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AN EXTENSION OF THE CAYLEY-HAMILTON
THEOREM FOR A STANDARD PAIR
OF BLOCK MATRICES

TapEUSZ KACZOREK*

The Cayley-Hamilton theorem is extended for a standard pair of matrices par-
titioned into blocks that commute in pairs. The Victoria theorem (Victoria,
1982) is a particular case for E = I of the extended Cayley-Hamilton theorem.
The new theorem is illustrated by an example. Some remarks on extension of
the theorem for non-square block matrices are also given.

1. Introduction

The Cayley-Hamilton theorem plays an important role in linear algebra, linear net-
works and automatic control systems (Chang and Chen, 1992; Fragulis, 1995; Gant-
macher, 1974; Kaczorek, 1992; 1993; Lancaster, 1969; Lewis, 1982; 1986; Mertzios,
1989). The theorem says that every square matrix satisfies its own characteristic
equation (Gantmacher, 1974; Kaczorek, 1992; 1993; Lancaster, 1969). The clas-
sical Cayley-Hamilton theorem was extended for pairs of square matrices (Chang
and Chen, 1992; Lewis, 1982; 1986), square block matrices (Victoria, 1982) and for
two-dimensional (2D) and nD (n > 2) linear systems described by the Roesser
model or by the general model (Kaczorek, 1992; 1993; Mertzios, 1989; Mertzios and
Christodoulou, 1986; Smart and Barnett, 1989; Theodoru, 1989). Recently in (Kaczo-
rek, 1994; 1995a; 1995b) the Cayley-Hamilton theorem was extended for non-square
matrices, non-square block matrices and for singular 2D linear systems with non-
square matrices. In (Fragulis, 1995) the Cayley-Hamilton theorem was extended for
polynomial matrices of an arbitrary degree. In the analysis and synthesis of general-
ized control systems we deal with standard pairs of block matrices (Kaczorek, 1992;
1993).

In this paper, the Cayley-Hamilton theorem will be extended for a standard pair
of matrices partitioned into blocks that commute in pairs. The Victoria theorem
(Victoria, 1982) is a particular case for E = I of the theorem given in this paper.
The extended Cayley-Hamilton theorem can be used e.g. for computing the inverse
matrix of a block matrix and in the analysis of linear systems consisting of subsystems.
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2. Preliminaries

Let P,(C) be the set of n-order square complex matrices that commute in pairs and
M, (P,) be the set of square matrices partitioned in m? blocks belonging to P,(C).
The Kronecker product ® of the block matrix

A= ... , Ay € Py(C) (1)

................ )

where C™*™ is the set of nxn complex matrices.
p

Definition 1. A pair of block matrices (E, A) is called standard if there exist scalars
a and (3 such that

Ea+ Ap =1 (the identity matrix) (3)

Lemma 1. If the pair (E,A) is standard, then it is also commutative, i.e.

EA= AE (4)

Proof. Let 3 # 0. From (3) we have

A= %1 - %E
and
EA:E(11—9E> = (lI—gE>E:AE
B B B B
If o # 0, the proof is similar. |

Lemma 2. Let the pair (E, A) be standard.
(i) If E € Mn(P,) and B#0, then A € M, (P,).

(i) If E is symmetric and B # 0, then A is also symmetric.

Proof. Let 8 # 0. From (3) we have A = (1/8)I — (a/B)E and A € M, (P,), since
by assumption E € M, (F,). |
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In Lemma 2 the roles of F and A (8 and «, respectively) can be interchanged.

Definition 2. The matrix polynomial

m
AAM)=det [ E®QA-A®M] =Y Dim iA'M™, Dy e C™™ ()

=0

is called the (matrix) characteristic polynomial of the pair E, A € M,,(P,). A and M
constitute the block indeterminate pair of (E,A). The pair (A, M) is called the
block-eigenvalue pair of (E, A). :

In (5) ‘det’ means the formal determinant of a block matrix F € M,,(P,) which
we obtain by developing the determinant of F' and considering its commuting blocks
as elements (Victoria, 1982). Denoting by Det F' the usual determinant of F, we
have the well-known relation (Victoria, 1982)

Det F = Det (det F) (6)

3. Main Result

Consider a standard pair of block matrices E, A € M,,(P,).

Theorem 1. Let (5) be the characteristic polynomial of (E, A). Then

m

A(A,E)=> (I®Dim_;) AAE™ =0 (7)

=0
Proof. Let
B(AM) = Br10®A™ ! + By 01 @A™ 2M 4+ ..
+ Bim—2 ® AM™ 2 + By iy @ M™ (8)

be the block-adjoint matrix of [F® A — A ® M]. By usmg (6) it can be shown that
(Victoria, 1982)

B(AM)[E®A-A®M] =11 A(A, M) (9)
Substituting (5) and (8) into (9), comparing the matrix coefficients of the some powers
of A and M and using the well-known property of the Kronecker product (Lancaster,
1969) (A® B)(C ® D) = (AC) ® (BD), we obtain

B 10E = I®Dp
—Bm-10A+Bn21E =I®Dp_1,
—Bm—21A+ B 32E =I®Dp_25 (10)
—Bim-14A+ Bom1E = I Q@ Dy 1
—Bom-14 = I ® Do,
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Postmultiplying (10) successively by A™, A™ 'E,... AE™~! E™ and adding them,
we obtain (7). [ |

Note that in the particular case E = I the Victoria theorem (Victoria, 1982)
can be obtained from Theorem 1.

>

4. Example
Consider the pair of block matrices
1 1 2 1
01 :0 2
E, E :
E=[ 1 2]= ....... e € Mz (P)
E; E4 30: 2 2
0 3 :0 2
: : ] (11)
2 1: 21 |
02 :0 2
A A :
A:[ 1 2}: ....... e € M, (P,)
Az Ay 30 : 3 2
03 :03

The pair (11) is standard since it satisfies (3) for « = —1 and 3 = 1. The character-
istic polynomial of (11) has the form

E\A — AiM  E3A — Ao M
AAM) = det [E@A-A@M]=| " ! 2 2
EsA — AsM  E;A — AsM
= DyoA? + D11 AM + Doy M? (12)
where ’

—4 1
Dy = E\Ey — E3E; = l: ]
0 -4

5 —5
D1y = E3Ay + A3Ey — By Ag — A1 By = [ o s } (13)

0 4
Doy = A1 Ay — A3Ay = [ }
00
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Using (7), (12) and (13), we obtain

[Dm O}A2+[DH O laps| P2 0 |
0 Dy 0 Du 0 Doy
-4 1 0 o]f[w 7 10 11
B 4 0 0 010 0 10

‘ - 0 -4 1|15 9 15 15

0 0 -4 015 0 15

(5 -5 0 0 8 6 10

L]0 0 0 0 8 8

0 5 50|12 9 12 13

0 00 5 0 12 0 12
(04 00]|[75 6 9 0000
{0000 flo7 0 6| 0000
000 4||9 9 1011 0000
(0000][09 0 10 000 0

Therefore the standard pair (11) is a zero of its characteristic polynomial (12).

5. Concluding Remarks

In (Kaczorek, 1995a), the Victoria theorem was only extended for non-square block
matrices with square commutative blocks. In this paper, the Cayley-Hamilton theo-
rem was extended for a standard pair of matrices partitioned into blocks that commute
in pairs. The Victoria theorem in (Victoria, 1982) is a particular case of the proved
theorem for £ = I.

In a similar way as in (Kaczorek, 1994; 1995a; 1995b), the presented theorem
can be extended for non-square block matrices and can be used for the computation
of the left and right inverses of block matrices. Another example of application of the
extended Cayley-Hamilton theorem is the analysis and synthesis of large-scale linear
systems consisting of a number of subsystems.
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