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DISTRIBUTED OUTPUT FEEDBACK CONTROL
OF TWO-TIME-SCALE HYPERBOLIC PDE SYSTEMS

PanacioTis D. CHRISTOFIDES*, PRoprOM0OS DAOUTIDIS**

This article focuses on systems of two-time-scale hyperbolic partial differential
equations (PDEs), modeled in singularly perturbed form, for which the ma-
nipulated inputs, the controlled and the measured outputs are distributed in
space. The objective is to synthesize distributed output feedback controllers
that guarantee closed-loop stability and enforce output tracking, provided that
the speed ratio of the fast versus the slow dynamical phenomena of the two-
time-scale system is sufficiently large. Initially, singular perturbation methods
are used to derive two separate PDE models which describe the fast and slow
dynamics of the original system. These models are then used as a basis for the
synthesis of well-conditioned distributed state feedback controllers that guaran-
tee stability and enforce output tracking in the closed-loop system. Then, two
distributed state observers are independently designed on the basis of the fast
and slow subsystems, to provide estimates of the fast and slow states of the
system. These state observers are coupled with the distributed state feedback
controller to yield a distributed output feedback controller that enforces the de-
sired objectives in the closed-loop system. The proposed methodology is applied
to a convection-reaction process with time-scale multiplicity.

1. Introduction

Convection-reaction processes can be adequately described by systems of quasi-linear
first-order hyperbolic PDEs. The distinct feature of hyperbolic PDEs is that all the
eigenmodes of the spatial differential operator contain the same or nearly the same
amount of energy, and thus an infinite number of modes is required to accurately de-
scribe their dynamic behavior. This feature suggests addressing the control problem
on the basis of the infinite-dimensional model itself. Following this approach, con-
trol methods were recently proposed for the synthesis of nonlinear distributed feed-
back controllers for quasi-linear hyperbolic PDEs utilizing sliding mode control (Sira-
Ramirez, 1989; Hanczyc and Palazoglu, 1995), geometric control (Christofides and
Daoutidis, 1996a), and Lyapunov-based control (Alonso and Ydstie, 1995; Christofides
and Daoutidis, 1997).
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An important feature encountered in many convection-reaction processes is the
presence of time-scale multiplicity. Typical examples of convection-reaction processes
which exhibit multiple-time-scale behavior include fixed-bed reactors, pressure swing
absorption processes, etc. For these processes, it is well-established that a direct
application of distributed control methods (including the afore-mentioned specific
ones) may lead to controller implementation and sensitivity problems. In particular,
such an approach may lead to observer-based output feedback controllers which are
ill-conditioned (i.e. the state feedback controller generates very large control actions
in the presence of small measurement/modeling errors) and not easily implementable
due to stiffness (i.e. the state observer is a stiff system due to ill-conditioning of the
observer gain).

Singular perturbation methods have provided a natural framework for the analy-
sis and well-conditioned controller synthesis for ordinary differential equations (ODE)
systems (Kokotovic et al., 1986). In this approach, the original two-time-scale process
is decomposed into two separate lower-order well-conditioned models associated with
different time-scales. These models are subsequently used for the synthesis of well-
conditioned controllers. In the area of control and state estimation of two-time-scale
distributed parameter systems, singular perturbation methods were initially used in
(Soliman and Ray, 1979) for the design of well-conditioned distributed state estima-
tors for a class of parabolic PDEs. More recently, Dochain and Bouaziz (1993) used
singular perturbations to reduce the parabolic PDE model that describes a fixed-bed
reactor with strong diffusive phenomena to an ODE one. The singular perturbation
framework was also used in (Christofides and Daoutidis, 1997) to study robustness of
a distributed robust state feedback controller, designed on the basis of a hyperbolic
PDE model using Lyapunov-based control methods, with respect to fast and stable
unmodeled dynamics.

In this paper, we consider systems of two-time-scale hyperbolic PDEs, modeled in
singularly perturbed form, for which the manipulated inputs, the controlled and the
measured outputs are distributed in space. The objective is to synthesize distributed
output feedback controllers that guarantee closed-loop stability and enforce output
tracking, provided that the speed ratio of the fast versus the slow dynamical phenom-
ena of the two-time-scale system is sufficiently large. Initially, singular perturbation
methods are used to derive two separate PDE models which describe the fast and slow
dynamics of the original system. These models are then used as a basis for the synthe-
sis of well-conditioned distributed state feedback controllers that guarantee stability
and enforce output tracking. Then, two distributed state observers which incorporate
well-conditioned observer gains are designed to provide estimates of the fast and slow
states of the system. These state observers are coupled with the distributed state
feedback controllers to yield distributed output feedback controllers that enforce the
desired objectives in the closed-loop system. The proposed methodology is applied to
a representative convection reaction process with time-scale multiplicity.
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2. Two-Time-Scale Hyperbolic PDEs
2.1. Description of Class of Systems

We focus on two-time-scale first-order PDE systems with the following state-space
description:

% = @+ 4@+ (@) + QoI + ()
e@ = A. (I)Q{ + A. (LL)QQ + fa(z) + Q2(x)n + g2(z)b(2)u 1)
or 21 02 22 G 2 20Z)N + g2
[ T =Ch(z), @=ipz, ¢ = Qpn

subject to the boundary conditions
Oll.'L'(Ot,t) + Clzw(ﬁ7 t) = R17 CZln(a7t) + 02277(/6: t) = R2 (2)

and the initial conditions

2(2,0) = zo(2), n(2,0) =no(2) (3)

where z(z,t) = [z1(2,1) -+ z.(2,8)]7, n(z,t) = ni(z,t) - np(2, )] denote vec-
tors of state variables, z(z,t) € H™[(a, B),R?], n(z,t) € HP[(a,B),R?], with
?—l(j)[(a,ﬂ),]R{j} being the infinite-dimensional Hilbert space of j-dimensional vec-
tor functions defined on the interval [a,f], z € [a,8] C R and ¢ € [0,00) denote
position and time, respectively. 4 = [@! --- @']T € R' denotes the vector of ma-
nipulated inputs, § = [§* --- §']T € Rl denotes the vector of controlled outputs,
a=[@ - @dTeR, =[G - &7 € R denote the vectors of measured out-
puts, and ¢ is a small parameter which quantifies the degree of coupling between the
fast and slow modes of the system. Aj;(x), A12(z), A21(z), A22(z), Q1(z), Q2(z) are
sufficiently smooth matrices, fi(z), fa(x),g1(z), g2(z) are sufficiently smooth vector
functions, h(z) is a sufficiently smooth scalar function, py,p,, R1,R» are constant
vectors and C11, Cla,Ca1, Che are constant vectors. Furthermore, b(z) is a known
smooth vector function of the form

b(z) = [(H(z —z1) — H(z — 22))b(2) - - (H(z—2) — H(z —zl+1))bl(z)] (4)

where H denotes the standard Heaviside function and *(z) describes how the control
action @(t) is distributed in the space interval [2i,zi41]. C is a bounded linear
operator, mapping H" into R, of the form:
T
C=[(H(z—2)-H(z~ 2))C - (H(z—2z) — H(z - zl+1))Cl] (5)

where the operator C* depends on the desired performance specifications and in most
practical applications is taken to be of the form:

Js(t) = C’h(z) = /Ziﬂci(z)h(m(z,t)) dz | (6)

1
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where ct(z) is a known smooth function. Qy, Q> are bounded linear operators map-
ping H"™ into R' and HP into R, respectively, of the form

Or=[(H(z—2)—H(z—2)) QL (H(z — 1) — H(z — 2141)) QQ]T, k=1,2 (7)

Systems of the form of eqn. (1) arise naturally in practice as models of convection-
reaction processes which involve physicochemical phenomena occurring in different
time-scales. The linear appearance of the manipulated input, which is also distributed
in space, is typical in most practical applications where the wall-temperature is usually
chosen to be the manipulated input. The linear appearance of the fast variables is also
consistent with the fact that the main nonlinearities are usually associated with the
slow dynamics. The separation of controlled and measured outputs (§ and (q1,¢2))
is done to aliow defining the controlled outputs at different spatial positions from the
measured outputs (e.g. consider control of temperature throughout a reactor using
temperature measurements from several points in the reactor). Finally, the partition
of the measured outputs to two different sets, ¢; and ¢», which exclusively include
slow and fast variables, respectively, is also typical in practice where measurements
of the slow variables are usually obtained independently (and very often at different
spatial positions) of the ones of the fast variables.

The following assumption states that the two-time-scale system of eqn. (1) is
hyperbolic.

Assumption 1. The (n+p) x (n+p) matric

An(z) Az
Ale) = (z) (=) )
A21(.77) Azz(:l:)

is real symmetric, and its eigenvalues satisfy

M(@) <o < Xp(2) <0< X (8) < - < Anyp(3) 9)

for all © € H™[(a, B),R"].

Assumption 1 ensures (Russell, 1978) that the differential operator of the linearized
open-loop system of eqn. (1) generates a strongly continuous semigroup U(t) of
bounded linear operators, which guarantees the local existence, uniqueness and con-
tinuity of solutions of the system (1). From general semigroup theory (Friedman,
1976), it is known that U(t) satisfies the growth property ||U(t)]l2 < Ke®, t >0,
where K, a are real numbers with X > 1 and || - || denotes the inner product in
H[(a, B), R**P] (see the Appendix for the definition of the inner product). An esti-
mate of K, a can be obtained utilizing the Hille-Yoshida theorem (Friedman, 1976).
Whenever the parameter a is strictly negative, we will say that U(t) is an exponen-
tially stable semigroup. Throughout the paper we will use the order of magnitude
notation O(e), i.e. §(¢) = O(e) if there exist positive constants k& and ¢ such that
|6(e)] S kle|, Ve <
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2.2. Two-Time-Scale Decomposition—Preliminaries

In this subsection, we initially use singular perturbation methods to decompose the
two-time-scale system (1) into separate models which describe the fast and slow dy-
namics of this system. Then, we will state certain standard assumptions on these mod-
els that will be exploited in the synthesis of the distributed output feedback controller.
To simplify the notation, we set Lz = A (z)§2+ fi(z), Lian = Aj2($)g—z +Q;(z)n,
i,7 = 1,2. Defining a fast time-scale 7 = t/e and setting € = 0, the fast subsystem,
which describes the fast dynamics of the system (1), takes the form

On _ _
3= Loz + Laan + g2(z)b(2)a 10
g2 = Qa2pan

where z is independent of time. In order to ensure that it is possible to stabilize the
above system through distributed output feedback, the following standard stabiliz-
ability (Assumption 2) and detectability (Assumption 3) requirements will be needed
(see also (Balas, 1986; Pell and Aris, 1970)). The stabilizability requirement will be
used in the next section to design a distributed state feedback controller to stabilize
the fast subsystem, while the detectability requirement will be exploited in Section 4
for the design of a distributed state observer that provides estimates of the vector of
fast state variables.

Assumption 2. The pair [Lys g2(2)b(2)] is stabilizable uniformly in z, i.e., there
exist a bounded linear operator F, mapping HP into R, such that the operator
Lsn = Loan + g2(x)b(2) Fn generates an exponentially stable semigroup.

Assumption 3. The pair [Q2ps L2, is detectable, i.e., there ezist a bounded linear
operator Py, mapping Rt into HP, such that the operator Laon = Laan — PaQapan
generates an exponentially stable semigroup.

Remark 1. In practice, the design of the feedback operator F can be performed
utilizing standard optimal control methods (e.g. (Ray, 1981)), while the design of
the estimator operator P, can be performed via (a) simple pole placement in the
case where the output measurements are not corrupted by noise, (b) Kalman fil-
tering theory, in the case where the output measurements are noisy (Pell and Aris,
1970; Soliman and Ray, 1979). We also note that the detectability requirement of
Assumption 3 does not impose any restrictions on the form of the operators G, Q»
and thus, on the structure of the measurement sensors (e.g. distributed, pointwise
Sensors).

Setting € = 0, the PDE system (1) reduces to a system of coupled partial and
ordinary differential equations of the form
Oz

at = Lnz+ Lians + g1(z)b(2)a (11)

0= Loz + Logns + 92(w)b(z)ﬂ
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The solution of the ODE La1x + Loons + g2(z)b(2)d = 0 subject to the boundary
conditions (2) is of the form

ns = Ly (La17 + g2(2)b(2)a) (12)

The slow subsystem, which captures the slow dynamics of the system (1), takes then
the form '

oz ”
% = L@ + G (13)

gs = Ch(z), @ = dimz

where the subscript s in i, denotes that this output is associated with slow subsys-
tem, [:(ZL') = Ellﬂf - £12£2_21,C21.'E, G(LL') = g1 (LTJ) - ﬁlzﬁgzlgg(l‘).

We will now recall a result developed in (Christofides and Daoutidis, 1997), which
states that if the fast and slow hyperbolic PDE subsystems (10)—(13) are locally
exponentially stable, then the two-time-scale hyperbolic PDE system (1) is locally
exponentially stable and the discrepancy between the solutions of the system (1) and
the subsystems (10)—(13) measured in appropriate norm is of O(e) for almost all
times, provided that e is sufficiently small.

Theorem 1. (Christofides and Daoutidis, 1997) Consider the system (1), for which
Assumption 1 holds, suppose that the fast and slow hyperbolic PDE subsystems (10)-
(18) are locally exponentially stable, and define ny := n—ns, where 15 is the solution
of the system (10). Then, there exist positive real numbers (6,€*,as) such that if
max{||zoll2, |75z} < and € € (0,€*], the system (1) is locally exponentially stable,
and

Iz — asll2 = O(e) (14)
lIngllz = Klingllze=**/¢ + O(e) (15)
Finally, we recall a concept of zero dynamics for systems of the form (13), proposed

in (Christofides and Daoutidis, 1996a), which will be used to state conditions that
guarantee the stability of the closed-loop system. .

Definition 1. (Christofides and Daoutidis, 1996a) The zero dynamics associated
with the system (13) is the system obtained by constraining the output to zero, i.e.,
the system

5 = £(a) - Gl)b(a) [1oCLaLE ha)b(2)] " {7 CLER(E)}
Ch(z) =0 , (16)

lell(a,t) + ng(ﬁ,t) = R(t)

We note that the zero dynamics of the system (13) are infinite dimensional in nature.
This is expected because the number of controlled outputs of the system (13) is finite
(1), while the state of the system evolves in infinite dimensions.



Distributed output feedback control of two-time-scale . .. 719

2.3. Concept of Characteristic Index

Referring to the system (13), we now recall the concept of characteristic index between
the output 7 and the input @ introduced in (Christofides and Daoutidis, 1996a)
that will be used in the formulation and solution to the distributed state feedback
control problem for the slow subsystem (see the next section).

Definition 2. (Christofides and Daoutidis, 1996a) Referring to the system (13), we
define the characteristic index of the output §: with respect to the input @' as the
smallest integer o? for which

C'LGLS ' h(z)bi(2) £ 0 (17)

where L.,Ls denote the standard Lie derivative notation, or o* = oo if such an
integer does not exist.

In most practical applications, the choice of (b%(2), ¢*(z)) is typically consistent for all
pairs (7%, 4%), in a sense which is made precise in the following assumption.

Assumption 4. Referring to the system (13), o' = 0% =-.. =¢' = 0.

From the above assumption, it follows that o can also be thought of as the charac-
teristic index between the output vector i and the input vector .

3. Distributed State Feedback Control of Hyperbolic PDE
Systems: Review

In this section, we briefly review a methodology developed in (Christofides and Daou-
tidis, 1996a) for the synthesis of distributed state feedback controllers for first-order
hyperbolic PDE systems of the form of egn. (13) that enforce closed-loop stability and
output tracking. These results will be used in the present paper. We consider control
laws of the form

@ =38(z) + s(z)v (18)

where S(z) is a smooth nonlinear operator mapping H" into R, s(z) is an invertible
matrix of smooth functionals, and v € R! is the vector of external reference inputs.
Under the control law (18), the closed-loop system takes the form

oz
5 = L) +G@)b(2)S(z) + G(2)b(2)s(x)v (19)
¥s = Ch(=)

It is clear that feedback laws of the form (18) preserve the linearity with respect to the
external reference input v. We also note that the evolution of the closed-loop system
of eqn. (19) is locally governed by a strongly continuous semigroup of bounded linear
operators, because b(z)S(z),b(z)s(z) are bounded, finite dimensional perturbations,
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ensuring that the solution of the system (19) is well-defined. Proposition 1 that follows
allows specifying the order of the input/output response in the closed-loop system.

Proposition 1. (Christofides and Daoutidis, 1996a) Consider the system (13), for
which Assumption 1 holds, subject to the distributed state feedback law (18). Then,
referring to the closed-loop system (19) the characteristic index of 3, with respect to
the external reference input v is equal to o.

The fact that the characteristic index between the output s and the external refer-
ence input v is equal to o suggests requesting the following input/output response
for the closed-loop system:

o~ _

%dd;,jf+“'+%%+ﬂs=v (20)
where 71,72,...,7, are adjustable parameters which can be chosen to guarantee
input/output stability in the closed-loop system. Referring to eqn. (20), note that,
motivated by physical arguments, we request, for each pair (7,v%), i = 1,...,1,
an input/output response of order o with the same transient characteristics (i.e.
the parameters < are chosen to be the same for each pair (7¢,v%)). The following
theorem proved in (Christofides and Daoutidis, 1996a) provides the main result of
this section.

Theorem 2. (Christofides and Daoutidis, 1996a) Consider the system (13) for which
Assumption 1 holds, under the distributed state feedback controller

= [fy(,CLGLZ_lh(a:)b(z)]_1 {v —Ch(z) — Z’y,,CLEh(m)} (21)

Suppose also that: (i) the roots of the equation 1+y s+ +v,5° =0 lie in the open
left-half of the complez plane, and (%) the zero dynamics (16) is locally exponentially
stable. Then, there exists a positive real number § such that if ||zollz < 0, the
controller of eqn. (21): (a) guarantees local exponential stability of the closed-loop
system, and (b) enforces the input/output response of egqn. (20) in the closed-loop
system.

Remark 2. We note that the approach followed for the synthesis of the distributed
state feedback controller of eqn. (21), and the nature of the conditions for exponential
stability of the closed-loop system, are conceptually similar to the ones employed for
the synthesis of inversion-based controllers for nonlinear ODE systems which enforce
a linear input/output response and guarantee exponential stability of the closed-loop
system. This is possible, because for the system (13), the solution is well-defined, the
number of manipulated inputs and controlled outputs is finite, and the manipulated
inputs and the controlled outputs are distributed in space. The reader may refer to
(Christofides and Daoutidis, 1996a) for more details on this issue and comparisons of
this approach with existing approaches for the synthesis of stabilizing controllers for
first-order hyperbolic PDE systems.
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4. Distributed State Feedback Control of Two-Time-Scale
Hyperbolic PDE Systems

The objective of this section is to synthesize distributed state feedback controllers for
systems of two-time-scale hyperbolic PDEs of the form (1) that ensure stability and
enforce reference input in the closed-loop system, as long as ¢ is sufficiently small.
Motivated by the possible instability of the fast dynamics and the linear appearance of
the fast variable n (1), we initially consider a preliminary distributed state feedback
law of the form

a=Fn+i (22)

where 4@ is an auxiliary input, to stabilize the fast dynamics. Substituting the control
law (22) into (1), we obtain:
or

i Lz + L1211+ g1(2)b(2) Fn + g1(z)b(2)a

(23)
0 .
€5y = Lang + Loon + 92(2)b(2)F1 + 92(2)b(2)i
Performing a two-time-scale decomposition to the above system, the fast subsystem
takes the form:
on

oy = Luzt [Laz + g2(2)b(2) Fln + g2(2)b(2)a (24)

which is exponentially stable by appropriate selection of F (Assumption 2). Further-
more, the slow subsystem takes the form

Oz 5 A ”
% = L(z) + G(z)b(z)d (25)
s = Ch(z)

where £(z) = L112 — [L12 + 91(2)b(2) F][Laz + g2(2)b(2) F] 1 Lorz, G(z) = g1 (x) —
[L12+91(2)b(2)F|[Laz2+ g2(2)b(2) F] "1 g2 (z). Referring to the above system, we define
the characteristic index of the output §s; with respect to the input u as &.

Since the slow subsystem (25) is in the form (13), the methodology described
in the previous section can be directly employed to synthesize a distributed state
feedback law of the form

a=38()+ 5z (26)
where S(z) is a smooth nonlinear operator mapping H"™ into R', and 3(z) is an
invertible matrix of smooth functionals, to enforce exponential stability and output
tracking for changes in the reference input in the closed-loop slow subsystem. Under
the control law (26), the closed-loop slow subsystem takes the form

9z _ L(z) + G(2)b(2)S(z) + G(z)b(2)5(x)v
ot (27)
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For the above system, it can be shown that the characteristic index of §, with respect
to v is equal to &. This suggests requesting the following input/output response in
the closed-loop slow subsystem:

d°y, dj

Ys _
il A A TRV Sal S ST y S 28
Vo Mgy s (28)
where 1,72, - ,7s are adjustable parameters.

Theorem 3 provides the formula of the distributed state feedback controller that
guarantees closed-loop stability and enforces output tracking, provided that e is suf-
ficiently small (the proof is given in the Appendix).

Theorem 3. Consider the system of quasi-linear partial differential equations (1), for
which Assumptions 1, 2, and 4 hold. Suppose also that (a) the roots of the equation
14+715+---+7587 =0 lie in the open left-half of the complex plane, and (b) the zero
dynemics of the system (25) is exponentially stable. Then, there exist positive real
numbers (0,€*) such that if max{||zoll2, |ns,ll2} <6 and € € (0,€*], the distributed
state feedback controller

= Fn+ fy;,CLéL%_lh(g:)b(z)] - {v —Ch(z) — Z'YVCLE}L(Q:)} (29)

(a) guarantees local exponential stability of the closed-loop system,

(b) ensures that the output of the closed-loop system satisfies
7 =75(t) +0(e), i=1,...,1 (30)

for all t >0, where §i(t), i =1,...,1, are the solutions of eqn. (28).

Remark 3. Owing to the distributed nature of the controllers (21)—(29), the calcula-
tion of the control action requires algebraic manipulations as well as differentiations
and integrations in space.

Remark 4. Theorem 3 provides an analytical formula of a distributed nonlinear state
feedback controller that enforces an approximate linear input/output response in the
closed-loop two-time-scale hyperbolic PDE system. In this sense, the controller (29)
can be viewed as the counterpart of approximate input/output linearizing control
laws for nonlinear two-time-scale ODE systems (Christofides and Daoutidis, 1996b),
in the case of distributed parameter systems of the form of eqn. (1).

Remark 5. Whenever the fast dynamics of (1) are exponentially stable, there is
no need to use the preliminary feedback (22) to stabilize them, and thus, the con-
troller (29) becomes identical to the controller (21). In this case, Theorem 3 provides
a fundamental robustness result of the controller (21) with respect to stable and
sufficiently fast unmodeled dynamics (e.g. sensor and actuator dynamics, etc.).



Distributed output feedback control of two-time-scale . . . ‘ 723

5. Distributed OQutput Feedback Control of Two-Time-Scale
Hyperbolic PDE Systems

In this section, we synthesize distributed output feedback controllers for systems of the
form (1) that ensure stability and enforce reference input in the closed-loop system, as
long as € is sufficiently small. The requisite controllers will be synthesized employing
combination of the developed distributed state feedback controllers with distributed
state observers. Given the lack of general available results on state estimation of such
systems, we will proceed with the design of well-conditioned distributed nonlinear
state observers which guarantee local exponential convergence of the state estimates
to the actual state values. In particular, the following well-conditioned distributed
state observer will be used to estimate the fast variable n in the fast time scale, in
space and time:

on _ _ _

.52 = LT + Laaf] + g2(B)b(2)T + Pa(Ge — Qapeil) (31)
where 7 denotes the estimate of 7. P3 is an e-independent linear operator designed
on the basis of the linearization of the system (31) so that the eigenvalues of the
operator L2,7 = L2537 — P2Qapsf] lie in the left-half plane (Assumption 3).

On the other hand, the following well-conditioned distributed state observer will
be used to estimate the slow variable z in the slow time-scale, in space and time:

oz
ot

L(z) + G(@)b(2)i + Pr(Gy — Q1p1E) (32)

where Z denotes the estimate of z. P; is an e-independent linear operator, mapping
R! into ™, designed on the basis of the linearization of the system (32) so that
the eigenvalues of the operator £1,(Z) = L(Z) — P1Q1p1Z lie in the left-half plane.
The state observers (31)—(32) consist of a replica of the fast and slow subsystems,
_ respectively, and the term Py(g> — Qop27]), Pi(@i — Qip1E) used to enforce a fast
decay of the discrepancy between the estimated and the actual values of the states of
the system.

Combining the distributed state feedback controller (29) with the state observers
(81)~(32), we derive a distributed output feedback controller that enforces output
tracking and guarantees closed-loop stability, provided that e is sufficiently small.
Theorem 4 below provides the main result of this paper (the proof of the theorem is
given in the Appendix).

Theorem 4. Consider the system of quasi-linear partial differential equations (1), for
which Assumptions 1-4 hold. Suppose also that: (a) the roots of the equation 1+~s+
-+ +758% =0 lie in the open left-half of the complex plane, (b) the zero dynamics of
the system (25) is exponentially stable, and (c¢) (z,0) = x(2,0) and 7(z,0) = n(z,0).
Then, there ezist positive real numbers (0,€*) such that if max{||zoll2,[[nfll2} <6
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and € € (0,€*], the distributed output feedback controller:

[ 5 = £+ 6@we) ety anta)]
{U—Ch Zy,,CL" } 1(G1 — Qi1 T)
O _ fpz+r -
! 5 = Lnz+ 2277 + 92(3 N+ Pa2(q szﬂ/)+g2(w)b() (33)
[’y,,CL L" Yh(z)b(2) { —Ch(z) — Z’y,,CL”h )}

\

o= Fij+ [%CLGL" Lh(Z)b(2 )] {U—Ch Zy,,CL”h }

v=1

(a) guarentees local exponential stability of the closed-loop system,
(b) ensures that the output of the closed-loop system satisfies for all t > 0:

7)) =7t)+0(@), i=1,...,1 (34)
where §i(t), i =1,...,1, are the solutions of (28).
Remark 6. The use of distributed output feedback to stabilize the fast dynam-

ics can be avoided whenever they are exponentially stable, leading to the following
simplification of the controller (33):

( ?a_‘f = £(8) + G@)(z) [reCLeLL ()b(2)]
< X {v —Ch(z) — ;WVCLZh(z)} +P1(q1 — Qip1Z) (35)

4 = [’yUC’LGL‘Z;_lh(a:)b(z)]_1 {v —Ch(z) — Z'y,,CLEh(a:)}

\ v=1

Notice that the above controller is identical to the distributed output feedback con-
troller proposed in (Christofides and Daoutidis, 1996a, Th.4) for hyperbolic PDE
systems of the form (13). Therefore, in the case of two-time-scale systems with sta-
ble fast dynamics, Theorem 4 establishes a robustness property of the controller (35)
{(and thus, of the controller of Theorem 4 in (Christofides and Daoutidis, 1996a)) with
respect to unmodeled dynamics, provided that they are stable and sufficiently fast.

Remark 7. We note that in the case of two-time-scale systems with exponentially
stable fast and slow subsystems, the controller (35) can be further simplified by setting
P1 identically equal to zero. The reason for this simplification is that the exponential
stability of the open-loop slow subsystem guarantees the convergence of the estimated
values of the slow states to the actual ones with transient behavior depending on the
location of the spectrum of the differential operator of the open-loop slow subsystem.
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Remark 8. The nonlinear distributed output feedback (33) is an infinite dimen-
sional one, because the state observers (31), (32) are distributed parameter systems.
Therefore, the on-line implementation of this controller requires to utilize discretiza-
tion techniques such as finite differences, orthogonal collocation, etc., to derive an
approximate finite-dimensional controller which can be implemented in practice. It
is expected that some performance deterioration will occur in this case, depending
on the discretization method used and the number and location of discretization
points. We note that the deterioration of the performance decreases as the number
of discretization points increases, guaranteeing the well-posedness of the approximate
finite-dimensional controller (Balas, 1986).

6. Control of a Fixed-Bed Reactor

In this section, we present an application of the proposed method to a fixed-bed re-
actor where an elementary reaction of the form A — B takes place. This example
was also considered in (Christofides and Daoutidis, 1997) in the context of distributed
robust state feedback control of hyperbolic PDEs with uncertain variables and unmod-
eled fast dynamics (see also (Stangeland and Foss, 1970)). Under standard modeling
assumptions, a dynamic model of the process can be derived from material and energy
balances and has the form:

oT or _ Uy
prPbE = —pfcpf’l)la—z + (—AH)koe E/RTCA + V;(TJ -T)
(36)
€ Erale v P koe Ca

subject to the initial and boundary conditions:

Calz,0) =Ca,(2), T(2,0)=Ts(2)
C(0,t) = Cao, T(0,t) = Tao

In the above model, C4 denotes the concentration of the species A in the fluid
phase, T' denotes the temperature in the bed, € denotes the reactor porosity, ps, cpp
denote the density and heat capacity of the bed, p¢, cpr denote the density and heat
capacity of the fluid phase, v; denotes the velocity of the fluid phase, U, denotes
the heat transfer coefficient, 7; denotes the spatially uniform temperature in the
jacket, V. denotes the volume of the reactor, ko, ¥, AH denote the pre-exponential
factor, the activation energy, and the enthalpy of the reaction, Cag,T4¢ denote the
concentration and temperature of the inlet stream, and Cy,(2),Ts(z) denote the
steady-state profiles for the concentration of the species A and temperature in the
reactor. The values of the process parameters are given in Table 1 below and they
correspond to a stable steady-state for the open-loop system.
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Table 1. Process parameters.

v = 30.0 m hr~!

V., = 1.0 m?

€ = 0.01

L =10 m

E = 20x10* kcal kmol !

ky = 5.0x 1012 hr?

R = 1.987 kecal kmol™! K—1
AH, = 35480.111 kecal kmol !
cpy = 0.0231 keal kg=! K~*

ps = 90.0 kg m~3

cpp = 6.67x107* | kcal kg=! K1

p = 1500.0 kg m—3

U, = 500.0 kcal hr—t K1
Cao = 4.0 kmol m—3
Ta0 = 320.0 K

An important feature of fixed-bed reactors is that the reactant wave propagates
through the bed with a significantly larger speed than the heat wave, because the ex-
change of heat between the fluid and packing slows the thermal wave down. Therefore,
the system (36) possesses an inherent two-time-scale property, i.e., the concentration
dynamics are much faster than the temperature dynamics. Defining € = €/ppcp and
setting £ =t/pycps, =T, n = Cq, the system (36) can be written in the following
singularly perturbed form:

Oz Oz _g/rs. U
i = “Preeruigs + (-AH)koe BlRey + Vl:(Tj - z)
(37)
a - €Z
679?? = i — koe /My

The control problem considered is the one of controlling the temperature of the reactor
by manipulating the jacket temperature. We assume that there is available one control
actuator with distribution function 5(z) = 1 and the manipulated input and the

controlled output are defined as & =T; — Tjs and § = fol.'L' dz.

Performing a two-time-scale decomposition of the system (37), the fast dynamics
of this system are described by

5= Vg, T koe™ P/ Fony (38)
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where T = t/e, and are clearly exponentially stable. The slow subsystem is of the
form

Ox 81’ Uw Uu} _
5}: = —pfcpfvla + “V:(TJ —z)+ WUJ + (—AH)y)
x koe B/REC 40 exp (ko/ exp(—E/Rx)dz/vl> (39)
0

For the above slow subsystem ¢ =1 and the zero dynamics are locally exponentially
stable. The controller (33), with F,P; identically equal to zero and without the
fi-subsystem, was used in the simulations with v,=0.2, for a value of the singular
perturbation € = 0.01. The explicit form of the controller is:

0% 0 U, o Uy _
B = Proefuig Tt —VT(TJ' —I)+ voat (-AHo)

x koe B/REC 40 exp (ko /~ exp(—E/RZz) dz/'ul)
0

] _%{% (/U—'/:n"cdz>—/0.1

x ko exp B/ET Oy exp (ko

+ UV:’(TJ-S - z)) dz}

The method of finite differences, with a choice of 200 equispaced discretization points,
was employed to derive a finite dimensional approximation of the above output feed-
back controller. A simulation run was performed to test the output tracking capabil-
ity of the controller. The process was initially assumed to be at steady-state, and at
t = Ohr a 2% increase on the value of the reference input was considered. Figure 1
shows the profile of the controlled output of the process and the profile of the manip-
ulated input. One can immediately observe that the controller drives the output at
the new steady-state satisfying the requirement lim; o |y — v| = O(€).

3 40
- Pfcpf"’la_j +(-aH) WO

nZ

S|
J

S— —

exp(—E/RZ) dz/vl>

\

7. Conclusions

In this work, we considered systems of quasi-linear two-time-scale hyperbolic PDEs,
for which the manipulated inputs, the controlled and the measured outputs are dis-
tributed in space. For these systems, we synthesized well-conditioned distributed
output feedback controllers that enforce closed-loop stability and output tracking,
provided that the speed ratio of the fast versus the slow dynamical phenomena, of the
two-time-scale system is sufficiently large. These controllers were synthesized through
combination of well-conditioned distributed state feedback controllers with distributed
state observers which include e-independent observer gains. The developed control
method was successfully applied to a fixed-bed reactor.
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Fig. 1. Closed-loop output profile and input profile for reference input tracking.
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Appendices

A. Definitions

Let wi,ws be two elements of H([a, f]; R*), where & is a positive integer. Then, the
inner product and the norm in #H([e, 8]; R*) are defined as follows:

b «
(W1,wz)=/ (@i(2),wa(2))redz,  lwillz = (wi,01)'2 (A1)

where the notation (-,-)g~ denotes the standard inner product in R*.

B. Proof of Theorem 3

Under the controller (29), the closed-loop system takes the form:

o - -
E:tg = L1z + L1an + g1(2)b(2) Fn + g1(2)b(z) [fy,;CLGLE lh(m)b(z)]
x {v — Ch(z) — Z'y,,CLEh(z)}
v=1
(B1)
on F—1 -1
ea = Lo1z + Loan + go(2)b(2) Fn + g2(2)b(2) [A/gCLéLE h(m)b(z)]
X {v — Ch(z) — Z'y,,CL‘éh(:v)}
\ v=1
Performing a two-time-scale decomposition the fast subsystem takes the form:
o _ -1
8—2 = Loz + [Laz + g2(2)b(2) Fln + g2(2)b(2) [’YaCL@LE'lh(m)b(Z)]
X {v — Ch(z) — ny,,CL’éh(a:)} (B2)
v=1

where z is independent of time and thus, it is clearly locally exponentially stable
by an appropriate selection of the operator F (Assumption 3). Moreover, the slow
subsystem takes the form

% = L(z) + G(2)b(z) [?aCLGL‘E“lh(m)b(z)]_l
X {v — Ch(z) — ny,,CL'éh(m)} (B3)
Ys = Ch(:l:)

Using the result of Proposition 4 in (Christofides and Daoutidis, 1996a), it can be
shown that the above system is locally exponentially stable. Moreover, differentiating
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the output of the above system with respect to time up to order & and substituting
the resulting expressions into (20), it is straightforward to show that the input/output
response (20) is enforced in the closed-loop slow subsystem.

Finally, since the closed-loop fast and slow subsystems are locally exponentially
stable, there exists (Theorem 1) a sufficiently small ¢* such that if € € (0,€*], the
closed-loop system (B1) is locally exponentially stable and the closeness of solutions
result (30) holds.

C. Proof of Theorem 4

Under the controller (33), the closed-loop system takes the form

' %f:-' = £(z) + G(@)b(2) [7&CLC,L;~1h(:z-)b(z)]_l
X {v ~Ch(z) — z'y,,CL’éh(i')} +P1(G1 — Qip1 T)
v=1

0 = Lo+ Lo+ EHAFT + (@) [16CLLE BE)b()]

{'U —Ch(z ny,,CL h(Z) } + P (G2 — Qap2)
, - @
5p = Lot Lon + @b FT+ +0 @(:) [16CLaLE h(E)b(z)]

{u —Ch(z Zy,,CL h(z }
or = Laxa+ Lan + (o)) 0 + 2 @H(2) [15CLaL T M)

{v —Ch(Z Z'y,,CL L (T }

\

Performing a two-time-scale decomposition the fast subsystem takes the form

4 af] _ B _ _ B 51, -1
e = LaZ + Looi] + g2 (8)()F7 + 92 (8)6(2) [15CLGLE h(@)b(2)]

or
x {v - Ch(z) — 7,,CL%I7.(§:)} + P3(q2 — Qapai)
v=1
. ., ©
on _ Loz + Laan + go (:c)b(z)]-'ﬁ + g2(z)b(2) [75CLGL%—1 h(:?:)b(z)}

or
{u —Ch(z Ey,,CL” (%) }

R

I
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where z,Z are independent of time. Defining the deviation vector e,(z,t) = 7(2,t) —
n(z,t) and using that the assumption z(z,0) = Z(2,0) implies that z(z,t) = Z(z, )
in the fast time scale 7, the above system can be written in the following form:
( Oe
—87" = [La2 + P2 Qopo]ey
{ o @) (C3
57 = L2107+ (Lo + ()b Fn + 02(w)b() [16CLaLE h(@)b(2)] )
{v - Ch(z ny,,CL" } + g2(z)b(2) Fey,

\

From the detectability Assumption 3, we have that the operator [L£as—P2 Q5 p2les, gen-
erates a locally exponentially stable semi-group, which implies that the en-subsystem
of the system (C3) is locally exponentially stable. On the other hand, the stabi-
lizability Assumption 2 states that the operator [L2s + g2(z)b(2)F]n generates an
exponentially stable semi-group, which implies that the 7-subsystem of the system
(C3) is also locally exponentially stable. Thus, the fast subsystem (C3) consists an
interconnection of two locally exponentially stable subsystems, which implies that
this is also locally exponentially stable.

The closed-loop slow subsystem takes the form

(2 - @)+ Gapa [’Y&CL ~va"~-1h(->b<z)]‘1
X {v —Ch(z zfy,,CL" h(Z) ¢ + Pi(@ — Qip1T)
, B (C4)
"a_:; = L(z) + G(z)b(2) [yaCL-L‘?_lh(f)b(z)]
X {v —Ch(z Z%,CL hz }

\

Using the result of Theorem 4 in (Christofides and Daoutidis, 1996a), it is straight-
forward to show that the above closed-loop slow subsystem is locally exponentially
stable.

Finally, since the closed-loop fast and slow subsystems are locally exponentially
stable, the result of Theorem 1 of this paper can be applied to get the existence of
a sufficiently small €* such that if e € (0,¢*], the closed-loop system (C1) is locally
exponentially stable and the closeness of solutions result (34) holds.
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