (1) +(x(2) +th1*x (1) ~2+c (1) *x (1) ) *ad (1) *x (1) ~2* (2*thl*. ..
x(D)+c(1)))+c(2) * (2 (2)+th1*x (1) ~2+c (1) *x (1)) +x (1) ) *ad (1) *x (1) ~2%*. ..
(2%th1*x(2) +6*th1~2#*x (1) “2+2%c (1) *th1*x (1) +5*x (1) ~4*ad (1) +10*x (1) ~4*. ..
ad(1)*#th1#x(2)+4*x (1) ~3*ad (1) *c (1) *x(2) +14*x (1) “6+ad (1) *th1~2+18*. ..
x(1)~5*ad (1) #c (1) *th1+5%x (1) ~4*ad (1) *c (1) ~2+2%c (2) *thl*x (1) +c (2) *c(1)+1);
%

% Control law

A

ul=-8%th1~2%x(2)*x(1)~2-2%c (1) *thl*x (1) *x(2) -2*%th1*x (1) ~2-2*x(2)-c(1) *...
x(1)-10*x (1) ~4*ad (1) *th1*x(2) ~2- (2*x (1) *x(2) +4*th1*x (1) ~3+c (1) #x(1) ~2+. ..
x(1)‘2*(x(1)*4*a&(1)*(2*th1*x(1)+c(1))+2*(x(2)+th1*x(1)"2+c(1)*x(1))*...
ad (1) *x (1) ~3)+c(2) #x (1) ~2) * (x (1) ~3*ad (1) +(x (2) +th1*x (1) ~2+c (1) *x (1) ) *. . .
ad (1) *x (1) ~2#(2*th1*x (1) +c (1)) +(2*th1*x (1) *x(2) +2*th1~2*x (1) ~3+c(1) *. ..
x(2)+c (1) *thl*x (1) ~2+x(3) +x (1) ~2* (x (1) ~3*ad (1) +(x (2) +th1*x (1) “2+c (1) *. ..
x(1))*ad (1) *x (1) ~2* (2*th1*x(1)+c (1)) ) +c(2) * (x(2) +thi*x (1) ~2+c (1) *x (1)) +...
x(1))*ad (1) *x (1) ~2% (2%th1*x (2) +6*th1~2%x (1) ~2+2%c (1) *th1+x (1) +5*x (1) ~4. ..
*ad (1) +10%x (1) ~4*ad (1) *thl*x(2) +4*x(1) ~3*ad (1) *c (1) *x (2) +14*x (1) "6*. ..
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e

ad(l)*th1‘2+18*x(1)”5*ad(1)*c(l)*th1+5*x(1)“4*ad(1)*c(l)’2+2*c(2)*th1*...
x(1)+c(2)*c(1)+1))—2*x(3)*thl*x(l)—5*x(1)‘4*ad(1)*x(2)—c(2)*c(1)*x(2)—...
2*c(1)*th1“2*x(1)”3—5*x(1)”6*ad(1)*th1—14*x(1)”8*ad(1)*th1‘3—2*c(2)*...
th1”2*x(1)‘3-(x(2)+th1*x(1)”2+c(1)*x(1))*x(l)‘4*ad(1)*(2*th1*x(2)+6*...
th1*2*x(1)“2+2*c(1)*th1*x(1)+5*x(1)’4*ad(1)+10*x(1)‘4*ad(1)*thi*x(2)+...
4*x(1)“B*ad(l)*c(l)*x(2)+14*x(1)”G*ad(l)*th1“2+18*x(1)”5*ad(1)*c(l)*...
th1+5*x(1)”4*ad(1)*c(1)”2+2*c(2)*thl*x(1)+c(2)*c(1)+1)—c(3)*(2*th1*...
x(1)*x(2)+2*th1’2*x(1)”3+c(1)*x(2)+c(1)*th1*x(1)‘2+x(3)+x(1)“2*...
(x(l)”3*ad(1)+(x(2)+th1*x(1)“2+c(1)*x(1))*ad(l)*x(l)”2*(2*th1*x(1)+...
c(1)))+c(2)*(x(2)+th1*x(1)‘2+c(1)*x(1))+x(1))-2*th1*x(2)"2-6*th1”3*...
x(1)”4-x(3)*c(1)—x(3)*c(2)—24*x(1)’6*ad(1)*th1“2*x(2)—4*x(1)“3*ad(1)*...
c(i)*x(2)”2-22*x(1)”S*ad(l)*c(l)*x(2)*th1—18*x(1)“Y*ad(l)*c(1)*th1‘2—5*...
x(1)”6*ad(1)*c(1)“2*th1-c(2)*c(1)*thl*x(1)”2—5*x(1)“4*ad(1)*c(i)“2*...
x(2)—2*c(2)*th1*x(1)*x(?)-2*x(3)*x(l)“5*ad(1)*thl—x(3)*x(l)”4*ad(1)*c(1);
h

A .System equations

YA

xdot (1)=x (2) +theta (1) *x(1)"2;

xdot (2)=x(3);

xdot (3)=ul;

%

% Parameter estimate equations
h

xdot (4)=taul;

Note that thi and ad(1) in the expressions obtained by BACKDSMC correspond to
the parameter estimate 6 and the adaptation gain, respectively.

4.3. Uncertain Nontriangular System

Consider the third order uncertain nontriangular system

T = —I1+ 6(()32(113 + 1)
Lo = T3+ U ' (43)
T3 = —r3—T1+ 3

where 0 is an unknown scalar parameter. This system is not transformable into the
PSF or the PPF form. Nevertheless, it is globally stabilizable to the equilibrium
point (w,é) = (9,0,-6,6) by choosing y = 2 as the output. This output ensures
that Assumptions 1 and 2 are satisfied globally. Therefore global stabilization of the
equilibrium point is achieved. The dynamical adaptive controller is obtained by

[¢,tau,z]=backdsmc (f,g,h,yd,phi,psi,’nontrian’)
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which generates the m-file 'nontrian.m’ for simulation purposes:

function xdot=nontrian(t,x);
global ¢ ad theta;

%

% Auxiliary variables
h

ul=x(5);

u2=x(6) ;

thi=x(4);

A

% Update law

h

taul=(x(3)+ul+c (1) *x(2) ) *ad (1) *x(2) ~2+(c (1) *x(3) +c (1) *ul-x(3) -x(1)+...
th1*x(2) ~2+u2+c(2) *(x(3)+ul+c (1) *x(2) ) +x(2) ) *ad (1) * (-x(2) *x(3) -1+. ..
x(2)~2%c (1) -x(2)~2+x(2)~2*c(2));

%

% Control law

%

control=-2%x (1) -th1*x(2)*x(3) +th1-2*thl*x(2)*ul-c(2)*c (1) *x(3)-c(2)*...
c(1)*ul-3*x(3) -2%ul+c (1) *x(3) +c (1) *x (1) -c (1) #th1#x(2) ~2+thl*x(2)~2+..
c(2)*x(3)+c(2) ¥x (1) -c(2) ¥th1*x(2) ~2-x(2) 2*((x(3)+u1+c(1)*x(2))*ad(1)*
x(2) "2+ (c (1) #x(3) +c (1) *ul-x(3) -x (1) +th1*x(2)~ 2+u2+c(2)*(x(3)+u1+c(1)*... .
x(2))+x(2)) *ad (1) *(-x(2) *x(3) -1+x(2) ~2%c (1) -x(2) ~2+x(2) ~2*c(2)))-c(3) ...
*(c(1)*x(3)+c (1) *ul-x(3) -x (1) +th1*x(2) ~2+u2+c(2) * (x () +ul+c (1) *x (2))+. ..
x(2))-c(1)*x(2);

%

yA System equations

%

xdot (1)=-x(1)+theta (1) *(x(2)*x(3)+1);

xdot (2)=x(3)+ul;

xdot (3)=-x(3) -x (1) +theta (1) *x(2)~2;

%

% Parameter estimate equations

%

xdot (4)=taul;

%

% Dynamic control equations

pA

xdot (5)=x(6) ;

xdot (6)=control;

Numerical simulations were carried out for this dynamically controlled system for
a nominal ‘unknown’ parameter value # = 1. Figure 1 shows the global asymptotic
stabilization achieved with the design parameters ¢; = 5, ¢ = 2, ¢3 = 3 and
y=ad(l) = 2.
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Fig. 1. Controlled state variables, parameter estimate and
control input of a nontriangular system.

5. Conclusion

The use of a symbolic toolbox for the design of both static and dynamic adaptive
backstepping controllers has been presented. The symbolic toolbox BACKDSMC
has been developed using the MATLAB Symbolic Toolbox and implements a general
adaptive backstepping algorithm with tuning functions. It is applicable to a large
class of observable minimum phase systems in triangular or nontriangular forms.
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