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IMPLICIT STATE ESTIMATORS AND THEIR
APPLICATION TO POLE ASSIGNMENT CONTROLLERS
FOR SYSTEMS WITH UNCERTAINTIES

Xinka1 CHEN*, TosHio FUKUDA**

This paper presents implicit robust state observers for SISO minimum phase
dynamical systems with arbitrarily relative degrees (with respect to the relation
between the disturbance and the output). For systems with relative degree
one, the state is expressed by the filters of the input and the output. No a-
priori knowledge of the disturbance is required in this case. For systems with
higher relative degrees, by first estimating the disturbance, the state vector is
asymptotically expressed by the fiiters of the input, the filters of the output and
the estimates of the first-order filters of the disturbance. Then the state observer
and the estimated disturbance are applied to a controller to place desired poles
and to cancel the disturbance. Finally, examples and simulation results show
that the proposed algorithms are effective.

1. Introduction

The problem of controlling uncertain dynamical systems subject to external distur-
bances has been one of the topics of interest recently. Many of the proponents of
the associated theoretical developments have found it convenient to assume that the
system state vector is available for use by the control scheme. In practice, it is not
always possible to measure the state vector. In such cases, either a design method
based solely upon the input and output information is required, or a suitable estimate
of the state vector has to be constructed for use in the original control law. This paper
considers the latter approach.

As for the state estimation problem for the systems with uncertainties, relatively
few authors have considered it. It is known that the VSS theory has many advantages
in solving the problems with uncertainties (DeCarlo et al., 1988; Utkin, 1992). But
about its application to the state and disturbance estimation problems, very few
theoretical works have been reported.

Utkin (1987) presents a discontinuous observer by forcing the error between the
estimated and measured outputs to exhibit a sliding mode. And it is pointed out that
the proposed method finds a difficulty in selecting the switched gain owing to the

* Department of Electrical and Electronic Engineering, Mie University, 1515 Kamihama-cho,
Tsu-city 514-8507, Japan, e-mail: chin@ts.elec.mie-u.ac.jp.

** Department of Mechano-Informatics and Systems, Nagoya University, Furo-cho, Chikusa-ku,
Nagoya 464-8601, Japan, e-mail: fukuda@mein.nagoya-u.ac.jp.



102 X. Chen and T. Fukuda

uncertainty of the initial condition. Walcott et al. (1987) and Walcott and Zak (1988)
use a Lyapunov-based approach to formulate an observer in the presence of bounded
disturbances. Edwards and Spurgeon (1994) effectively consider the problem first
proposed by Walcott et al. (1987). However, all these results are subject to MIMO
minimum phase systems with relative degree one (with respect to the relation of
disturbance-output). For uncertain systems (even for SISO uncertain systems) with
higher relative degrees, very few authors have discussed the design problems of the
state observers.

For SISO systems with relative degree two, the state observer is constructed by
using the estimated disturbance and the filters of the input and the output (Chen
and Minamide, 1996). Further, Chen (1996) gives a robust observer for third-order
systems with arbitrarily relative degrees. In this work, the disturbance is estimated
recursively by using the VSS equivalent control theory.

This paper deals with the robust observer design problems for SISO minimum
phase dynamical systems with arbitrarily relative degrees (with respect to the relation
between the disturbance and the output). In Section 2, the problem is formulated.
In Section 3, by introducing a filter with n different poles, a new implicit observer
is formulated by employing first-order filters of the input, output and disturbance.
In Section 4, by using the VSS approach, the disturbance is estimated. For plants
with relative degree one, an observer is constructed without a-priori knowledge of the
disturbance. For plants with higher relative degrees, an observer is constructed by the
estimates of the first-order filters of the disturbance and the filters of the input and the
output. In Section 5, the obtained observer and the estimated disturbance are applied
to a pole assignment controller which also has a function to cancel the disturbance.
Finally, numerical examples are given to illustrate the proposed algorithms.

2. Problem Formulation

Consider the system described by
&(t) = Az(t) + bu(t) + kv(z,u,t), z(to) = zo

y(t) = ()
where z(t) is an unknown state vector with known dimension n, t, stands for the
starting time, zo denotes the unknown initial state, u(t) and y(t) are respectively

the scalar input and output. Furthermore, v(z,u,t) is a signal composed of the model
uncertainties, the nonlinear parts of the system and the disturbances. It is bounded:

|v(z,u,t)| < py,u,t) (@)

where p(y,u,t) is a known function. Finally, 4, b, k, ¢ are known matrices given
in the observable canonical form

(1)

1

o by ki

A= ¢
—ay,

0
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Only the case where
k(s) =kis" P 44 ko 1s+kn (4)

is a Hurwitz polynomial will be discussed.

This paper attempts to construct a robust state observer and a state feedback
pole-assignment controller for system (1). For simplicity, in the sequel the signal
v(z,u,t) will be called the disturbance of the system and denoted by v(t).

3. Implicit Observers
3.1. The Traditional Implicit State Observer

To begin with, define a stable n xn matrix F' by

br
F=|_f | - (5)
Lo
*
Then (1) can be rewritten as
z(t) = Fz(t) + (f —a)y(t) + bu(t) + kv(t)
2 Fa(t) + hay(t) + hou(t) + hov(t),  z(to) = o (6)
Now, let us define the following three matrices:
\: \_\m e \w‘:lw }::
hy hy --- hp, O
L(h) = (7
hn-1 by 0 0
hn O 0 0
0 fi o2 fn-1
O o ,wﬁﬂ.|w .\.3|N
ui=1: : : : (8)
0 0 0 fi
0 0 .- 0 0
H(f,h) = L(W) (1 + U(f)) = L(NHU(R) (9)
Some useful properties of the matrix H(f,h) are stated in the next lemma.
Lemma 1. H(f,h) is a symmetric matriz satisfying
it —rop)th (10)

det(sI — F)
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where &(s) = [s"71,...,s, l]T. Further, if the polynomials

fls) 2 det(sI — F) = 8™ + fis™ " -+ + fooas + fo (11)
and

h(s) =his" 1+ -+ hy_15+ hy (12)
are coprime, then H(f,h) is non-singular.
Proof. See (Minamide et al., 1983). [ |

It is worth mentioning that the initial conditions for all the filters of the input,
output and disturbance are assumed to be zero in this paper. Fortunately, this treat-
ment does not lose any generality since non-zero initial conditions only contribute to
the state some additive terms which decay exponentially to zero.

In this paper, s denotes, as the case may be, the Laplace-transform variable or
the differential operator d(-)/dt. Taking the Laplace transform of (6) gives

X(s) = (sI — F)~*! {haY(s) + hyU(s) + heV (s) + xo} (13)

By Lemma 1, from (13) the state vector can be reconstructed as

2(t) = H(/, ha)%ya) L H(S, m)%-}u

L H(, m)fci(%vm + H($, 20)2(t) (14)

where z(t) is an exponentially decreasing vector defined as

(t)

Ht) = FT2(t),  2(to) =[1,0,...,0]" | (15)

Remark 1. It should be pointed out that s denotes the differential operator and
(&(s)/ f(s))u(t) is not available in (14).

As the state can be reconstructed by (14), the traditional implicit state observer
is constructed by the following result.

Theorem 1. The implicit state observer Z(t) can be formulated as

#(t) = H(J, ha)%j—))y(t) +H(, h,,)%u@) +H(, m)ﬁ%v(t) (16)

Proof. From (14)—(16), it is obvious that z(t) — () — 0 as t — oo, where the roots
of f(s) determine the rate convergence.
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3.2. A New Implicit State Observer

In this section, some operations will be carried out on the state observer introduced
in (16). Now, let us consider the Hurwitz polynomial f(s) in (16) defined as

f(8)=s"+fis" T4t fa=(s+ A8+ A2) -+ (5+ M) (17)
where \; #X; as i #j,for 4,5 =1,...,n.
Pre-multiplying (16) by the vector ?wlﬁ AP (=1)"71] yields

0 A2 (1)) = LA (CDP U E( ha) Sy

f(s)
+ AL AL ()M H, SVWMI.W:S
n—1 n—2 n-—1 mﬁmv '
+ _”v{ ..lv:. u...uA|Hv _mcﬂ.u Dnvacﬁv AHmv

Lemma 2. For the matriz H(f,h) defined in (7)-(9), the following equation is valid:
PP h AL DM H(R) = X[ g e g (19)

where g1,...,9n—1 and X are respectively described by

f(s) = ?:L + g8V 4+ mzlv? + ) (20)
and

X=hA" =R A" 4 (=1) A, (21)
Proof. See Appendix 1. [ ]

Therefore, by applying Lemma 2, we have
L =N L CDMT I H(he) = Xaa (L gig o gimea]  (22)
AP =A% GO H(A ) = X [ gin oo Gin1] (23)
e =N GO H(f ) = Xae [ gin 0 gimea] (24)
where
Xia = (fi—a)A ™ = (fo—a)AP 2 4+ (=1)" (fa—an)  (25)
Xib = biAL T =B AT+ -+ (1), (26)

Xie = kIAP = ko AP 2 4 4 (=) Lk, (27)
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and gi1, ..., gin—1 are determined by

F8)= (""" + 918" 2+ + Gin—1) (5 + Ns) (28)

Thus, by (22)-(28), eqn. (18) can be simplified as

N ()P () = X+ e 2y  (9)

st h o s a st
Now, for i =1,2,...,n, writing the n equations in (29) in a compact form yields
XU SN e (CDT ()
)\727,—1 _)\;1——2 . (_1)71—2)\2 (_1)n—1
(1)
/\g—l _)\2—2 - (~1)n72)‘n (_1)n—1
Xle Xia X1b
———(t ——y(t t
S+)\1U( $+)\1y() S‘*‘)\lu()
= : + : + ; (30)
Xne Xna Xnb
——(t ——y(t t
s+)\nv() s+)\ny() s+)\nu()

On the other hand, it is well-known that the Vandermonde matrix

NN () ()
La BTN e e (D o
)\2—1 _)\2—2 (“1)"_2/\n (__1)n—l

is nonsingular when X; # A; for i #j (3,5 =1,...,n).

Therefore, by pre-multiplying (30) with A~!, the state can be reconstructed by
the first-order filters of v(t), y(t) and wuf(t).

Theorem 2. A new implicit observer of z(t) can be formulated as

X1c Xla X1b
t ——y(t ———u(t
s+/\1v ) s+Aly() s+)\1u()
#(t) = A1 : + : + : (32)
Xnc Xna Xnb
——(t t t
s+/\nv() st/\ny() S+/\nU()
Proof. As the expression of #(t) in (32) is just an algebraic transform of (16), the
proof is the same as that of Theorem 1. |

Remark 2. In the above implicit observer, the first-order filters of the disturbance
are not available. They will be estimated in the next section.
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4. Description of the Robust Observers

In what follows, the systems are divided into the following two cases:
Case 1. k1 # 0,
Case 2. k;=0(t=1,2,...,r=1),but k. #0(r > 1).

By defining
a(s) =s" +a1s" '+ 4+ an_15+an (33)
b(s) = bys™ -4 bp15+ by (34)
k(s) =kis" '+ + ky_15+ kp (35)

the differential equation (1) can be rewritten as
a(s)y(t) = b(s)u(t) + k(s)v(t) (36)

Case 1. Choose n different Hurwitz polynomials as

~

1
fi(s) = -k(s)(s + 1) : (37)
where X; (i = 1,..., n) are defined in (17). Then dividing (36) by fi(s) yields

1 _ 1 Ja(s) b(s)
= 50" R

So (1/(s+ A¢))v(t) can be expressed by available signals. Therefore, by using Theo-
rem 2, the state observer £(¢) can be constructed by the known signals composed of
y(t) and the filters of y(t) and wu(t).

y(t) - u(t) (38)

Theorem 3. In case k1 # 0, the robust observer can be formulated as

‘ , 1 a(s) t) — wAmV:ﬁ -
1 Xie &w?vwc fi(s) ®
i) = A1 o
als) oo bs)
, -xa \,:@@S ) ) |
S MA:HWH @va S M.HWH ﬁ@v
+ : + : (39)
o w il I P wild
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Proof. The theorem is obvious by replacing the terms (1/(s + A;))v(t) in (32) by
their available expressions described in (38). ®m

Remark 3. It should be noted that no a-priori information of the disturbance
is needed in this case, and there is no necessity to estimate the disturbance. The
state observer is formulated by the filters of the input and output. Furthermore,
discontinuous formulations as in (Edwards and Spurgeon, 1994) can be avoided.

Case 2. In the following, the disturbance will be estimated by using the VSS theory.
First of all, the upper bounds of the filters of the disturbance must be estimated. For
a positive constant A, by employing the definition

t
. _ll_ /\v(t) :.-/t.0 e ="y (r) dr (40)

the next result can inductively be obtained.

Lemma 3. An upper bound of (1/(s+ A)*)v(t) can be estimated as

1
(s + )

wﬁsgfsw@mﬂmﬂéwm (41)

Proof. The proof is omitted. |

Remark 4. By the definition in (41), it is obvious that wq(t) = p(y,u,1).

Now, we introduce a Hurwitz polynomial I(s) as
Us) =s"+1is" b oo 1y = —k(s)(s + \)T (42)

Dividing both sides of (36) by I(s) yields

_ 1(s) —a(s) b(s) -
) = b { G ) + 0+ ) ()

Then multiplying both the sides of (43) with s + A gives

kr
+ Wv(t) (44)

Based on (44), we get the next theorem.
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Theorem 4. Construct the differential equations

50 +24(0) = k, ?m@hlgmfs n IF&&

s)(s+ A"~ k(s)(s + A1
+ \?_‘EH Qv, @Qov =0 A%mv
Wio1 () + M1 (8) = i),  Wima(t) =0 (for 2<i<7) (46)

where wi(t) and w;(t) (for 2 <1 <r) are determined as

wi(t) = wp—1 (8) sign { Iy {y(®) — ()} } (47)

w;(t) = wr—;(t) sign TS.L (t) — Wi1 QL . (48)

§(t) and w;_1(t) (for 2 < i < r) are the signals generated by (45) and (46), re-
spectively. Then w;(t) are the corresponding estimates of (1/(s + A)""“)u(t) for
i=1,2...r

Proof. See Appendix 2. [ ]

Remark 5. It can be seen that the parameter A determines the rates of convergence
of w;(t) — (1/(s + A\ Hu(t) for i =1,2,...,r.

Remark 6. Theorem 4 is also valid for Case 1, in which w;(t) can be regarded as
an estimate of the disturbance v(t).

From Theorems 2 and 4, an observer for Case 2 can be constructed by the fol-
lowing theorem.

‘Theorem 5. For Case 2, the robust state observer of (1) can be constructed as

Xla X
Xc1W1,r—1 :v S +H>H @Qv S +:W; \EQ.V
&) =A"1 : + : + : (49)
XenWn,r—1(t Xna Xnb
cenWn HAV PO \/:m\ﬁv P y::S

where w; r—1(t) are the corresponding estimates of (1/(s+X;))v(t) for i =1,2,...,n.
Proof. From (14), (32) and (49), we have

{z(t) - 2} + {3(t) - 3}

8
=
N

|

8»
~—~

o+
SN

It

H
XnH Aaﬂcqv I. \EHHIHQV

= H(f,z0)2(t) + A~ : (50)

Xen { 500 ~ e )}
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From (15) and Theorem 4, it can be easily concluded that z(t)—Z(t) — 0 as t — co.
Thus £(t) defined in (49) is an estimate of the state z(t). [ ]

Remark 7. The signals w; r,—1(t) (for ¢ = 1,2,...,n) can be either individ-
ually generated by a procedure similar to that of Theorem 4, or calculated by
wr—1(){(s + A)/(s + A;)}, where w,_;(t) is generated in Theorem 4.

Remark 8. From Theorem 2 it can be seen that the state can be asymptotically
expressed by the first filters of the input, output and disturbance. This is a reason
why we do not employ the estimate w,(t) of the disturbance to generate the state
observer directly by a differential equation.

5. A Pole-Assignment Controller

For simplicity, in this section we assume that the disturbance is not directly related
to the control input. We also assume that the disturbance is matched, i.e. b = k.

Let the desired closed-loop transfer function be represented by

Cals) = % RT3

where the zeros of the Hurwitz polynomial
d(s) =s" +dys" 1+ +d, (52)

determine the desired closed-loop poles.

Consider the state-feedback control law defined by
u(t) = —wT&(t) — w(t) +7(0) (53)

where x is an n x 1 feedback gain vector, v(t) denotes a uniformly bounded external
input and the disturbance estimate w,(t) obtained in Theorem 4 is employed to cancel
the disturbance v(t). With an appropriate choice of the feedback gain vector &, the
characteristic equation of the closed-loop system becomes

det(sI — A+ b&T) = d(s) (54)
The calculation method of & can be found in (Minamide et al., 1983).

For the system (1) controlled by (53), we obtain the following result.

Theorem 6. With the pole assignment controller (53), the global system is uniformly
bounded, and the overall system output y(t) tracks asymptotically the desired output

ya(t) = {b(s)/d(s)} ().
Proof. By using the control law (53), the system (1) will be described by

() = (A — bxT)z(t) + by(t) + bnT{w(t) - .%(t)} + b{v(t) - wr(t)} (55)
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Since 7(t) is a uniformly bounded signal and A - bsT is a stable matrix, by applying
the results {z(t) — ()} — 0 and {v(t) — w,.(t)} = 0 (as ¢t — o0), it can be
easily concluded that the state z(¢) is uniformly bounded. Then, by Theorem 5, the
estimated state #(t) is also uniformly bounded. So, the input determined in (53) is
uniformly bounded. Therefore, from (55), we have

v) = 5370+ 50 {7 [s0 - 30] + o -we0]} 69
Let yq(t) =2{b(s)/d(s)}y(t). Thus (56) gives
@Amv N
y(®) = alt) = 25 {& [s0 20| + [o0) ~ we 0]} (57)
Since z(t) —Z(t) = 0, v(t) —wr(t) - o and d(s) is a Hurwitz polynomial, it can be
easily concluded that y(t) — yq(t) = 0 (as t — o00), i.e. the pole assignment can be
achieved as ¢t = co. ]

6. Design Examples

In this section, for the two possible cases discussed in Section 4, examples will be
presented to show the design procedure and simulation results.

Example 1. Consider a stable system with relative degree one described by

-1 1 1 1
t t)
_1 ol FO+ |l u®

y(®) = [1, 0a(t) = z1(t)

where the disturbance is governed by v(t) = (sin 2¢) 0.5y(¢){y (¢)+2u(t) }/(ly(t)| +0.5)
and the input is assumed to be u(t) = sint. Suppose that the starting time is #; = 0.

8-
—~
=

]

v(t)

The unknown initial condition is assumed to be zo = [ — 1, w_ﬂ. The purpose of
this example is to estimate the state z(t). As z1(t) is the output, we only need to
estimate 2 (t).

We choose the parameters A; and Ay as A\; =1 and Ay = 2, i.e. the Hurwitz
polynomial in (17) is chosen as f(s) = s* + 3s + 2. Then we have

Xie =1, Xoa= 3, X1 = 1, X2b = 2, Xie = —1, X2c =0

As k(s) = s + 2, the Hurwitz polynomials defined in (37) are chosen as

A~ A

fi(8) =(s+2)(s+1),  fo(s) =(s+2)(s+2)
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From Theorem 3, the implicit observer can be constructed as

- sP+s+1 s
i(t) = [1 _1] 1 _{(s+2)(s+1)y(t)_ (s+2)(8+1)u(t)}
2 -1 .
s-il-ly(t) silu(t)
+ | 3 + )
3+2?/(t) S+2u(t)

Computer simulation results for z5(t)

and Z,(t) are shown in Fig. 1, where the

sampling period is set to 0.001s. The difference at the beginning is due to the initial

conditions. ¢

0 2 4

6 8 10

Fig. 1. The genuine state z2(t) and its estimate Z2(t) for Example 1.

Example 2. Consider an unstable system with relative degree two, described by

i(t) = {“11 (1)] o(t) +

0

J (u(®) +v(2))

y(t) = [1, 0]z(t) = 1 (t)

The disturbance v(t) is governed by wv(t) =
/(|z2(t)| 4 0.5), its upper bound is known as p(y(t),t) = 0.5|y(t)|.

(0.5cost + 0.25sin2¢)0.5y (¢)zo (¢)
Suppose that

the starting time is ¢y = 0. The unknown initial state zp is assumed to equal
[1, 1]T. The external reference input is adopted in the form

~v(t) = 3sint

The desired closed-loop poles are supposed to be the roots of the polynomial

d(s) =5 +6s+9

The purpose of this example is to estimate the state z(t) and to synthesize a pole-
assignment controller to achieve this goal.
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From (54) the feedback gain s can be calculated as
k=115, 7"

Choose the parameters A\; =1 and Ay = 2, i.e. the Hurwitz polynomial in (17)
is of the form

f(s)=(s+1)(s+2)

Then we have x14 = 3, Xx20 =7, X156 = X1c = —1, X26 = X2c = —1. From Theorem 2,
the implicit state observer can be constructed as

3 -1
1 -1 -1 m+He@ m+me3 m+H:§
i(t) = + +
2 o e
m+w£ s+2Y s+2

where (1/(s+ 1))v(t) and (1/(s +2))v(t) are unknown.

Now, let us consider the first-order filters of the disturbance and the disturbance.
As k(s) = 1, choose the Hurwitz polynomial I(s) in (42) as I(s) = (s+1)2. From (44)
we have

3s 1 1
7 (¢ = t t
50+ 30 = =70 + —u0) + — o)
By Theorem 4, the following differential equations are constructed:
P . 3s 1
g@) +9(t) = y( u(t) +wi(?)

s+1
aw:.ﬁv + =>: va = Eva

s+1

where

Il

wi(t) = -y (o) sign {y(t) - 90}

s+1
0.5]y(t)| sign TS (t) — SSW

Therefore w;(t) and ws(t) can be regarded as estimates of (1/(s+1))v(t) and o(¢),
respectively.

i

wa @v

Accordingly, from Theorem 5, the state observer is formed as

3 -1
_ —ws (¢ t
. 1 -1 ! 1) .m.TMQAV .m.TH:AS
2 08) =
z(t) 9 _1 st+1 ) + . N +1 1 w
Tsr2n m+w.c: m+w::

Therefore the state-feedback pole-assignment controller can be constructed as

u(t) = —[15, 7]2(@t) + v(t) — wa(t)
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In digital implementations, the discontinuous function sign(n) is approximated
by the differentiable function n/(|n| + d), where § > 0 is very small. If § — 0, it
is easy to see that 7/(|n] +d) — sign(n). Thus, the discontinuous functions ws (t)
and w»(t) can be approximately smoothed. The approximation error can be made as
small as we want by choosing & to be sufficiently small. In the presented computer
simulation process, ¢ is chosen as 0.001 and the sampling period is set to 0.001s.

The simulation results are shown in Figs. 2-5. ¢
1 ; .
O
".| —x2(t)
AH -5, (t) 1
A

2+ 7 1
.3 L ) L L

0 2 4 ] 8 10

Fig. 2. The genuine state z2(t) and its estimate #2(t) of Example 2.

08 T T

06 "," "\‘ — V(f) b
q 3

04b 4 —-wm(t)

Fig. 3.

-6 L . L 1

0 2 4 6 8 10
Fig. 4. The pole-assignment control u(t) of Example 2.
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15+ T

_,,. — Ja Q.v
i - y(t)

Fig. 5. The controlled output y(t) and the desired output y4(t) of Example 2.

Remark 9. When implemented on a digital computer, the parameter § should not
be much smaller than the sampling period.

7. Conclusions

In this paper, based on implicit observer techniques, the state is mathematically
expressed by first-order filters of the input, output and disturbance for SISO systems.
By appealing to the VSS equivalent control method, the filters of the disturbance
(eventually the disturbance) are estimated for SISO systems with arbitrarily relative
degrees. The estimated first-order filters of the disturbance are used to generate a
state observer of the system. Then the estimated disturbance and generated state
observer are employed to construct a state-feedback controller to place the desired

poles and to cancel the disturbance. Examples and simulation results show that the
proposed algorithms are effective for practical applications.

In order to implement the proposed formulation on a digital computer, the dis-
continuous functions are approximated by differentiable functions in the simulation

process. The approximation error can be controlled to be very small by choosing a
small parameter § and a small sampling period.

The proposed method is expected to be extended to multi-input multi-output
(MIMO) systems with uncertainties.

Appendices

Appendix 1. Proof of Lemma 2.

From the relation

FE) ="+ fis" 4+ fa= (" s+ )5+ A) (AL
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the following two equations are obtained:

_]_ fl f2 fn—l ~1 >\ O 0_ ]_gl g2 " Gn-1
01 f1- fao 0T A---00 |01 g1 gnoo
S ETIEE  FE I : (A2)
000 - f1 000--- Xl 100 O g1
000 1 000---1] (00 O 1
[ fi fofs - fu] [A20-- 0] 1 g1 92 gn
f2 fs f4 < 0 OX1---0|| g1 g2 g3~ O
: T ol L : Coo : (A3)
fn—1 fn 0 000 1||gn—29gn-2 0 -+ 0O
L fn 0 0 - 0 000 - Al lgnr 0O 0 - 0
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1g1 92 gn1
01 g1 gn-2
= [Xe, M1 A", ..., 1 AT :

(41

—

1 g1 Gn—2 Gn-1
01 9n—3 Gn-2
__/\n [0, hl, ceey hn—l] : : .

19192 gna
01 g1 gnos

:[XC’O7""0] : e =XC[11917'-'5gn—-1]

where
Xe = hlAn—l — h2)\n—2 4 -4 (_1)n—1hn

Therefore Lemma, 2 is proved. [ |

Appendix 2. Proof of Theorem 4.

The mathematical-induction principle is employed to prove the theorem.

(Ad)

Step 1. Taking into account (44), we consider the next system (45) together with (47),
where §j(t) is the signal generated by eqn. (45). Combining (44) and (45) yields

60+ 200) = ko { o) wat))

where §(t) = y(t) — §(t). From (A6), differentiating (§(t))? gives

)r_lv(t) - wl(t)} .

1
(s+ A

1 t
ot

@) =—22(5(1)* + 291k, {
=—27(5(t))* + 20()kr

<-22FW)’

Thus, it is obvious that §(t) converges exponentially to zero.

) — 215tk | wp—1 (1)

(A6)
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In order to derive the sliding equations through the equivalent control method,
it is necessary to solve

d .
—1 — »br
37 =0 (A7)
from (A6) with respect to wy(t). This yields
1
eq(t) = —————u(t
wy nﬂﬂv A.m. + \/vﬁfu .cﬁ v Tb»@v

So wi(t) can be regarded as an estimate of (1/(s+ A)"~}u(t).

Step 2. We will use w;(t) to estimate (1/(s + X)""2)u(t) by appealing to the
following trivial differential equation:

d 1 A 1
{0 ]+ e = o 4

Consider the corresponding differential equation
Aw: Qv + \/s®H @v = ENQY s@H QOV =0 TPHOV

'

where wy(t) is the input determined by
wa(t) = wys(t) sign ?H (t) — s;& (A11)

and 1, (t) is generated by (A10). Let @y (¢) = (1/(s+A)"~1)v(t) — b1 (t). Then from
(A9) and (A10) we have

N - 1
It can be proved that
w1 (t) >0 as t— o (A13)

The proof of (A13) is given in Appendix 3.

Similarly, by the equivalent control method, ws(t) can be regarded as an estimate
of (1/(s + N7 2)w(t).

Step ¢ (3 <7 < r). Based on the trivial differentiation

d 1 A 1 ,
i { T 0 |+ e = e o1

we can construct the corresponding differential equation
Wi (8) + Mbio1 () = wi(t),  Wii(to) =0 (A15)

where w;(t) is determined as

wi(t) = wy_i(t) sign ?ZS - ?.-;& (A16)
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and 10;_1(t) is the signal generated by (A15). In much the same way as in Appendix 3,
it can be proved that

1

mmv(t) — if)i_l(t) —0 as t—2> (Al?)
Thus w;(t) can be regarded as estimates of (1/(s + A)""u(t) for i = 3, ... ,7,
respectively. By the mathematical-induction principle, the theorem is proved. [ ]

Appendix 3. Proof of relation (A13).
From (A12), we obtain

S BRO=-2080) + 20100 { 5= ~ w0}

1 —5u(t) — 21 (H)wr—2(t)

=—2)w? () + 2w, (t)m—

x sign {wl @) + wi(t) - (—S%A)r-:l—v(t)} (A18)

As regards the relation between the functions w; (t) and wy(t) — (1/(s+ A)""1)v(t),
we will divide the derivations into three cases.

Case 1. There exists a positive constant 77 such that

_ 1
0012 ()~ e (419)
for all ¢t > T3.
Case 2. There exists a positive constant 75 such that
_ 1
w1 ()] < |wi(t) - mv(t) (A20)
for all ¢t > T5.
Case 3. It corresponds to neither Case 1 nor Case 2.
Now, a detailed analysis is outlined for each case:
Case 1. (A18) gives
L B2 (1= 202 (t) + 201 () ———— 0 (2)
g T R PRIV
— 21 (t)wy—o(t) sign {1 ()} < —2w3 (t) (A21)

It can be concluded that w;(t) approaches exponentially zero as ¢ — co.
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Case 2. Since w;(t) is an estimate of (1/(s+ A)""Hu(t), i.e.

1

wy (t) — Gra—T

v(t) =0 (A22)
it can be easily concluded from (A20) that w; () = 0 as t — oo.

Case 3. If the relation

1

[y (to)| > w1 (to) — G+

holds for time instant ¢, then from (A18) we obtain

Wawﬁa < —22@(to) (A24)

i.e. as ¢ increases from to, w?(t) decreases until the relation

226 < [ (0) = o550 ® (A25)

is satisfied, otherwise this contradicts the assumption of Case 3.

Thus, when (A23) holds for some instant, sooner or later (A25) will hold as t
increases from this instant. From the assumption of Case 3, it can be seen that there
is an infinite number of such instants (at least a denumerable set), and the values
of the instants approach infinity. Therefore, making use of the fact that wj(t)—
(1/(s + A)"Hu(t) = 0, we conclude that

W (t) >0 as t— oo (A26)

By combining the above three cases, relation (A13) is proved. [ |
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