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SLIDING MODE CONTROL WITH DIRECTLY
LEARNED FEEDFORWARD COMPENSATION

JIAN-XIN XU*, YANBIN SONG*

A new control method synthesizing direct learning control (DLC) with sliding
mode control (SMC) is proposed for the tracking problem of a class of non-linear
high order systems. Sliding mode control is used to provide the control system
with indispensable robustness in the presence of strong system uncertainties. A
new learning control method, the direct learning control method, is developed
and used to generate the desired feedforward compensation for SMC. It can be
shown that the combined scheme can successfully retain the advantages of both
control methods. By virtue of SMC, the global asymptotic stability is ensured.
Meanwhile, DLC provides an effective way to anticipate the necessary control
signals for a new trajectory in terms of past control profiles which may corre-
spond to different trajectories. In comparison with SMC alone, the synthesized
control scheme achieves higher tracking accuracy and smoother control efforts.

1. Introduction

The problems of controlling nonlinear systems with modeling imprecision are often
encountered. To solve those problems many control methods have been proposed.
Among them, intelligent control and robust control are the two main trends. The
main characteristic of intelligent control is the learning or adaptive capability while
robustness or insensitivity to disturbances is the main attribute of robust control.
To some extent learning or adaptation can be regarded as an active way to address
system uncertainties in that it tries to identify the system uncertainty so that the
control action can be arranged in an optimal way. On the contrary, robust control
is a passive way in that it considers the worst situation such that the safest control
arrangement can be made to protect the system from disturbances. Whether choosing
intelligent control or robust control depends highly upon the amount of available
information concerning the control system. ,

It is well-known that sliding mode control is one of the well-used robust control
methods (Slotine and Li, 1991; Utkin, 1978; 1992; Young et al., 1996; Yu and Man,
1998). The main disadvantage of SMC is the “chattering”, which is usually inevitable
due to the conservative nature of the SMC method itself. In a practical implemen-
tation, it is indispensable to smooth the control efforts. There are mainly two ways
to do so: the passive way and the active way. The main characteristic of passive
smoothing methods is the continuous approximation of the signum function within
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a certain error bound such as a saturation function and a balance condition (Slotine
and Li, 1991; Xu et al., 1996). The saturation function has a fixed error bound while
the balance condition tunes the error bound dynamically. However, due to the passive
nature of those smoothing schemes, the smoothness can only be achieved at the price
of sacrificing the control precision. To better deal with varying control objectives, the
active way which is trying to identify the system uncertainty and compensate for it
in a feedforward manner is highly preferred.

Up to now the feedforward compensation is obtained through estimating the
system uncertainty either by a “guess” or using adaptive techniques (Lee et al., 1996).
However, the first approach depends highly on the prior knowledge about the system
uncertainty. Hence its effectiveness can hardly be guaranteed. The adaptive approach,
on the other hand, can only handle unknown constant parameters associated with
the Persistent Excitation condition and the system must be linear in the parameters.
In this paper, a new feedforward method is developed which is based on learning
from control signals of previous operation cycles, instead of a “guess” or parameter
updating. It is able to avoid the limitations of the existing active methods and fully
make use of pre-stored control information to effectively reduce the chattering.

The main issue of the learning control methods is to enable the system to do the
same work more efficiently in the next cycle of operation. The control information is
manipulated quantitatively and a deal of memory components are allocated to store
the control signals. There are mainly three types of learning control methods: iterative
learning control (ILC), repetitive control (RC) and direct learning control (DLC).
ILC and RC require that the trajectories under learning control be exactly identical
over repeated operation cycles. Considering the fact that tracking control tasks may
change, in this paper DLC is used to generate the desired feedforward compensation.
DLC is able to directly generate the desired control profile from existing control inputs
without any repeated learning (Xu, 1997; 1998). The ultimate goal of DLC is to fully
utilize all the pre-stored control files, even though they may correspond to different
motion patterns and be obtained using different control methods such as PID, ILC,
adaptive or robust control. In practice, a real control system may have plenty of such
control knowledge acquired through the past control actions.

The paper is organized in the following manner. Section 2 gives the formulation
of the nonlinear high order dynamic system to be discussed and the basic SMC scheme
with smoothing. In Section 3, a basic DLC method is first introduced and then used
to provide the new feedforward compensation for the SMC controller. Comparative
studies are carried out in Section 4 to verify the effectiveness of the synthesized SMC
scheme with DLC-based feedforward compensation.

2. Problem Statement

2.1. Nonlinear Dynamics

Consider a class of nonlinear high order systems described by the following differential
equations:

jji:mi+1, 7:21,...,7’1.—1 (1)
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in = f(Z1,...,Zn,t) +b(t)u (2)
where b(t) is a time varying function with known bounds

bmax = b(t) > bmin > 0
The nonlinear function f(z1,...,Zn,t) can be expressed as

f=0()7¢(,1)

where &€ = [¢1,...,&m]T is a known nonlinear function vector of & = [z1,...,%,)T
and t; 8 =[01,...,0,,]7 is a function vector of ¢t associated with known bounds

Igzl Sgi,max (Z= 1,...,’)’)’!,)

The control objective is to generate the desired control profile uq(t) corresponding
to a new trajectory

za(t) = [21,4(0), -, Taa(®)] = [21,000), ..., 2TV @], telo,T)

Remark 1. Since both b(¢t) and 6(t) are unknown time-varying functions, conven-
tional adaptive control methods are not applicable.

2.2. Basic Sliding Mode Control Scheme

Since all the bounds of the system uncertainties are available, the basic SMC can be
easily designed to achieve asymptotic convergence. Define the tracking error as

[Z1,...,8n]T =[T1 = T1d,--Tn — Tna]”

A typical switching surface o can be constructed as
n—1 n—1 .
0= 8+ Y NFi =500+ Y aal Y
i=1 i=1

where \; are chosen to be coefficients of a Hurwitz polynomial.

The sliding condition is

o6 < —nlo|  (n>0)

To meet this condition, the switching control law should be constructed as

u=>b""! (ﬁ — k(z) sign(a)) {3)
n—1 ) .

’ll = :L”g?d) - Z)\zi(lz) - f
i=1

k(z) = B(F+n)+ (8- 10|
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associated with

5=
b = Vbmaxbmin
f=0"%n
F = (Bmax — )TN
0 = [61,60,....00]"
Omax = [01,max;02,max; - - - :am,max]T

1>

€l = (&l 1€l el

where 6, is an estimate of 6;.

It is easy to show the convergence property of the above control algorithm (Slotine
and Li, 1991). However, this basic SMC will inevitably result in chattering due to
the following three reasons. First, the feedback part is conservative in the sense that
the control gain k(z) has to be designed in terms of the worst case. Second, a
discontinuous switching function is used. Third, as 3, §; and b are merely guesses
of real ones, the feedforward compensation may not work at all.

2.3. Smoothing of SMC Control Profiles

Since the conventional “active” way fails to work properly, one has to exploit the
passive way to eliminate chattering. The simplest way is to adopt the saturation
function

o/® if jo]<®
sgn (o) otherwise

sat (o/®) = {

to replace the signum function sgn (o). A new problem is then how to choose an
appropriate saturation bound ®. To improve the tracking accuracy a smaller & is
preferred. On the contrary, to smooth the control efforts a larger ® has to be chosen.
The trade-off in determining ® usually depends on the designer’s expertise. Moreover,
a fixed ® working well for one control task may not work properly for another, as
the control efforts may differ significantly with request to different trajectories.

An improved version of the saturation function is the balance condition which
tunes the boundary ® dynamically (Slotine and Li, 1991; Xu et al., 1989). It smooths
out the control discontinuity in a thin boundary layer nearby the switching surface

B(t) = {a:,la(a:,t)| < <1>}, 3>0

where @ is the boundary layer thickness. When outside B(t), the robust control law
is chosen the same as (3) to guarantee the attractiveness of the boundary layer. Inside
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the boundary layer B(t) the control input w is interpolated to ensure the smoothness
of the control input. To fully exploit the available control “bandwidth”, the boundary
®(t) is made time-varying. In order to maintain the attractiveness, the distance to
the boundary layer should always be guaranteed to decrease

%[a—'i)]s—n, c>®
d
E[ao(—@)] >, o< —®

Thus by combining the above equations, the following equation should be satisfied
when outside the boundary layer:
1d .

EEUZS(Q—UNUI, lo| > @ (4)
Note that the additional term ®|o| in the above equation reflects the fact that the
boundary layer attraction condition is more stringent during boundary layer con-
traction (@ < 0) and less stringent during boundary layer expansion (¢ > 0). The
adaptation of ®(t) now follows:

®+ 2P = Bk(zg), ®>0

Y .
bt = (zd), $ <0 (5)

with the initial condition

Bk(za(0))
A

It can been seen that the balance condition is superior to the fixed boundary @
method because it can tune the boundary dynamically and make full use of the
available bandwidth. However, this smoothing scheme, same as most other passive
smoothing methods, gains smoothness but loses the tracking accuracy of the basic
SMC scheme. From (5) the boundary & increases as the control gain increases, which
means that the chattering is avoided by increasing the error bound when the control
activity is high. This will inevitably incur a larger tracking error. It is obvious that
within the framework of the existing SMC and smoothing schemes, whether passive
or active, it is difficult to further improve the control performance. A new paradigm
of feedforward compensation is thus needed and DLC meets this need.

3(0) =

3. Synthesized DLC and SMC
3.1. Basic Direct Learning Control

To predict and compensate system uncertainties through operations we choose a dif-
ferent feedforward compensation obtained through Direct Learning instead of the con-
ventional estimated one. DLC is a newly developed feedforward-type control scheme
which is defined as the generation of desired control input profiles directly from the
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existing control input profiles without any repeated learning. In contrast to conven-
tional feedforward compensation, DLC uses previous control inputs directly instead
of the estimated system parameters to generate the control signal. In practice, a
control system may have plenty of prior control knowledge acquired through all the
past control actions which correspond to different but highly correlated motion tasks.
They may be obtained via any existing control method such as PID, adaptive, robust
or intelligent control approaches as long as they are applicable and can achieve ac-
curate results. Here we assume that there are at least m + 1 pre-stored trajectories
x; = [Z1,4,...,%n,) € [0,T] for which the corresponding desired control input signals
u;(t) have been achieved a priori through learning or other control methods precisely.
All the pre-stored trajectories are inherently related with each other through a set
of known constants k; such that x; = k;zq where ¢t € [0,T], k; # 1 and k; # k;
when i # j. In other words, trajectories x; and x4 are said to be proportional in
magnitude with scale k;.

The following theorem characterizes the basic DLC scheme.

Theorem 1. For the nonlinear plant (1) and (2), the desired control input wuq(t)
with respect to a new trajectory xa(t), t € [0,T] can be directly obtained through past
control inputs.

Proof. Here we show step by step how to generate uq(t) from w;(t),i € {1,...,m+1}.
The plant model (2) can be written as an n-th order differential equation

z{V = 29 )i (x,t) + b(t)u
Since b(t) is nonzero, the above equation can be rewritten as

w=b(t) "z — 1201 )& (z,t)

j=1
Since a sufficient number of previous control signals have been obtained a priori, we
have

m

u; = b(t) 2l — b)Y 0;(0(wirt),  i€{l,...m+1}  (6)

j=1

Because the pre-stored trajectories ; and the desired trajectory x4 are proportional
in magnitude, substituting x; with k;zq yields

ui = ki (b(t 1z§”§) + Z & (kiza, t) (—b(t)16;(t))

Note that b(t)~ largng and b(t)~16;(t), although unknown, are functions of ¢ only,
hence remain the same over the period [0,7]. In other words, these terms are invariant
for all trajectories and can be calculated in a point-wise manner for each ¢ € [0, T7.
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By defining
u = [ul, ,,’U,m+1]
T
d=[ b)), b6, .y b () ]
kl §1(k1md,t) fm(kla:d,t)
= ) )
Emi1 &(kmiaza,t) - &n(kmi1Tda,t)

eqn. (6) can be rewritten in matrix form
u=Kd

It can be seen that if the known matrix K has full rank for all ¢ € [0, T}, the vector d
can be calculated directly through d = K ~1u.

Now, by defining a known vector v = [1,&1(zq,t), .., Eém(za,t)]7, the desired
control input can be expressed as

ua(t) = b(t) el + i &(@a,t) (—0)710;()) = vTd ="K 'u R uge ()
i=1

Equation (7) clearly shows that the desired uq4(t) can be directly learned using m+1
pre-stored control profiles. [ |

Remark 2. To avoid a potential singularity associated with the matrix K, one
can either use more pre-stored trajectories or rearrange the matrix in terms of the
function ¢; (Xu and Song, 1997).

3.2. Incorporation of DLC Based Feedforward Compensation into SMC

By incorporating the DLC-based feedforward compensation into the basic SMC
scheme, the new SMC becomes

u = ugie — k(z) sign(o) (8)
where

bmax'udlcl + Bzaxlgll + I Z?:_ll Aifégi) B "ngg + n

bmin

k(z) = )

The convergence property of the synthesized control scheme is shown by the
theorem below.

Theorem 2. For the nonlinear plant (1) and (2), the new synthesized SMC method,
(8) and (9), ensures asymptotic tracking performance.
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Proof. By differentiating the sliding surface o = "™ + "1 030D | we get

6 =7 +Z,\ ) = g _zgng+zx<z>

n—1
07¢ + 3 nigt — o) + bu

=1

Therefore,

st =00=(0 £+Z>\ ) — o) + buac) o — bklo|

From (8) and (9) it follows that the above equation can be rewritten as

d
537 = (6790 = 0% lélilo])

((z/\zl -efl)o -

bm X
+ (budlca - bb 2 tgre] |0|) - nlo|

LELRE xﬁ’f&ilal)

mm i
=1

Since 0 < bmin £ b < bmax, the first three terms on the right-hand side of the above
equation are obviously less than zero. This leads to

1d ,

——0g° < — 10

g’ Sl (10)
which ensures the asymptotic convergence of the new control scheme. ]

With the DLC-based feedforward compensation, we are in a position to address
the chattering issue again by using the smoothing scheme without loss of tracking
accuracy. The previously introduced balance condition method is used here to ensure
the smoothness of control input profiles. The resulting synthesized DLC and SMC
method now takes the following form:

u = ugle — k(x) Sat(g%tj)
where
k(z) = k(z) — k(zq) + %{1 (11)

and ®(t) adapts according to (5). It can be clearly seen that, as uqic approaches the
desired control input wuq(t), the sat(c/®(t)) part will take a very small value, and
hence reduce the feedback control efforts.
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4. Simulation Results

Comparative simulations have been carried out using the following dynamics as a
prototyping model:

dz .

o asin(z) + bu
a = 21
b = bo(1+ 0.5sin(27t))
by = 0.8571

The state vector is defined as & = [z1,z3]. The actual value of ¢ and b are
assumed to be unknown to the controller except for their bounds,

Gmin = 0.5a, Umax = 1.Da, bmin = 0.5bg, bmax = 1.5bg
The pre-stored trajectories are available as
z1i(t) = ki [330 + (z0 — z4)(15¢% — 615 — 10t3)]
ki=2 k=3 i=1,2
where zo = 10°, z5 = 30°; t € [0, 1].
The desired trajectory is
z1,a(t) = 2o + (mo — z7)(15¢* — 6t° — 10¢%)
Three cases are simulated and compared:
e Basic sliding mode control
u = b7 (4 — k(z) sign())
U = I1q— )\il — Gsin q

k((E) = ,B(amax| Sin$1| + Tl) + (ﬂ - 1)|ﬁ’|

where all controller parameters are designed according to (3).

e SMC with balance condition

In addition to the basic SMC, the boundary ®(¢) is now dynamically tuned
according to (5).

e DLC based SMC with balance condition
_— (22
u = ugle — k() sat (6)
where k() takes the form of (11) and

k(:l}) — amaxl Sin(ml)[ + '/\571 - fil,dl + bmaxludlcl + n

bmin
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In all cases A = 20, &g = 0.05 and n = 0.01 are chosen.

To show the effectiveness of the proposed synthesized SMC control scheme, four
sets of simulations are carried out:

(a) The system is controlled using the basic SMC method alone.
(b) The system is controlled using the SMC method with balance condition.

(c) The system is controlled using the synthesized SMC method with DLC feedfor-
ward compensation. Past control inputs stored for DLC are obtained using the
SMC scheme with balance condition.

(d) The system is controlled using the synthesized SMC method with DLC feedfor-
ward compensation. Past control inputs stored for DLC are obtained using the
basic SMC. Pre-filtering is applied to smooth the stored control signals. The
filter takes the form F(s) = 1/(Thiters + 1), where Thiter is chosen to be twenty
times the sampling period 1ms.

The simulated control inputs are given in Fig. 1 and the corresponding tracking
errors are shown in Fig. 2, respectively. It can be observed from Figs. 1(a) and 2(a)
that, although the basic sliding mode control can work satisfactorily, it is achieved
at the price of extremely high control activity. It can also be observed in Fig. 2(b)
that the SMC with balance condition alone cannot achieve perfect tracking due to the
trade-offs made to smooth control inputs. In Fig. 1(b) we can observe a discrepancy
between the desired and actual control input profiles. In Fig. 2(c), it can be seen that
even with imperfect control input profiles, the DLC-feedforward part can still work
properly and the tracking performance has been improved compared with the result
of SMC without DLC-based feedforward compensation. Finally, although the filtered
VSC control signals have chattering and distortion as shown in Fig. 1(d), the tracking
performance shown in Fig. 2(d) is nevertheless improved, which clearly illustrates the
excellent learning capability of the DLC scheme.

5. Conclusion

In this paper, a synthesized Sliding Mode Control method with DLC-based feedfor-
ward compensation is proposed and applied to nonlinear high order systems. In this
synthesized method, sliding mode control is used to equip a control system with nec-
essary robustness in the presence of strong system uncertainties while direct learning
control is developed and used to generate the desired feedforward compensation for
SMC. It has been shown that the synthesized scheme can successfully inherit the ad-
vantages of both the methods, i.e. the robustness from SMC and the direct generation
of control input from DLC. Simulation work shows the superiority of the synthesized
control scheme over SMC or DLC alone.
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(a) Basic SMC (b) SMC with balance condition
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Fig. 1. Control inputs (solid line: actual input, dash-dotted line: desired input).
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