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SOURCE IDENTIFICATION IN DISTRIBUTED
PARAMETER SYSTEMS

MiIkHAIL SKLIAR*, W. FRED RAMIREZ**

In this paper, we solve the problem of the pointwise source identification of
the convection-diffusion transport processes. This is done by converting the
identification problem into an optimization problem of finding a spatial location
and the capacity of a point source which results in the best match of model-
predicted measurements to actual observed measurements.

1. Introduction

Identification of the source function in distributed parameter systems (DPS) is an
example of the inverse problem. Though identification of DPS has been an active
area of research for the last three decades (Kubrusly, 1977; Tzafestas, 1982), the
effort was mostly concentrated on parameter identification. A number of proposed
source function identification algorithms are not readily applicable in the case of
complex spatial geometry and boundary conditions. In some cases, proposed methods
are specific to the problems in one or two spatial dimensions. Other methods may
work only with a certain type of measurements. For instance, it is common to limit
permissible measurements to boundary observations. Finally, all available methods
are usually specific to a particular type of partial differential equations.

Silva Nato and Ozigik (1993; 1994) considered the identification of the spatial lo-
cation and dynamics of a heat source in a one-dimensional heat transport problem and
proposed a solution based on the conjugate gradient method. For a one-dimensional
time-varying diffusion equation with a single unknown pointwise heat source and
boundary measurements at both end points, they develop an iterative procedure for
finding spatial location and capacity of the source which minimizes the difference
between actual and model-predicted measurements. '

Ohnaka and Uosaki (1989) proposed an identification method for multiple point-
wise sources of the diffusion equation which uses an integral equation approach to
minimize the sum of squares of relative errors between the model-predicted and ob-
served boundary measurements. The number of unknown point sources is determined
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as a number for which the relative identification error becomes insensitive to the in-
crease in the numbers of identified sources.

A source function identification for a one-dimensional diffusion equation on a
semi-infinite line z > 0, where z is the spatial variable, was considered by Lin and
Ewing (1989). They assumed that an unknown source is in the form f(z)g(t), where
a time-dependent capacity is known and only spatial distribution of the source action
f(z) has to be identified. They further assumed that the boundary value of the
state variable and its first derivative are known. Under some additional conditions,
they prove existence and uniqueness of the solution to this identification problem.
They also proposed the numerical algorithm for determination of f(z) on the closed
interval z € [0, 1].

Newsam and Enting (1988), and Enting and Newsam (1990) considered the prob-
lem of estimating surface sources of trace atmospheric constituents (such as CO,
sources) from surface concentration data. They have used a three-dimensional diffu-
sion equation in spherical coordinates as a model of the transport process. A par-
ticular form of the model equation and chosen boundary conditions allow for the
analytical solution of concentration distribution as a function of model parameters
and strengths of the sources. They used the analytical solution to analyze the influ-
ence of different factors on our ability to invert measurement data to obtain source
estimations. In particular, they examined the effect of measurement errors on the
accuracy of source identification. They considered different types of measurements,
including surface measurements, high altitude measurements and height averaged
measurements. They concluded that the determination of the boundary source ca-
pacities based on the given boundary measurements is a mildly ill-posed problem, in
that the measurement errors and the estimation errors are linearly correlated. They
further showed that the estimation of bulk (non-boundary) sources is a more ill-posed
problem, and that there is a quadratic dependence between measurement and esti-
mation errors. Enting (1993) used a simplified semi-analytical model of atmospheric
transport to obtain error estimates for sources deduced from the spatial distribution
of greenhouse gases. He suggested that there is a trade off between the resolution and
variance in an inversion problem.

In this paper, we propose a single pointwise source identification method for
the distributed parameter systems with complex geometry and arbitrary distribu-
tion of model parameters. The solution is based on the iterative application of the
least-squares source-capacity estimation and gradient search for the source location.
The proposed method is applied to the identification of an unknown source in a
two-dimensional convection-diffusion problem with complex velocity distribution. A
number of numerical experiments are conducted to study the effect of various factors
on the accuracy of the identification results.

2. Source Isolation as an Optimization Problem

In this paper, the source identification problem is approached by converting it into an
optimization problem. This allows us to abstract from the mathematically ill-posed
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nature of the source identification problem and concentrate on the development of the
practical method of finding an unknown source function which minimizes the error
between measurements and model predictions.

Problem statement: Given
(a) the model of the process

8X (¢, 2)

e =N(X,t,2)X(t,2) + Fu(t,2) + Fu(t,z), 2€Q 1)

with the appropriate initial and boundary conditions, where A(-) is the
convection-diffusion operator, z = (z1,22,23) € Q, X(-) is a state function,
F,(-) describes known inputs (sources) to the system and F,(-) is an unknown
source function;

(b) the model of the measurement system which relates the state function X(-) to
the model-predicted time sampled pointwise measurements Z (k);

(c) current process measurements Z(k), k=1,2,...;

(d) the time of an unknown source application .

Find the spatial location z* = (2¥,2%,2%) and the capacity f(t) of an unknown
source function

Fy = f()8(21 — 21)6(22 — 25)0(23 — 23') (2)

such that when F, is used in the model, it minimizes a norm of the errors between
the observed and the model-predicted measurements, i.e.

min [|Z(k) - ZM )| (3)

This problem statement deserves commentary.

(1) This is a single point source identification problem.

In many application areas, source functions of interest can often be adequately charac-
terized as pointwise sources. When the actual source function is spatially distributed,
its identification as an “equivalent” pointwise source can provide useful information:
the location of the “equivalent” point source will usually be within the region affected
by an unknown distributed source; the capacity of the “equivalent” point source is
often a good approximation of the overall capacity of a distributed source.

(2) Perfect process measurements are assumed.

Information about an unknown source is carried exclusively by process measurements.
As will be seen from the numerical experiment, noisy measurements severely limit, our
ability for early and accurate identification of an unknown source.
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(3) Application time of an unknown source is assumed to be known.

The time 7T of an unknown source application has a strong influence on source iden-
tification. If 7 is not known, then it must be estimated as a part of the source
identification. The effect of misidentified 7 on the source identification will be exam-
ined later in the paper.

(4) One step identification.

The source identification is posed as a “one-shot” problem. When new measurements
Z (k) become available, the identification procedure starts anew, and the source iden-
tification is based only on the latest set of measurements. The identification results
from k — 1 step are used only as an initial identification guess. Such formulation
allows us to address the problem of identifying moving source with varying capac-
ity. This approach, however, is sensitive to measurement noise. An alternative is to
identify a source such that the following objective is minimized:

k
min} [ Z2() - 2V () @
" i=0
This is more appropriate for identification of a stationary time-invariant source based
on noisy measurements.

(5) Nonlinear mized-integer optimization.

After the discretization, the model can be written as
z(k+1) = A(k)z(k) + [, (k) + (k) (5)

where the state vector x(k) is an approximation of the state function X (kAt,z),
the matrix A{k) approximates the spatial operator N (X, kAt,z), the input vector
fn(k) is an approximation of F,(kAt,z)! and At is the time discretization step.
The.identifiable location of an unknown source function is now limited to the mesh
_nodes used to approximate the distributed model. Therefore £ can be-written as

fulk)=f(k)-6 (6)

where f(k) describes temporal dynamic of the source and & = {4;| {0,1}} is the
vector describing spatial location of the source. For a single point source, we have

Y0 =1.

The source identification amounts to the estimation of f(k) and the integer
valued vector 4. Since f(k) and d enter the problem nonlinearly, the source identifi-
cation in this formulation is a nonlinear mixed-integer optimization (NLMIO) problem
(Floudas, 1995). .

(6) Global versus local solution.

In this paper, we will consider a local solution to the source identification problem.

1 f.(k) also includes the contribution from the boundary conditions.
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3. Basic Identification Algorithm

After spatial and temporal discretization, the source identification problem is formu-
lated as follows:

fz(xllﬂi)% |2(k +1) — 2™ (k + 1) (7)

Mk +1)= HE+ Dk +1) (8)
subject to

z(k+1)= A(R)z(k) + Fo(k) + f(k)- 0 9)

§={6 |6 ={0,1}, i=T,n}, ia,:l (10)

where (9) is the discrete analog of (1), and (8) is a result of the discretization of the
model of the measurement system.

The methods of the mixed-integer optimization can now be used to find f*(k)
and 6* which minimizes (7). Instead, we develop an optimization method based
on a least-squares solution for the capacity f(k), coupled with a gradient search
algorithm for the location 4. The basic structure of the method consists of the
iterative application of the following two stages:

1. Given a value of 4, find f(k) which minimizes the following objective:

I}'&I)l |z(k +1) = H(k + 1)z(k + 1), S (11)

subject to the dynamic constraints of the model equation (9).

2. Use a gradient improvement to find the next value of the source location 4.

The detailed algorithms for these two steps are considered in what follows.
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4. Least-Squares Estimation of the Source Capacity

Assume that f,(k) = f(k) -0 is an unknown but stationary time-invariant source.
Then

z(k+1) - 2M(k +1)

zk+1)-Hk+Dax(k+1)
z(k+1) - H(k +1)[A(k)z (k) + f,(k) + f - 6]

Il

2(k+1)— H(k+1) [A(k)A(k —1)--- A(0)z(0)
+ AR Ak~ 1) A1) ,(0)

+AR)AGK —1) - AQ) (1) + -
+AR)F (k= 1) + Fo(F)

+ [A(R)A(k = 1)--- A(1) + A(R)A(k — 1) -+ A(2)

+~-+A(k)+I]f-6]

Let

dzk+1)=2k+1)—Hk+ Da,s(k+1) - (12)
where

Tns(k + 1) = A(k)xns (k) + £, (k) (13)
with

Tns(0) = x(0)

The system (13) is the model of the process driven only by known sources, and the
state variable x,s; describes the process evolution in the absence of unknown sources.
With these definitions we obtain that

zk+1)—2M(k+1) = dz(k+1) - H(k +1)[A(K)A(k —1)--- A(1)
+AK)AK-1)---A@2)+ -+ Ak)+ I|f- 6
Suppose that an unknown source function f, is applied at t =7 = m - At, i.e.
fd@z{o fhem (14)
f-6 ifk>m
Then
zk+1)—2M(k+1) = dz(k+1) - H(k+ 1) [A(k)A(k —1)--- A(m +1)
+AR)Ak—1)---A(m+2)+ -
+Ak)+1I)f-6 (15)
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For a given 4, our objective is to find f such that least-squares error between
the actual and the model-predicted measurements is attained, i.e.

z(k+1) = 2M(k + 1)”2 — min
This, in turn, amounts to a least-squares solution of the following linear equation:
2(k+1)—2Mk+1)=0
which, as we have seen, is equivalent to
fg=0z(k+1) (16)
where
g=HE+1)[AK)AK-1) - A(m+1)+ -+ A(k) + I]é (17)
The least-squares solution of (16) gives

62Tk +1)6z(k +1)]"°

f
9%g

(18)

provided that gTg # 0.

Sometimes an unknown source function affects the process through the known
input transition matrix B. The model of the process in this case can be written as

z(k+1) = A(k)xz(k) + f,(k) + fBS (19)
and the corresponding least-squares solution is equal to
. T 1/2
f=[62"(k + 1)dz(k + 1)]

x[6TBT (AW AGE 1)+ AGn+ 1)+ -+ A(k) + 1) HT

-1/2
xH(k+1)(Ak)A(k = 1) A(m + 1) + - + A(k) + I)Ba} (20)
If the system matrix A is time invariant, then obtain the following simplified expres-
sion for f:

1/2
62T (k+1)0z(k+1)

- §TBT(A®™ 4.4 A+ 1) HTH(A®-™ 4 -+ A+I)BS

(21)

where we again assumed that the denominator is not equal to zero. Note that from
a computational point of view, the calculation of f involves only vector-vector and
vector-matrix multiplications and, therefore, requires only O(n?) flops for its imple-
mentation.
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4.1. Identification of Time Varying Capacity
For a time varying capacity (and location) of an unknown source, we obtain that
zk+1) — Hk+Da(k+1)=6z(k +1)
— H(k+1)[f(0)A(R)A(k —1)- - A1) B(0)3
+ fDAK)AKk-1)--- A(2)B(1)6, + - -
£k = D) AR)B(k - 1641 + [(K) B(k)6,] (22)

Assume that an unknown source has been applied at ¢t = 7 = m - At so that

_Jo if k<m
f“(k)_{ Fk)-6p if k>m (23)

and the simplification of equation (22) yields
zk+1) — Hk+Daxk+1)=6z(k+1)
— H(k+1)[f(m)A(k)A(k —1)--- A(m + 1)B(m)d.m
+ fm+1)AK)Ak ~1) - A(m +2)B(m + 1)0my1 + -
+ f(k = 1)A(k)B(k — 1)05_1 + f(k)B(k)dy] (24)

Define the following dynamic system:

(25)

zq(k+1) = A(k)za(k) + f(k)B(k)0r, k=>m
a:d(m) =0

According to the definition, the system (25) is the model of the process with zero
initial conditions driven only by the point source, which was identified by us in an
attempt to match the observed symptoms, created by an unknown source.

Using the definition of x4, eqn. (24) can be written as
z(k+1) — Hk+Da(k+1) =6z(k+1)
— H(k+1)[A(k)za(k) + f(k)B(k)dy) (26)

The capacity f(k) can be found as a least-squares solution to the following
equation:

H(k+1)[A(k)za(k) + f(k)B(k)dy] = dz(k +1) (27)
It is straightforward to obtain that

AZT(k+1)Az(k + 1) 1/

f(k) = 0TB(k)THY (k + 1)H (k + 1) B(k)éy,

(28)
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where
Az(k+1) = 2(k+1) — H(k 4+ 1)[@ns(k + 1) + A(k)za (k)] (29)

and the denominator in (28) is assumed to be non-zero.

We can now formulate the algorithm for computing the least-squares estimate of
the capacity f(k) of an unknown source. Given the process measurements z(k 4 1),
the estimation of the source capacity on the previous time step, f(k — 1), and the
current time step location dy,

1. Find x4(k) by propagating eqn. (25) for the given values f(k —1) and d4_1.
2. Calculate ®ns(k + 1) using the model with only known sources, eqn. (13).

3. Compute Az(k+ 1) according to eqn. (29).

4. Use eqn. (28) to find the next value of the source capacity f(k).

As in the case of time-invariant capacity, this is an O(n?) algorithm.

5. Search for Source Location

Identification of the spatial location of an unknown source amounts to the deter-
mination of a vector §* which minimizes the difference between the observed and
model-predicted measurements. There is a natural relationship between two vectors
0, and J; based on whether they correspond to spatial neighbors or not. This order-
ing can be exploited to develop a simple but effective search algorithm for determining
6.

As an illustration, let us consider the case of a two-dimensional transport problem
with regular mesh, Fig. 1. The current identified location of an unknown source is B
and dp is the corresponding location vector. Point B has four immediate neighbors,
which are associated with vectors d4, d¢, dp and d5.

(n+1,p) (lp C
|
f
D p,B E
-0——=b - - 0o-
(n,p-1) | (n,p+1)
I .
| X L
A
(n-l,p)cl>

Fig. 1. Mesh point B and its neighbors.
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In terms of the components of the measurement vectors, define the following
objective function:
ek 1) = 2ME 4 1))

= 30
J = max PYUESY (30)

If Bis the currently identified location of an unknown source, then let Jp denote the
corresponding value of the objective (30). Figure 2 depicts graphically the values of
1/J for all neighbors of B. Each arrow points in the direction of decreasing J. Figure
2 corresponds to the case when the identification error decreases if the location of an
unknown source is moved from point B to either Cor E. The maximum error decrease
is observed when the sensor location is moved to point C.

L.

L. L

Fig. 2. A relative source identification error in the neighboring points.

The following algorithm can be used to find a new source location which reduces
the identification error. Given the current source location d5 and the associated
identification error,

1. Choose one of the spatial neighbors of B as the location of an unknown source.

The spatial points which lead to closed-loop cycles must be excluded from con-

sideration.

2. For the chosen location, find the least-squares solution for source capacity f(k).
For the new location and capacity of the source, calculate the value of J,
eqn. (30).

3. Repeat Steps 1 and 2 for all neighbors of B which do not lead to closed-loop
cycles.

4. Compare the calculated values of the objective function J. As a next approxi-

mation of an unknown source location, choose a neighboring point which leads
to the maximum reduction in the relative identification error.

5. Return to Step 1 if the identification error is not within allowable limits.

Step 4 in the above algorithm can be replaced by a number of alternative rules
for choosing the next spatial source location. The example of Fig. 2 shows that the
identification error decreases in both the- X and Y directions. Therefore, the next
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source location can be determined by the summation of vectors associated with points
C and E. Following this rule, we will choose the unmarked upper right mesh point of
Fig. 2 as the next source location.

The next location can also be chosen beyond immediate neighbors of B. Let
(z,y,2) be the current source location. In general, we can find the coordinates of the
next location using the following gradient-like iterative scheme:

Tnext = T + Integer[em(.]B — Jc)]
Ynext = Y + Integer [ey(JB — JE)] (31)
Znext = Z+ Integer[ez(JB - Jg)]

where €z, . controls the length of the jump to a new source location.

The relative location of sensors and a source can be taken into account when
selecting the next source location. Let us illustrate one possible search strategy.
Suppose that the current source location leads to the maximum relative identification
error equal to |zo(k + 1) — 2M(k + 1)| /24 (k + 1), where the location of the sensor a
is depicted in Fig. 3. We may choose to search for the next source location along the
line specified by the location of the sensor « and the current location of the source.
We can move the source along this line until the desired reduction in the identification
error is achieved. Once the desired location along the line is determined, it must be
approximated by the nearest mesh point to obtain the next source location.

location

Current
location

Fig. 3. A search algorithm based on relative sensors-source location.
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The same basic idea can also be used with more than one sensor. Figure 3
illustrates how to find the next location using the directional search specified by two
sensors (o and f) associated with the largest relative identification errors.

Note that the proposed algorithm uses a search strategy to minimize the relative
{ norm of the identification error, while the source capacity is found by minimizing
the £, error norm. This choice was motivated by the results of numerical experiments
which showed a better performance of the identification algorithm in the case of
complex velocity distribution in the convection-diffusion process.

6. Examples of Source Identification
6.1. Time Invariant Source

Consider a two-dimensional convection-diffusion air-borne contaminant transport pro-
cess (Skliar, 1996; Skliar and Ramirez, 1996). Figure 4 depicts the air velocity dis-
tribution within the spatial domain. Assume that the contaminant concentration is
measured by twelve boundary gas sensors, the location of which is shown in Fig. 5.
Suppose that the initial contaminant concentration is zero and that at time ¢ =0 a
contaminant is introduced into the cabin with the inlet air stream at a known rate
(Table 1).

Fig. 4. Air velocity distribution.
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Fig. 5. Spatial location of gas sensors.

Table 1. Input data used in simulation.

Parameters:

Diffusivity D7 =23cm?/s
Temperature T=20°C

Density p=1200g/1
Viscosity pw=1834-10"%Pa-s
Kinematic viscosity v =1528-10"5m?/s
Bulk velocity U Fig. 4

Spatial domain:

Geometry Fig. 5

Mesh 62-by-44
Discretization in z direction Az =0.2m
Discretization in y direction Ay =02m

Time step At =1s

Boundary conditions:
Impermeable walls

Known flux at inlet duct
Permeable wall at outlet duct
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This describes a known contamination source. The model-predicted effect of a known
source on the contaminant concentration distribution at ¢ = 640s is depicted in Fig. 6.
Assume that at ¢ = 640s a new and unknown pointwise source of contamination is
applied to the system. The location and capacity of this source is listed in Table 2.

il

i i
\\\“\\\“%!ﬁ'liﬁim\||mn‘“\“\|\=\!\'\\““\“\\&
T ey

‘\“W’,’iil}“;‘
I -
il it

i

LLb

<=

Fig. 6. Model-predicted contaminant concentration 10 min and 40s
after the beginning of the emission.

Table 2. Capacity and location of an unknown source.

Unknown Source ]

Location  Spatial point 43
Capacity 0.02mg/(m? s)

Two different process models are used in this computer experiment. The first
model accounts for both “known” and “unknown” sources. It is used exclusively to
generate process measurements z(k + 1) affected by all sources. Perfect (noise-free)
measurements are assumed to be available. The second model is used as the reflection
of our (incomplete) knowledge about the real process and incorporates no information
about the “unknown” pointwise source. The objective is to identify the capacity and
location of the unknown source based on the (second) model of the process and process

measurements z(k + 1).
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Fig. 7. The search history for an unknown source location.

It is assumed that the identification procedure is triggered after a detection sys-
tem ascertained that the contamination event had occured. Assuming that the detec-
tion system correctly estimated the source application time as 7 = 640s, the unknown
source identification was performed based on the set of sensor measurements taken at

= 650s. Figure 7 shows the search history for the location of an unknown source.
The initial guess for the source location was chosen upstream from the sensor associ-
ated with the largest difference between measured and model-predicted contaminant
concentration. Figure 8 depicts the corresponding source capacity estimation history
as a function of the source location. The correct location and capacity of an unknown
source are identified in 10 iterations.

6.2. Effect of Misidentified Source Application Time

The proposed source identification method requires the precise estimation of time 7
when an unknown source is applied to the process. Let us examine the effect of
misidentified 7 on the identification process. To accomplish this, we adopt the same
contamination scenario as in the previous section, but now we assume that it was
erroneously determined that the contamination event has occurred at 7 = 642s, or
two seconds later than it actually happened.
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Fig. 8. The source capacity estimation history.

The search for the source location is identical to the results depicted in Fig. 7,
and the correct location is identified in 10 iterations. The results, however, are very
different for the capacity estimation; as we can see from Fig. 9, the estimated source
capacity is over four times larger than the actual value.

The importance of the precise estimation of 7 decreases as the influence of an
unknown source tends to a steady state for ¢t > 7. However, when fast and accurate
identification of an unknown source is required, an accurate estimation of T must be
obtained. The location of the source is not sensitive to errors in 7, which suggests the
following modification of the proposed algorithm: for a given estimate of 7, perform
the identification of source location and capacity; for the identified source location,
obtain the least-squares estimates of both f and 7.

6.3. Identification Based on Noisy Measurements

We now consider the effect of measurement noise on the single point source
identification problem. Figure 10 shows the set of measurements from six
different sensors. These measurements (dashed line) were obtained by first
removing the effect of known sources and superimposing the noise-free sig-
nal induced by an unknown source (solid line) and a zero-mean white Gaus-
sian noise with standard deviation ¢ = 1077. When the resulted reading
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is negative, the sensor output is set to zero. Note that even 100s after the time
of an unknown source application, the signal-to-noise ratio for some sensors remains
very low. The ten-second sample of the measurements from ¢t = 659 to t = 669s is
used for source identification.

009 T T T T T T T T T

0.08[

0.07+

o o

(@) (@]

(6, D
T T

o

o

S
T

capacity estimation

true capacity

O 11 1 i 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11

iterations of the search algorithm

Fig. 9. The source capacity estimation history when 7 is misidentified.

Figure 11 depicts the results of identification of the spatial location of an unknown
source. Each location is numbered according to the measurement sample used in
its identification. Figure 12 shows the estimated values of the source capacity. The
maximum relative identification error, eqn. (30), is plotted in Fig. 13. For comparison,
the identification error based on the perfect measurements was 3.37 x 1073,

As expected, the measurement noise has an adverse effect on source identifica-
tion. It leads to misidentification of both the spatial location and the capacity of an
unknown source. The accuracy of the source identification critically depends on the
noise-to-signal ratio; an accurate source identification may be delayed until the effect
of an unknown source substantially exceeds the level of measurement noise.

6.4. Distributed Source Identification

Suppose that an unknown spatially distributed source is applied to the system.
Assume that after spatial discretization, this unknown distributed source can be ap-
proximated as a combination of four clustered pointwise sources listed in Table 3.
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Fig. 10. The output of the sensors induced by an unknown source
and corrupted by measurement noise.
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* — location of an unknown source

T T T T l T T T T
, 659 © B Oggr “pe4
: : 661,
20k - - -
. 666;
. 668!
w . .
= E '
QB i RS L L TP T LR T P EEETEt CETETRETEL TETTRRRRPI PP B
oy .
w .
o .
E :
10 o eeiaiiia it e, .......................................................................... -
o P PP ..................................................................... .
. . i 1 . . : [ i
2 4 6 8 10 12 14 16 18 20
mesh points
Fig. 11. Identified location of an unknown source based on noisy measurements.
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Table 3. Approximation of the distributed source by a
set of multiple pointwise sources.

Location Capacity

1 | Spatial point 43 | 0.02mg/(m?3-s)
2 | Spatial point 44 | 0.02mg/(m3-s)
3 | Spatial point 317 | 0.02mg/(m? s)

(m?-s)

4 | Spatial point 330 | 0.02mg/(m® s

Our objective is to find a single point source which best approximates the symptoms
induced by sources of Table 3. This problem is solved using noise-free measurements
obtained 10s after the application of four point sources. It was also assumed that the
source application time 7 had been correctly estimated. Figure 14 shows the search
history for the location of the sought point source. The identified location of a single
source lies within the spatial area of the distributed source application. The identified
capacity of a single point sourceis f = 0.053 mg/(m?-s) which gives a reasonable idea,
about the total capacity of the unknown distributed source.
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Fig. 13. Relative identification error when noisy measurements are used.
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Fig. 14. Result of the identification of an unknown distributed source.
Stars (*) are used to indicate the location of four point sources
which approximate the distributed source. Circles (o) denote
the search history for the spatial location of a single point source
which best reproduces the symptoms induced by the unknown
distributed source.

7. Conclusions

The proposed method allows for identification of an unknown pointwise source func-
tion with time varying strength and spatial location. A series of carefully designed
numerical experiments demonstrated the ability of the method to precisely identify an
unknown source based on perfect measurement. It was also determined that source
location is relatively insensitive to the (usually unknown) source application time,
suggesting the modification of the method to include simultaneous identification of
source location, capacity and time of application. It was also found that the proposed
method often provides us with useful information about an unknown spatially dis-
tributed source. For identification based on noisy measurements, our results suggest
that there exists a trade-off between an early source identification and the fidelity of
the identification results, and that further research focused on the development of the
conditional source estimation methods is needed.
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