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ROBUST IDENTIFICATION BY DYNAMIC NEURAL
NETWORKS USING SLIDING MODE LEARNING
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EETES

The problem of identification of continuous, uncertain nonlinear systems in the
presence of bounded disturbances is implemented using dynamic neural net-
works. The proposed neural identifier guarantees a bound for the state esti-
mation error. This bound turns out to be a linear combination of internal and
external uncertainty levels. The neural net weights are updated on-line by a
learning algorithm based on the sliding mode technique. To the best of the
authors’ knowledge, such a learning scheme is proposed for dynamic neural net-
works for the first time. Numerical simulations illustrate its effectiveness, even
for highly nonlinear systems in the presence of important disturbances.

1. Introduction

Sliding modes constitute a high speed switching strategy which provides a robust
mean for controlling nonlinear plants. Essentially, it utilizes a switching control law
to drive the plant state trajectory onto a perspectively sliding surface. This surface
is also called the switching surface because if the state trajectory is “above” it, the
controller has a gain which switches to a different one if the trajectory drops “below”
it. The plant dynamics restricted to this surfaces constitutes the controlled system
behavior. By proper design of the sliding surface, it is possible to attain control goals
such as stabilization, tracking and/or regulation of nonlinear systems (DeCarlo et
al., 1988). Initially, the sliding mode control technique was mainly developed in the
former Soviet Union (Utkin, 1978). Due to its robust properties, it is quite attractive
for nonlinear system control and optimization (Khalil, 1996; Slotine and Li, 1991;
Utkin, 1992).

Recently, it has been proposed to implement sliding mode control for nonlin-
ear systems represented as neural networks. This implementation is, in most cases,
carried out as follows: a neural network is adapted on-line in order to minimize the
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error between its own output and that of a nonlinear system, so the neural network
reproduces the dynamic behavior of the system. Then, based on this neural network,
a sliding mode controller is synthesized. Initially, such applications were based on
radial basis Gaussian networks (Sanner, 1993; Tzirkel-Hancock and Fallside, 1992).
Recent works consider other types of neural networks such as single layer perceptrons
(Cao et al., 1994), or multi-layer perceptrons for robot control (Safaric et al., 1996).
For all these applications, stability is established by means of the Lyapunov approach.

In contrast to neural control applications, the sliding mode technique has almost
not been applied to neural network adaptive learning. The first related paper (Sira-
Ramirez and Zak, 1991) presents a class of adaptive learning algorithms, based on the
theory of quasi-sliding modes in discrete time dynamical systems, for both single and
multilayer perceptrons. The convergence is assured through the existence of a quasi-
sliding mode on the zero learning error. These algorithms underlie recently proposed
identification and control schemes (Colina-Morles and Mort, 1993; Kuschewski et al.,
1993). In (Sira-Ramirez and Colina-Morles, 1995), the design of learning strategies
in adaptive perceptrons, from the viewpoint of sliding modes in continuous time, is
addressed. A unique feature of the sliding mode approach consists in the enhanced
insensitivity of the proposed adaptive learning algorithm with respect to bounded
external perturbation signals and measurements noises. Again, the convergence is
guaranteed by the existence of a zero sliding mode on the zero learning error.

In this paper, we present an application of the sliding mode technique to the
adaptive learning of dynamic neural networks, in order to minimize the error between
the system to be identified and a neural identifier. The convergence of this error
is analysed by means of a Lyapunov function. The structure of the identifier is
taken from a previous paper of our research group (Poznyak and Sanchez, 1996). To
the best of our knowledge, the proposed learning algorithm constitutes an original
contribution, not addressed in the literature yet.

The paper is organized as follows: first, the mathematical models for both the
nonlinear system and the neural network are given; then the sliding mode learning
algorithm for the neural identifier is developed. The applicability of the proposed
scheme is illustrated via simulations. Finally, the relevant conclusions are stated.

2. Mathematical Models
We consider nonlinear systems in the form
j:t = f(zh ut’t) + gt (1)

where z; € R™ is the system state vector at t € R* := {t : t > 0}, u; € R? stands
for a given control action, f(-) : R® — R™® denotes an unknown nonlinear function
describing the system dynamics, & is a vector-valued function representing external
disturbances, which satisfies the following assumption.

Assumption 1. The function ¢ is Riemann integrable with bounded norm, i.e.

liinsup I&l=7T < o0 (2)
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So, in what follows we will consider bounded external disturbances.

Let us select the recurrent neural networks as in (Rovithakis and Christodoulou,
1994):

Ty = ATy + W1 10(F) + Watd(Tt)y(us) (3)

where A € R™" is a Hurtwitz matrix, W; ; € R**" is the weight matrix for nonlinear
state feedback, Wa; € R™ ™ is the input weight matrix, ; stands for the neural
network state.

The matrix function ¢(-) is assumed to be R™*" diagonal. The vector-valued
functions o(-) and (.) are assumed to be n-dimensional. The elements of o(-) and
¢(-) are usually selected as sigmoids, i.e.

_ a
T 1l4etz

o(z) (4)

This neural network (Poznyak and Sanchez, 1996) can be classified as a Hopfield-
type one.

3. Sliding Mode Learning
We define the identification error as
At =Ty — 5:} (5)

According to the sliding mode technique, we would like to obtain the following
dynamic behavior: )

Ay = —Psign (Ay) + v, (6)
where P is a positive diagonal matrix, P = diag[Py,...,P,], sign(A;) :=
(sign(Aq),. .. ,sign(An,t))T, v is an unmodelled dynamic part which can be evalu-

ated using prior information on the class of uncertainties and on the nonlinear system
being considered.

From (1) and (3) it follows that
Ay =gy — Ty = f@e, up, t) + & — ATy — W1 10(T1) — Wa,i9(Te)y(ue) (7)
Because f(z¢,us,t) is unknown, we will use the following approximation:

Ty — Tt—r

fme,ug,t) = .

+ 6 (8)

for a sufficiently small T € RT.
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The vector §; is the approximation error at time ¢. In view of (1), its norm can
be estimated as

ll6:]] = “T_l (¢ — m4r) — f(%;ut’t)H =

-7

¢
'r‘l/ :i:sds—f(:vt,ut,t)“
t

¢ t
7t [ f(zs,us,8) — f(:ct,ut,t)] d8+T*1/ £ ds
t

t—1 —T

IA

t
T"l/t ”f(fsaus,s)—f(xt,utat)”ds+SliPH§t|| 9)

—T
Assumption 2. The condition
”f(ﬂ}s,lbs,s)—f(xt,u,{,t)“ SC‘I‘ +DT]S_tl (10)

is valid for any s,¢ € Rt and for any ,,us, s, u; satisfying (1) (Cr and D, are
known nonnegative constants).

This condition can be applied to a wide class of nonlinear functions, including
continuous and discontinuous functions with bounded variations, i.e.

f(ze,ue,t) = fo(@e,t) + fr(@e,t) sign (ue)
where fo(z¢,t), fi(xs,t) are assumed to be continuous.

In general, C, is an upper bound estimation for local variations (e.g. in the case
of sign(u:) we have C; = 2). Asfor D., we can consider it as an upper bound of the
cone-condition (as in the Popov criterion for absolute stability of closed-loop systems)
valid for the function f(z¢,us,t). So, taking into account the bounds (2) and (10) we
can obtain directly from (9) that

16:]| < Cr + 7D, + 7 (11)

After substituting (8) into (7), we conclude that in order to guarantee the sliding
mode behavior (6), the following relation has to be satisfied:

Iy — X

E2T A%, - [ Wie Way ] { o(&)

—Psign (A;) = () v(ue) ] (12)

-
Accordingly, we obtaiﬁ

vy =& + 0y (13)
Selecting the weights [ Wi, Wa,.] such that (12) is fulfilled, we can satisfy the prop-
erty (6). One possible selection is the least square estimate (Albert, 1972)

- +
[ Wl,t WZ,t ] = [7‘_1 (It - :1715_7-) - A?E\t +PSigIl (At)] |: CT()IBt) t) ] (14:)

where [ -]t stands for the pseudoinverse matrix in the Moore-Penrose sense.
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Remark 1. The above learning law is just an algebraic relation depending on Aq,
which can be directly evaluated.
Taking into account that (Albert, 1972)

T
z
z+ +

—_— _2’ =
llll

the formula (14) can be rewritten as follows:

Wi Way | = .
[ W W | lo@IF + @) (o) ?(@e)(u

Remark 2. Notice that we do not ask for the condition of persistent excitation,
which is a requirement for constant parameter identification, because the proposed
sliding mode algorithm (15) does not need the convergence of the parameters Wi ;
and Wz,t.

To analyse eqn. (6), we define the Lyapunov function

1
Ve =5 llad?

Its derivative along the trajectories of the differential equation (6) is bounded:

-1 —z — A% sign (A a:é T
[t (e = 21y) = B+ Piign(A)] [ o(@) )} (19

n
Vi = ATA; = AT (-Psign(&y) + 1) = = ) Pi|Ail + AT w

i=1

IN

= min Py [|Ag]] + {|Ag]] [lusll

Using (13) and applying the bounds given by (11), we deduce that
el < ll&ell + l16el] < T+ Cr + 7D

and
Vi < = [|A| [min P - (T + C; +7D-)]

If we select
miinPi >T+C,+71D,;

we will guarantee the property A; — 0.

Finally, we formulate our main result.

Theorem 1. Let Assumptions 1 and 2 hold. If the gain diagonal matriz coefficient
P in the learning procedure (15) is selected such that

minP; > YT+ C; +7D; (16)
1

then the identification error vector is globally asymptotically stable, i.e.
At — 0

Remark 3. In order to guarantee the stability condition (16), it is desirable to select
7 as small as possible.
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4. Simulations

In this section we present simulation results which illustrate the applicability of the
theoretical study given above. We consider two illustrative examples. In the first one,
we consider a nonlinear system with signum-type elements, and in the second one, we
apply the proposed scheme to the Van der Pole oscillator.

Example 1. Let us consider the nonlinear system

[ 3:31 ] _ [ —ay2; | N [ B S?gn(wz) M &1 (17)
| %2 | | —ae2z2 | | Bisign(z) Up &1t

with T = 0.25 (see (2)). We will use the following dynamic neural network:
r T 1 _ [ —a171 ] + | wna(ﬂfl) +1.U120'(’.’f2) + diug (18)
L 23 ] i —02Z2 | i W120(E1) +1.U22Cf(§:\2) + douy

As regards the parameters, we select
ay 261:5, ﬁl =3, d1=1, .’111(0):10, 51(0)2—1
=10, Z2(0) = -2

Q
[\
il
Q)
%)
!
[
=
Ny
|
=
S
)
I
ub-—l
8
[X)
~~
(en]
N
I

and

P=

30
0 2
In order to adapt on-line the dynamic neural network weights, we use the learning
algorithm (15). The input signals are sine-wave and saw-tooth functions. The cor-
responding results are shown in Figs. 1 and 2. The solid lines denote the nonlinear

system state trajectories, and the dashed line represents neural network outputs. The
time evolution for the weight of the neural network is shown in Fig. 3. ¢

0 100 200 300 400
Fig. 1. Output profiles for a sine input (Example 1).
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Fig. 2. Output profiles for a saw-tooth input (Example 2).
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Fig. 3. Time evalution of the NN weights (Example 1).
Example 2. Let us consider the following Van der Pol oscillator with “zero control

input’™
T 01
1= T
T 0 0 T

The neural net is the same as (18), but with

30 0
0 20

e

P=
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The respective results are shown in Figs. 4 and 5. The solid lines correspond to
nonlinear system state trajectories, and the dashed line to neural network ones. The
time evolution for the weight of the neural network is shown in Fig. 6. The limit

circles ((z1,®2) and (Z;,Z2)) are shown in Fig. 7. ¢
4 .
X X
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Fig. 4. Output profiles of z; (Example 2).

Fig. 5. Output profiles of 22 (Example 2).
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Fig. 7. Limit cycles.

5. Conclusion

We have discussed an application of the sliding mode techniques to learning algorithms
of dynamic neural networks which are utilized to implement a neural identifier. The
global convergence of the identification error to zero is established via the Lyapunov
approach. In order to guarantee the existence of a sliding mode, we propose a new
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learning law to adapt on-line the weights of the neural network identifier. This law
has a sliding mode structure. '

The applicability of the proposed scheme is illustrated by two examples which
were executed via simulations. The results show the excellent performance of the
proposed neural network identifier with sliding mode on-line learning.

References

Albert A. (1972): Regression and the Moore-Penrose Pseudoinverse. — New York: Aca-
demic Press.

Cao Y.J., Cheng S.J. and Wu Q.H. (1994): Sliding mode control of nonlinear systems using
neural network. — Proc. Int. Conf. Control’94, Can Cun, Mexico, pp.855-859.

Colina-Morles E. and Mort N. (1993): Neural network-based adaptive control design. — J.
Systems Eng., Vol.1, No.1, pp.9-14.

DeCarlo R.A., Zak S.H. and Matthews G.P. (1988): Variable structure control of nonlinear
multivariable systems: A tutorial. — Proc. IEEE, Vol.76, No.3, pp.212-232.

Khalil H.K. (1996): Nonlinear Systems. — 2nd Edition, Englewood Cliffs, NI: Prentice
Hall.

Kuschewski J.G., Hui S. and Zak S.H. (1993): Application of feedforward networks to
dynamical systems identification and control. — IEEE Trans: Contr. Syst. Techn.,
Vol.1, No.1, pp.37-49. . ‘

Poznyak A.S. and Sanchez E.N. (1996): Nonlinear system identification and trajectory
tracking using dynamic neural networks. — Proc. 35th IEEE Conf. Decision and
Control, Kobe, Japan, pp.955-960.

Rovithakis G.A. and Christodoulou M.A. (1994): Adaptive control of unknown plants using
dynamical neural networks. — IEEE Trans. Syst. Man Cybern., Vol.24, No.3, pp.400-
412.

Safaric R., Jezernik K., Sabanovic A. and Uran S. (1996): Sliding mode neural network
robot controller. — Proc. 4th Int. Workshop Advanced Motion Control, Mie, Japan,
pp-395-400.

Sanner R.M. (1993): Stable adaptive control and recursive identification of nonlinear sys-
tems using radial Gaussian networks. — Ph.D. Thesis, MIT.

Sira-Ramirez H. and Zak S.H. (1991): The adaptation of perceptrons with applications to
inverse dynamics identification of unknown dynamic systems. — IEEE Trans. Syst.
Man and Cybern., Vol.21, No.3, pp.634-643.

Sira-Ramirez H. and Colina-Morles E. (1995): A sliding mode strategy for adaptive learning
in adalines. — IEEE Trans. Circ. Syst.-1, Vol.42, No.12, pp.1001-1012.

Slotine J.J.E. and Li W. (1991): Applied Nonlinear Control. — Englewood Cliffs, NI:
Prentice-Hall.

Tzirkel-Hancock E. and Fallside F. (1992): Stable neural control of multiple input-output
systems. — CUED Report, TR.90, Cambridge, England.

Utkin V.I. (1978): Sliding Modes and Their Application in Variable Structure Systems. —
Moscow: MIR Publishers, (in Russian).

Utkin V.I. (1992): Sliding Modes in Control and Optimization. — Berlin: Springer-Verlag.



