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THE USE OF SLIDING MODES TO SIMPLIFY THE
BACKSTEPPING CONTROL METHOD!

A.A. STOTSKY", J.K. HEDRICK **, P.P. YIP **

A simple sliding mode based controller for nonlinear systems with mismatched
uncertainties is proposed. The design methodology is similar to a backstepping
and multiple surface control method, but with the inclusion of sliding mode
filters for estimating the derivatives of the plant output.

1. Introduction

Advanced industrial applications require simple algorithms to realize accurate track-
ing in the presence of mismatched uncertainties. Recently the elegant backstepping
design methodology (Kannelakopoulous et al., 1991) has been proposed to deal with
mismatched uncertainties. However, the integrator backstepping has a problem of an
“explosion of terms” which makes the backstepping controller difficult for implemen-
tation. A procedure similar to backstepping, called Multiple Surface Sliding control
(MSS) was developed to simplify the controller design (Gerdes et al., 1997; Green
and Hedrick, 1990). This approach is based on approximation of differentiation of
the desired trajectories by finite differences and worked well in many experimental
applications. In the first versions of the MSS method first order finite differences
were used to obtain the derivatives of the desired trajectories (Green and Hedrick,
1990), Later numerical differentiation was replaced by first order low pass filters and
a complete stability analysis was performed for systems with Lipschitz nonlinearities
(Gerdes et al., 1997).

In this paper, we suggest the use of sliding mode filters to obtain the derivatives
of the desired trajectories for the system with mismatched uncertainties and non-
Lipschitz nonlinearities. A similar idea has been applied recently for stabilization of
rotational motion of a vertical shaft magnetic bearing (DeCarlo et al., 1996), see also
the tutorial (Drakunov and Utkin, 1995).

We demonstrate our approach on a simple second order system example. Let the
plant be in the form:

T = Ty +9*I¥ (1)

iil'g = Uu (2)
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where 6, is an unknown constant parameter, |6, <li, Iy >0 is a known constant,
z; and zo are measurable states.

Our aim is to regulate z; and zs to zero. The main idea for controller design
is to ensure a sliding motion on the surface ; + cx1 = 0, where ¢ > 0, and
is estimated through the estimation of 8.z} in the sliding mode. Further, we use
differential equations with discontinuous right-hand sides and we understand their
solutions in the sense of (Gelig et al., 1978).

The design procedure proposed here can be divided into the following steps:
Step 1. Estimation of 1.
Let us introduce the following filter:
¢ = ag(x; —€) + 32 + ysign(z1 —¢) (3)
where ag > 0, v = l1z? + 8, 8 > 0. Subtracting (3) from (1), we get the error model
i1 — & = —ag(zy —€) + 0.3% — ysign(z1 — ) (4)

Our first substep is to organize a sliding motion on the surface (z1 —¢) = 0. Taking
the Lyapunov function candidate V = (z; — €)?, we evaluate its derivative along the
solutions of the system (4):

V

i

2(zy — €){—ao(z1 — €) + 0,23 — ysign(z1 —€)}

IN

2|z — el {liz? — 7}
e (5)

IN

and

VV () </V(0) - gt (6)

It is easy to see that the sliding surface (z1 —¢€) = 0 is reached in a finite time and
in the sliding mode 6,27 is equal to vysign(z, —€), i.e.,

6,23 = ysign(z1 — ¢) (7

where vsign(z; — €) is understood as the nonlinearity defined in the sense of (Gelig
et al., 1978) and determined after closing the system. From a practical point of view,
ysign(z; —¢) is the observable output of the nonlinear block.

We introduce the following filter to get the “equivalent control” (Utkin, 1978):
T2 = —z +ysign(zy — ¢€) (8)
or
7%= —(2 — 6,7}) 9)

where 7 is a positive constant which should be chosen “large enough” to reduce the
high frequency component of the signal, but “small enough” so as not to alter the low
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frequency component which is, in fact, the “equivalent control” that we need. As an
estimate of ; we take

%1 =T9 + 2 (10)

Step 2. Controller design.
Define the sliding surface

§ = 1%1 + cxq (11)
where ¢ > 0 is an algorithm parameter. Evaluating $, we have
§=u+z+c(zz+0.23) (12)

Selecting the control action as u = —Z — cxy — 71 sign(s), where v1 = cliz? + 8,
B1 > 0, we see that s converges to zero in a finite time.

Step 3. Stability analysis of the overall system.

Our aim is to prove that the convergence of s to zero implies the convergence of z;
and z2 to zero. First of all we present the error model of the system. Notice that

s=e+ i1 +cx - (13)
where e = z — 0,2, Rewriting (9), we have |

é= —%e — 20,3135 — 20223 (14)
Taking into account that

Ty = —CIr, —e (15)
where we neglected the reaching phase, we substitute

Ty = &1 — 0,22 = —cz; — e — B.2° (16)

into (14). After simple calculations, we get the error model in terms of e and z;:
1
e = ——e+ 206*1'% + 20,z1€
T

T = —cxr1—e€ (17)

Now we select the Lyapunov function candidate in the following form:

1, 1
V= ge+5ai (18)

Evaluating its derivative along the solutions to (17), we have
. 1
V= e{ - e+ 2c0,z2 + 26*3316} —cz? — z10

11 1
gez(—;+§+2111x1]+l%c2)+zf(—0+§+w?) (19)
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If we choose the algorithm parameters ¢ and 7 to satisfy the constraints

1 v
c> 5+ 2V (0) (20)
1 1
=> +20V2/V(0) + 12 (21)
where V(0) = 3€2(0) + 22%(0), then there exists a positive number & such that
V< —kV (22)

and e with z; converge exponentially to zero. It is easy to see that #; and z,
are also exponentially convergent, the system is semiglobally stable and the region of
attraction can be enlarged by amplifying the design parameter ¢ and reducing .

Notice that the right-hand sides of (20),(21) depend on the unknown parame-
ter 8,. Using the inequality |6.] < l; one can easily verify that if we choose the
parameters ¢ and 7 such that they satisfy the constraints

1
c> 5+ 2(0)? + 201]2(0)|21 (0)2 + 21 (0) + 22(0)

; > % Yo {|w1(0)| +1/2(0)2 + 201]2(0) 21 (0% + lf:c‘f(O)} + 122

then (20) and (21) are valid.

The controller described above prevents the explosion of terms and treats non-
Lipschitz uncertainties. Now we are in a position to generalize this approach.

2. Problem Statement

The following cascade nonlinear system is considered in this paper:

&1 = za + fi(z1,t) (23)

T2 = x5+ fa(z1,%2,1) (24)

Tp_1 = Tp+ fn_.l(.Z'l,fL‘z, R ,;cn_l,t) (25)

Tp = U (26)

where z; € R!, i = 1,...,n—1, and the functions f;(-) are unknown. We only assume

that the functions are bounded together with their derivatives and the bounds are
k_nown, ie., Ifl(xlat)| < fl(wlat), |f2($1,1‘2,t)| < fz(il?l,i?z,_t), |8f1(1i17t)/8t| <
fu(z1,t), |0f1(21,)/0z1| < fra(@1,t), etc. The functions fi(z1,t), fa(zi,z2,t),
fir(z1,t), fia(z1,t) are known. We suppose as well that z; are measurable states
and £;(0,0,0,...,0) =0. :

Notice that the functions f;(-) depend explicitly on ¢ and therefore there can be
unknown time-varying disturbances such that upper bounds of disturbances together
with upper bounds of several derivatives of the disturbances are known.
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Our problem is to find a control action u which depends on measurable states
z; such that the following control aim is achieved:

tll}rgo lys(t)} =0, i=1,...,n (27)

where y; = z; is the plant output and y;41 = diy, /dtt. Tt should be emphasized that
the states z; are available for measurements, but not the derivatives of the output
yir1 = diy; /dt.

The cascade systems (23)—(26) are very often met in many practical applications
such as automotive power train systems, aircraft control, etc., see (Hedrick, 1993) and
references therein. :

A similar cascade system was considered in (Kannelakopoulous et al., 1991), but
functions f;(-) depend explicitly on ¢ here and, as was already mentioned, bounded
unmeasurable disturbances act on the plant.

3. Outline of the Solution to the Problem

As the first step in the controller design we differentiate (23) (n—1) times and rewrite
(23)—(26) in the following canonical form:

Y1 = Y2
Y2 = Y3
yn—l = Un
Un = u+ fo(T1,...,Zn,t) (28)
where fo(z1,...,Zn,t) is an unknown function with a known upper bound, i.e.,

|fo(z1,- - Zn,t)| < folz1,...,Zn,t) and fo(z1,...,2n,t) is known.

In order to outline the solution to the problem stated above, let us suppose at a
moment that all (n —1) derivatives of the output ¥1,...,yn are measurable. Let us
try to find » such that any solution to the system (23)-(26), (28) has the property
s(y) =0 with ¢ > t., where t. is some constant which depends on the solution and

S(y) = 61:‘/1 + 623/2 +---+ 6n—1yn——1 + Yn (29)

where d;, 1 = 1,...,m — 1 are constants to be chosen. Further, we use differential
equations with discontinuous right-hand sides and we understand their solutions in
the sense of (Gelig et al., 1978).

Taking the Lyapunov function candidate
V=s? (30)
we evaluate its derivative along the solutions of (28)

V = 23((511/2 + 62',1/3 + - +5n—1yn +u+ fO(zla R :xn_l,t)) (31)
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Choosing the control action as

U= —01Y2 — 82y3 — + -+ — Spn_1yn — 7y sign(s) (32)
we get

V<=V (33)
if v= fo(z1,...,%n,t) +A/2, A > 0. Hence s converges to zero in a finite time and

for all t > t., t. = (2/A)/V(0) we have
Yn = —01Y1 — OaY2 — - — Sp—1Yn—1 (34)
Substituting (34) in (28) we see that

U1 = Yo
Y2 = U3
Yn—1 = —01y1 — day2 — -+ — p—1Yn—1 (35)

so the dynamics of the system in the sliding mode (¢ > t.) is determined by the
coefficients é;, 1 =1,...,n — 1 only and they can be arbitrarily chosen.

Unfortunately, the above controller is not implementable, since the derivatives
y; of the output are not measurable.

Our next step is to develop a procedure for estimating the derivatives of the
output. Since

1 =22 + fi(z1,t) (36)
we see that in order to find #; we have to measure fi(z1,t). Introduce the filter
€1 = ao(z1 — €1) + T2 + 71 sign(z; — &) (37)

where ag > 0, 1(21,t) = fi(z1,t) + \1/2, Ay > 0. Then the error dynamics is given
by the following equation:

&1 —é1 = —ao(z1 —e1) + fi(z1,t) — visign(z; — &) (38)
Taking the Lyapunov function candidate

Vi = (21 —1)? (39)
and evaluating its derivative along the solutions to (38), we obtain

Vi< -V (40)

Therefore the surface (z1 —e;) = 0 is reached in a finite time t. and for all ¢ > ¢,
Y1 (z1(t),t) sign(z1(t) — e1(t)) is equivalent to fi(z1(t),1), i.e.,

Yi(z1(t),t) sign(z1 (t) — 1(t)) = fi(z1(t),1) (41)
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Notice that the choice of initial value £1(0) as €1(0) = z1(0) eliminates the reaching
phase, i.e., t. = 0. Now £; can be found from the following relationship:

Ty =To+m sign(wl = 61) (42)

where v sign(z; —e1) is understood as the nonlinearity defined in the sense of (Gelig
et al., 1978) and determined after closing the system. From a practical point of view
71 sign(z; —e1) is the observable output of the nonlinear block.

Our next step is to estimate #;. Differentiating (23), we have

Z1 = z3 +d(z1,22,1) (43)

with
Of1(zy,t Ofi(zy,t
d(I’laxZat) = fz(l'l,IL‘Q,t) + fl(atl ) + fla( ! ) (1’.2 + fl(zlat))
T

and

ld(z1, T2, t)| < d(z1,72,t)
where d(z,,%2,t) is known.

Introduce the following filter: _
éz = ao(.’i‘l - 62) + 3 + Y2 sign(il — 62), 62(0) = jll (0) (44)

where ap > 0. Notice that e, is implementable since #; is known (see (42)). Sub-
tracting (44) from (43), we get the error model

T — €2 = —ap(d1 — €2) + d(z1, %2, t) — Yo sign(z; —e2) (45)

It is easy to show that the sliding surface (1 —e€2) =0 is reached in a finite time if
Y2 = d+ Ay where Ay > 0. In the sliding mode we have

d(z1,z2,t) = y2sign(z; — €2) (46)
and Z#; can be estimated as
I =3+ Y sign(a’:l - 62) (47)

where v, sign(#; — e3) is again the output of some nonlinear block. We continue this
procedure until we find all the (n — 1) derivatives of z;.

Substituting all the estimated derivatives in the control action (32), we get'a -
nested signum function controller. For convenience, we recall our control action:

¥ = —01Ys — O2y3 — ++* — Opn—1Yn — ysign(s) (48)
where

h = ) - (49)

Y2 = To + 1 sign(z; —e1) (50)

ys = T3+ Y2sign(yz — e2) (51)
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€1 and ey satisfy (37), (44) and
S(y) =061y1 + 622+ +0n1Yn—1+ Yn (52)

In the closed-loop system (23)-(26), (28), (48)—(52) sign(z) is understood as a func-
tion which has the range [-1,1] when z =0 and the differential equations according
to (Gelig et al., 1978) are understood as differential inclusions. The solutions to the
system exist according to Theorem 2.2.1 of the book (Gelig et al., 1978).

Now we are in a position to formulate our main result.

Theorem 1. Consider the system (23)-(25), (28) with the control action ({8)-(52).
Let the parameters §; be chosen such that the polynomial

&+ dap+ 53]92 4o+ 5n~1pn-—2 +pn—1 =0 (563)
is Hurwitz. Then the control aim (27) is achieved.

The proof of this theorem is outlined above.

Remark 1. The controller (48)—(52) is universal in the sense that it guarantees that
the control aim (27) is reached for all the plants (23)—(26) from a given class.

Remark 2. The convergence of state variables z; to zero can be easily established
for some special cases of the upper bounds f(z1,t), d(z1,z2,t). For instance, let
f(x1) = ki|2z1] + ko2? and d(z1,22) = ks|21| + kaz? + ks|za| + ke23, ki > 0, @ =
1,...,6. Then from (23) it follows that z2(t) — 0 as ¢ — oo, since #;(¢) — 0 and
z1(t) = 0 as t — oo. Then (43) yields z3(t) — 0 as t — oo, since #;(t) — 0,
z1(t) = 0 and z2(t) = 0 as t — co. We continue this procedure and conclude that
all the states x; converge to zero.

Remark 3. The implementation of a nested signum function controller is difficult
in practice, and sometimes even impossible due to the discontinuous nature of the
sliding surfaces. In order to make the above controller suitable for implementation,
we should use an “equivalent control” instead of signum functions in the controller. To
get the “equivalent control”, we use the theory of approximability developed by Utkin
(Utkin et al., 1978). According to this theory, the “equivalent control” coincides with
the average value of the appropriate signum function and is physically realizable as
the output of a first order filter. Applying this concept to the system presented above,
we get the controller presented below. The relationship (42) can be implemented as

i‘l = CCzV + 21
T2 = —21 + v1sign(z —e1)

. €1 = ao(®1 —€1) + z2 + 71 sign(zy —€1) (54)
and (47) in form

C'L"l = I3 + 2o
TyZy = —29 + Ya8ign(z; — €2)

€9 = a1 — £2) + T3 + 72 sign(Ey — €2) (55)
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where 71 and 7y are positive constants which should be chosen so as to filter out the
high-frequency component of the signal on the one hand and to make the averaging
isolate the slow—changing component on the other hand.

Finally, the resulting control action can be written as
U= =010y — g%y — - — 83V — «y sign(§) (56)

where § = §;2; + 62%1 + -+ (5n_1§3n_2 + g1

Notice that one can also prove the stability of the overall system with filters. The
full proof for the second-order system is presented in the Introduction. Solutions to the
regularized system contain again discontinuous right-hand sides and are understood
in the sense of (Gelig et al., 1978). We also remark that there exist some other ways of
regularization. For instance, sign(z) can be replaced with z/(|z| + o), where ¢ > 0
is “small enough”. '

4. Numerical Example
Consider the following example:

1 = Tg+ 1 Sil’l(.’I)z)

o = x3 + xg cos(z1) + z7 sin(zs)
j)g = u
y=o (57)

The control objective is to synthesize a state feedback law for u to regulate the
output y at 0. Using the notation introduced in the previous section, the bounds on
the nonlinearities are given by

|f1(z1)] = |21 sin(z1)] < fi(z1) = |21] (58)

lfO(ml,---,mS)l S fO(Ila'“:xS)

2(|z1| + D (21| + 22| + |2s])

Il

+ (Jz1] + 3|za| + [z122] + 2 + |21*) (21| + |22]) (59)

(21, 22)| < d(@1,2) = |71 + 72| + (1 + |21 ])(|T1] + |22]) (60)

The equations implementing the estimator for #; and %, are as follows:

%1 Ty + 21
—2z1 + 7 sign(z; — €1) (61)

€1 = ao(z1 —€1) + 22 + 71 sign(z; — ;)

Il

I

T2
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L1 = x3+ 22 .
—29 + Y2 sign(n’:l - 62) (62)
€y = ap(Z1 — &2) + T3 + Y2 sign(z1 — €2)

TaZo

Finally, the control action is implemented as
u = —61@ — 0p%; — ysign() (63)

where § = 6,31 + 6221 + 27 .

ChOOSil’lg 51 = 25, 52 = ].O, A= 10, Al = AQ = 20, Qg = 10, Tl = T2 =
20 x 1073, the simulation results are shown in Fig. 1 with initial conditions z;(0) = 1,
z5(0) = 0, z3(0) = 0. Figure 1(a) shows that the output z converges nicely to 0.
Figures 1(b) and 1(c) show the estimates of £; and #; versus the true #; and ;.

15 ! ! ! ! ! ! ! ! !

Fig. 1. Simulation results.
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5. Conclusion

In this paper, we presented a new controller for uncertain dynamical systems, which
is based on a procedure for estimation of the plant derivatives. The key idea con-
sists in the introduction of sliding mode filters which estimate the uncertain nonlinear
functions on the right-hand sides of the plant differential equations during the sliding
motion. Within this framework we use first-order filters to get the average values of
signum functions or an “equivalent control”. The result extends the Multiple Slid-
ing Surface Control concept for systems with non-Lipschitz drift and mismatched
uncertainties.
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