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SYSTEM MODELLING USING NEURAL
NETWORK PARAMETER FUNCTIONS

ARUN THOLUDUR*, W. FrReD RAMIREZ"

The development of mathematical models that accurately describe the dynamics
of a complex system is a very difficult task. The use of neural networks in
conjunction with prior process knowledge improves modelling performance. This
can be achieved by using the method of neural network parameter function
modelling. This paper presents the application of this technique to the modelling
of a complex batch biotechnology system. The models developed are optimized
using two different methods and the results compared.

1. Introduction

The advent of recombinant DNA technology has provided yet another method of ob-
taining proteins that have a variety of practical applications. This technology is based
on the fact that a host organism’s biosynthetic machinery can be modified by inserting
a gene that codes for the protein of interest. This modified organism is then grown
in huge numbers to obtain the desired amount of the protein. Like all biotechnology
systems, the growth of cells and the production of proteins is a highly non-linear
process. Modelling such systems poses a unique challenge in that an accurate model
will have to involve many interacting microscopic phenomena. A generalized mathe-
matical model for the production of S-galactosidase using a strain of E. coli has been
presented by Lee and Ramirez (1992). In this paper, we sumimarize an alternative
method of modelling this reactor system using neural networks. Indeed, the method
presented is not limited to the particular system considered. This modelling method
can be generalized to include many dynamic processes.

Trying to obtain an accurate model of a process is often just one step in a much
bigger scheme of things. In addition to understanding the dynamics of a process,
a model is used as a basis for the optimization of the process. Returning to the
biotechnology system under consideration, once a method of producing proteins has
been obtained, the next step would be to maximize the amount of protein that can
be produced. This calls for an application of optimization techniques. In this paper,
two different optimization schemes are examined and the optimization results are
presented.
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2. Neural Networks—An Overview

A neural network is basically a computational scheme that utilizes a massive intercon-
nection of simple processors called neurons. Many different types of neural network
architectures are possible. An example of a typical neural network used in this work
is illustrated in Fig. 1. There are three layers of neurons in this architecture with a
set of connection weights between these layers. Each of the neurons performs a trans-
formation of its input to an output. This transformation is also called the activation
function and provides the non-linear nature of this type of neural network. The ap-
proximating capabilities of the neural network arise from the fact that the connection
strengths or synaptic weights can be modified in order to shape the input-output
transformation. This systematic modification of the synaptic weights is carried out
using a learning algorithm.
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Fig. 1. A typical feedforward neural network with one hidden layer.

3. Neural Network Training and Generalization

The adjustment of the synaptic weights of a neural network in a systematic man-
ner is done by a learning algorithm. One of the most widely used algorithms for
training feedforward neural networks is the backpropagation algorithm (McClelland
and Rumelhart, 1988). This algorithm suffers from many drawbacks, including slow
speed of convergence and a tendency to get stuck in local minima. Many variations
of the original backpropagation algorithm are available. In this work, we have used
the TRAINLM function in the MATLAB Neural Network Toolbox (1994) which is
essentially an adaptation of a Levenberg-Marquardt scheme of optimization (Masters,
1995). This algorithm is very efficient in terms of speed of convergence at the expense
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of utilizing more memory and is often used when the number of weights to be trained
is not too large.

One of the key issues in neural network training is the concept of generalization.
The adaptation of synaptic weights during learning in order to mimic the input-
output relationship often presents a dilemma to the user. A neural network can do
a very good job of learning such a mapping, but one is often looking for a network
that is able to generalize well. By this, we mean that the network should not merely
“memorize” the patterns it is presented with. Rather, it should be able to decipher
underlying relationships between the inputs and the outputs and should be able to
provide a reasonable output when it is presented with inputs that it has not seen
before. Smoothness of the function that is being approximated is usually a prerequisite
for good generalization. Another factor that tends to improve the generalization
capabilities of a neural network is that the input-output data that is presented for
training be a representative sample of the range over which generalization is desired.
In other words, a neural network which has been trained in a particular local subspace
would find it very difficult to generalize in an entirely different subspace. Related
issues of underfitting, overfitting and generalization in neural networks are discussed
in detail in the literature (Geman et al., 1992; Moody, 1992).

Some of the common methods used to obtain a neural network that is able to
generalize well include early stopping and cross-validation. In this work, we have
chosen to modify the method outlined by Manukian et al. (1994). Among the many
methods we tried, this modified scheme was found to result in networks with the best
generalization abilities. This method can be summarized as follows:

Define the number of individual networks to be trained, Ny. Each of these
networks will be trained on different data obtained by a random permutation of the
entire available training data set. Thus, we divide the entire data set (consisting
of Np input-output patterns) into Ny sets which in turn consist of Np/Ny data
points for testing and (Np — Np/Ny) data points for training. Each of these Ny
networks will be trained and tested on the corresponding training and testing data
for a specified number of epochs. The final network is obtained by augmenting all the
trained networks to form one network with Ny Ng hidden neurons (where Ny is
the number of hidden neurons in each of the individual networks). The input-hidden
layer weights (V) are just augmented while the hidden-output layer weights (W) are
augmented and divided by Ny. It is assumed that the output layer of neurons employ
a linear activation function. This process is demonstrated in Fig. 2 for the case where
there are three individual networks (Ny = 3) and each of these networks has three
hidden neurons (Ng = 3). Thus, the final network will have nine hidden neurons
(NNNH = 9).

The performance of this network on a validation data set that has not been used
in either training or testing is observed. Since the initial random weights have a
significant impact on the final network obtained, various initial random conditions
are considered. This procedure is repeated for various Ny and the network with the
lowest validation error has the best generalization performance.
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Fig. 2. Illustration of the training methodology to improve the gen-
eralization performance of a neural network.

4. Neural Network Parameter Function Models

It has been demonstrated that neural networks are very powerful function approx-
imators (Cybenko, 1989). In other words, using a few examples, neural networks
are able to determine a functional relationship between the inputs and the outputs.
This fact has been utilized in the modelling, identification and control of dynamic
processes (Chen and Billings, 1992; Kurtanjek, 1994; Pollard et al., 1992). Among
others, Narendra and Parthasarathy (1990) provided a generalized approach to the
identification of dynamic systems using neural networks. An interesting chemical
engineering application was presented by Bhat and McAvoy (1990) in which they
studied the estimation and control of a continuous stirred tank reactor. Many other
researchers have studied neural network modelling and estimation techniques (Karim
and Rivera, 1992; Yamada and Yabuta, 1993).

The typical approach to the modelling of a process has been to consider it to
be a black box, and generate data using a variety of inputs and measuring the re-
sponse of the system to these inputs. A neural network is then trained to mimic
this input-output relationship. However, oftentimes, there exists other information
about the process that can be incorporated into the models to provide a more accu-
rate model. This has been noted by Psichogios and Ungar (1992) and Thompson and



System modelling using neural network parameter functions 891

Kramer (1994). In (Tholudur and Ramirez, 1996), we presented a parameter func-
tion modelling technique that can be used to model biotechnology processes. This
utilizes readily available information in the form of material balances and uses a neural
network to model just the unknown parameter functions.

A typical set of coupled differential equations that govern the dynamics of a batch
process are

&1 = fi(z1,22)20 )
&y = fa(z1)(z1 — 2) (2)

where z; and z» are the state variables of the system, and f; and f, are the
unknown parameter functions. These types of differential equations are readily de-
rived from some fundamental knowledge of the process and from simple conservation
principles such as material and energy balances.

In the parameter function modelling, we attempt to capture the functional map-
pings fi and fs. Process knowledge tells us that the function f; is dependent on
both the state variables z; and z, while the function fs depends only upon z;.
If the states x; and zs are measurable, it is very easy to design a set of experi-
ments that vary the initial conditions z;(0) and z,(0) and obtain the state variable
measurements by sampling at periodic intervals. Then, we can rewrite the basic
differential equations as follows:

filer, ) = = (3)
T2
falzr) = —= (4)

1 — 22

This implies that once we have the state measurements and the state derivatives
at each sampling instant, we can use the above equations to obtain the values for
the parameter functions at that instant. Two different neural networks can then be
trained to mimic these parameter functions—the first one which has two inputs, z;
and z and one output, fi, and the second network which has one input, z; and one
output, fo. Once these neural networks are trained, they can then be put back in the
original differential equations and this combined neural network-differential equation
model can be used for optimization.

5. Optimization of Non-Linear Models

The general optimization problem under consideration involves the constrained min-
imization of the scalar performance index J with respect to the initial states x(to)
as given below:

x =f(x) (5)
where x is the state vector that describes the dynamics of the process,

J = ‘I’(X(tf)) (6)
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defines the final state performance index to be minimized, and
X <x <Xy (7)

defines the constraints on the states, where x; stands for the lower bound and x,
signifies the upper bound on the states. Optimization of this sort involves finding
the right initial condition that minimizes the final state performance index. Many
approaches are possible and in this work, we looked at two different methods—one
based on the method of Luus and Jaakola (1973) and the other based on quadratic
programming principles.

The Optimization Toolbox in MATLAB provides us with a constrained minimiza-
tion function constr.m which was based on the principles of quadratic programming.
This was one of the methods used for the optimization. The other method basically
involves a direct search and is an iterative procedure which converges to the minimum.
The algorithm is presented below:

1. Set the initial values x(ty) and a range for admissible state values given by
r(® = (x; + x,)/2. Set the iteration index j to be 1.

2. Generate a specified number of random numbers for the states around the initial
values such that the state constraints are not violated.

3. Integrate the system dynamic equations forward in time with each of these
initial conditions and choose the one state vector that minimizes the desired
performance index.

4. Reduce the allowable range by a factor €, i.e. rU+1) = er(), gset the initial
state value to be the best initial condition obtained from the previous step and
increment j by 1.

5. Go to Step 2 and repeat this procedure for a fixed number of iterations.

6. Case Study—Production of 3-Galactosidase

Lee and Ramirez (1992) studied the production of the protein S-galactosidase using
a strain of . coli. They presented a dynamic model that was suitable for control pur-
poses and applied optimal control theory to maximize the production of the protein.
Their model consists of several state differential equations which directly follow from
the application of conservation principles across a bioreactor. A modified differential
equation set (Tholudur and Ramirez, 1997) which describes the batch dynamics is
presented below:

Ty = p(T2, 24,5, T6)T1 (8)
Bo = =Y u(zo, 24,25, 26) 11 9)

T3 = Ryp(x2,24)71 (10)
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The state variables are the cell density (z1), the nutrient concentration (), the
foreign protein concentration (z3), the inducer concentration (z4), the inducer shock
factor on cell growth rate (z5), and the inducer recovery factor on the cell growth rate
(z). The growth yield coefficient is denoted by Y and has a value of 0.51.. Also,
u is the specific growth rate, Ry, is the foreign protein production rate and k; and
ko are the shock and recovery parameters, respectively.

6.1. Modelling

The modelling process involves designing specific experiments and gathering data
and postulating functional forms for each of the parameter functions and performing
a curve fit to obtain the model parameters. In neural network parameter function
modelling, the governing differential equations are rewritten to obtain expressions for
the parameter functions as follows:

Z1

”(t7$21$4) - (18)
Z1
YV ult, 20, 34) = 2 (19)
T3
T
Ryp(2,24) = = (20)
T

The parameter function k; and ks cannot be modeled because they are dependent
on unmeasurable states (x5 and zg). It is hoped that the effect of these unmeasurable
states on the other parameter functions shows up in the data that is gathered and
hence their effect modeled. In this simulation study, we assume that the original
differential equations represent the actual experimental system that we are trying to
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Table 1. Best network architecture statistics for the neural network
parameter functions.

Parameter function | Ny | Best Ny | Best Validation Error

u 3 10 5.4768477e-05
~-Y~ly 3 6 1.0156005e-04
Ryp 3 3 7.1440866e-05

model. Thus, the procedure for parameter function modelling involves generation of
data using the dynamic equations and obtaining the required state derivatives and
estimating the parameter functions. Three different neural networks are then trained
to mimic the parameter function as given above using the procedure outlined in the
Section 3. The networks for the parameter function g and —Y ~!x have three inputs,
namely t,z2, and z4 while the function Ry, utilizes two inputs, namely, zs and z4.
Before training, the inputs to the network are normalized to lie in the range 0 to 1
in order to attach equal importance to each of the inputs. The reason for including
time (¢) as an input for the first two parameter functions is to compensate for the
effect of the unmeasurable states and the fact that Lee (1992) had theorized the time
dependence of .

The data for training the networks were generated by integrating the system
dynamic equations with different initial conditions for the glucose concentration (z3)
and the inducer concentration (x4), starting from ¢, =0 to t; = 10 with a sampling
time of 1 hour. A total of 350 data points were generated with 87 data points used for
the validation data set and 88 data points used for testing and 175 data points used
for training the networks. The results of the training method can be summarized
by Table 1 and Figs. 3-5. As can be seen, the networks have done a good job of
capturing the parameter functions. These neural networks can now be put into the
differential equations to provide a combined model that can be used for optimization
in order to obtain the best set of initial conditions to maximize the amount of protein
production.

6.2. Optimization

As mentioned earlier, two methods of constrained optimization were considered—
a direct search (DS) method and a quadratic programming (QP) based method. The
neural network-differential equation model was optimized for the optimum initial
conditions x2(0) and z4(0). The other state variables were not varied and kept
constant at #1(0) = 0.1 and z3(0) = 0.0. It should be noted that this combined
model consists of just the first four differential equations. The aim of the optimization
is to maximize the final amount of protein that can be produced while using the least
amount of inducer possible and this translates to the following performance index to
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be minimized:
J = —ll,‘g(tf)v + Q:U4(tf)V (21)

where V is the volume of the batch and was kept constant at 1.0 liter. The first term
in the expression for the performance index corresponds to the amount of protein at
the end of the batch. The second term is a penalty term to take into account the high
cost of the inducer. Thus, there is a tradeoff involved in this optimization wherein
we are trying to maximize the amount of protein that can be obtained by using the
lowest amount of inducer possible. Lee and Ramirez considered different values for
Q and we summarize the results for the cases Q = 0.1, @ = 2.5 and @ = 5.0 which
basically refer to situations where the inducer cost is almost negligible, appreciable

and prohibitive respectively.

Table 2 summarizes the optimal initial conditions predicted by the two optimiza-
tion algorithms. If the neural network based model is as good as the actual model,
the results of optimization on both models should be identical.

The results of optimization show that there are minor differences in the predicted
optimal initial conditions. This can be attributed to two factors—approximation er-
rors in the neural network based model and the fact that the dynamics of the unob-
served states may not be truly represented in the neural network models. However,
in spite of these factors, the predicted performance indices are found to be very close

to the true optimum.
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Table 2. Comparison of the optimal results for the neural network
parameter function based models.

Optimization method Model z2(0) z4(0) J
QP based Actual (Q =0.1) 53.4788 | 0.0820 | —4.1784
QP based Network (Q = 0.1) | 58.7423 | 0.0827 | —4.0990
DS based Network (@ = 0.1) | 58.6927 | 0.0828 | —4.1002
QP based Actual (Q = 2.5) 54.3116 | 0.0723 | —3.9940
QP based Network (@ = 2.5) | 59.2708 | 0.0735 | —3.9205
DS based Network (Q = 2.5) | 59.3438 | 0.0742 | —3.9165
QP based Actual (Q = 5.0) 54.9925 | 0.0651 | —3.8227
QP based Network (@ = 5.0) | 59.6540 | 0.0667 | —3.7551
DS based Network (Q = 5.0) | 59.3733 | 0.0662 | —3.7626

7. Conclusions

This paper summarizes and demonstrates the capabilities of neural network param-
eter function modelling scheme to model dynamic systems. The use of conservation
principles and prior knowledge about the process results in a model that is more ef-
ficient than when a black-box neural network modelling scheme is considered. These
kinds of models lend themselves well to various optimization strategies. The tech-
nique is applied to the optimization of a batch bioreactor. The optimal results from
both methods agree well with the true optimum. This method provides the means
to model system dynamics with very simple experiments and come up with optimal
operating strategies rapidly.
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