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CONTRIBUTION PLOTS: A MISSING LINK
IN MULTIVARIATE QUALITY CONTROL

PaiGe MILLER*, RoNALD E. SWANSON**
CHARLES E. HECKLER"™

Most multivariate quality control techniques involve plotting and analysis of a
set of surrogate variables, such as T2, scores and residuals. The number of these
surrogate variables can be considerably smaller than the number of original
variables. However, it is often difficult to determine the source of a problem
when the process is identified as being out of control by one of the surrogate
variables. We have called this difficulty the “missing link” in multivariate quality
control. In this article, contributions and contribution plots are introduced as
a simple method to correct this problem and enhance the interpretation of the
multivariate results, exploration of data and identification of special causes.

1. Introduction

One aspect of quality control requires the detection of special causes, or out-of-control
situations, including outliers, level shifts, trends or patterns. Consider a process
that is measured by many variables, sometimes highly correlated with each other.
Multivariate quality control techniques use the entire data set, taking into account
the correlation between the process variables, to detect special causes in the process.
Once a special cause is found, the engineers and operators need to understand the
data in such a way that the actual problem can be diagnosed. If the actual problem
can then be eliminated from the process, improvement of the quality of the process
will occur. This paper presents a new tool for helping diagnose a problem found by
using multivariate statistical methods. Jackson (1991, p.21) identified four goals of -
multivariate quality control:

1. A single answer should be available to the question: “Is the procéss in control?”

2. An overall Type I error should be specified.
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3. The procedure should take into account the relationship among the variables.

4. Procedures should be available to answer the question: “If the process is out of
control, what is the problem?”

Jackson goes on to say: “Condition 4 is much more difficult than the other three,
particularly as the number of variables increases. There usually is no easy answer
to this, although the use of PCA (Principal Components Analysis) may help. The
other three conditions are much more straightforward.” Wierda (1994) echoes the
same sentiment, after reviewing numerous multivariate SPC procedures: “The most
important open question from a practical point of view is how to detect the variables
that caused the out-of-control signal.”

We call Jackson’s fourth goal the missing link. Miller and Swanson (1993) intro-
duced a simple solution called contributions, and a simple plot, called a contribution
plot to address this issue. The contribution plot provides the missing link that lets us
interpret multivariate statistical information in terms of Jackson’s fourth goal. They
are exploratory in nature and help us interpret the special causes in our data by
providing a clear link back to the original variables which might have caused the out-
of-control signal. This paper expands upon the original idea. Since the introduction
of contribution plots, other authors such as MacGregor and Kourti (1995), Hopkins
et al. (1995) and Kourti and MacGregor (1996) have successfully applied contribution
plots. Another method of addressing the issue of identifying the variables that are
out of control was suggested by Hayter and Tsui (1994) — contribution plots will be
compared to the Hayter and Tsui approach later. Also, Fuchs and Benjamini (1994)
introduced a new type of graphical chart to detect the variables that are causing an
observation to be out of control. In addition to specialized software needed to create
the graphics in Fuchs and Benjamini (1994), Kourti and MacGregor (1996) describe
drawbacks to the Fuchs and Benjamini approach.

2. Description of the Application

We shall introduce the idea of contribution plots via an example. Our application
involves the monitoring of a photographic emulsion manufacturing process. In this
process, salt, silver and other chemicals are added to a kettle at the appropriate times
and then are mixed at a certain speed and temperature. Data are regularly collected
on a variety of process variables, including flows, pressures, temperatures, pH, mixer
speeds, etc. The data are available for analysis at the completion of a batch, and
thus some form of statistical process control (SPC) is appropriate to determine if the
process is in-control or out-of-control. If the process is out-of-control, the engineer
needs to know what parts of the process actually had problems, thus motivating our
development of contribution plots. From this information, the search for the actual
physical cause begins, and then the cause can be eliminated from future batches.

In this example, we shall use a history of 230 batches, all made on the same piece
of equipment under the same operating conditions. We have 27 different process
measurements available.
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3. The T? Control Chart

The first investigative tool is the T2 control chart (see e.g. Jackson, 1991). We
note that there are other multivariate charting schemes available, in place of the T2
control chart, such as multivariate CUSUM charts (Crosier, 1988; Woodall and Ncube,
1985), or multivariate EWMA charts (Lowry et al., 1992). These other methods also
suffer from the same drawback as 72, namely that it is not easy to detect which
process variable(s) is the cause of the out-of-control signal. Also of interest here
is a multivariate charting approach based upon regression adjustment of variables
(Hawkins, 1993).

Assuming multivariate normality of the data, the T2 chart satisfies Jackson’s
first three criteria. The formula for 7% for observation i is:
T? = x;S™'x! (1)
where x; is a (row) vector representing the process variable measurements for batch i,
and S is the variance-covariance matrix of the data. (Usually, T? calculations are
done on the centered data, and also the data can be optionally scaled so that each
variable has a variance of 1. Without loss of generality, references in this article to
data x; in both formulas and text will refer to the centered and optionally scaled
data.) In practice, S is based on a set of data where the process was in control and
x; will be some future observation being evaluated. For simplicity, both S and x;
come from the same data.

It is not clear how best to determine which subset of the data represent this
“in-control” operation of the process when 27 variables are involved. One idea is to
do PCA on the entire data, find the outliers, and then use the remaining data for a
multivariate statistical process control scheme. The data shown in this example is
the initial PCA on all batches; this analysis found so many interesing and unexpected
results that it was judged to be very valuable by itself, and so issues concerning
selection of the proper data set or “robustness” of PCA to outliers were deferred until
a later point in time. Devlin et al. (1981) discuss methods of robust PCA estimation.

It is well known that T'? can be computed from the PCA scores (see e.g. Jackson,
1991). We choose to reduce the number of dimensions going into the T2 calculation
by selecting only the first @ PCA dimensions. Thus, 7 for observation 4 is

Ti2 = Z t%d/Ad (2)
d=1

where the PCA scores ¢ in dimension d have variance A4, which is the d-th largest
eigenvalue of S. (See (Jackson, 1991) for details on the computation of the scores t;4.)
There are many methods of choosing the value of a, the number of dimensions, e.g.
see (Jackson, 1991, Section 2.8; Wold, 1978). This choice of a is critical because it
lets us monitor our complete process with fewer variables while being less sensitive to
random (sensor) noise.

PCA has the property that the first dimension explains the most variance of any
linear combination of the variables; the second dimension explains the most variance
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of any linear combination of the variables that is perpendicular to the first dimension;
and so on. Given limited resources, selecting the first a dimensions corresponds to
monitoring the phenomena in our process causing the most variability, while ignoring
some of the smaller sources of variability; this is a natural choice for engineers trying
to improve process performance.

In this example, dimension reduction is plausible. We believe that although we
collect 27 different process measurements, there are not 27 independent phenomena
going on. The PCA dimensions are a representation of the process variation in a
smaller dimensional space, taking into account the correlation between the process
variables.

It should be noted that Wise et al. (1990) have shown that manufacturing pro-
cess changes that result in shifts in the dynamics that are driving the process can be
detected via multivariate quality control. Wise et al. (1990) have specifically shown
that an arbitrary dynamic linear time invariant state-space model can always be
transformed so that the states are directly related to the PCA scores. In addition,
they emphasized that multivariate quality control is most effective when the pro-
cess has significantly more measurements than states (a situation that occurs in our
application).

The T? control chart is shown in Fig. 1, based upon 10 PCA dimensions, along
with the 95% control limit. Although we suspect that our data is not multivari-
ate normally distributed, these limits are displayed anyway for a “rough” guideline.
From this chart, we can see numerous batches which were out-of-control, along with
stretches where the process was in-control (e.g. approximately batches 110-140). The
engineer, upon seeing a particular batch is out-of-control, needs to know what process
variables caused T2 to indicate this out-of-control situation.
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Fig. 1. T? control chart based upon 10 dimensions, with 95% control Limit.
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Let us examine further batch 208. We can see clearly that the 7'? value is
above the 95% control limit. Examination of the scores t;; would indicate that
dimensions 1 and 2 are where the problem might be found. For engineers, the notion
that score 1 might be the cause is not actionable: knowing that score 1 is out-of-control
is not sufficient information to begin an investigation of the possible physical cause of
the problem, unless the dimension has a substantive interpretation (a condition that
cannot be guaranteed). More information is needed, relating the scores to the original
variables that contribute to the calculation of the scores. Thus we introduce the
concept of contribution to scores, which forms the (previously missing) link between
an out-of-control signal on a multivariate chart and the original variables that caused
the out-of-control signal.

We can write the scores as the weighted sum of the data. The loadings for each
dimension are the weights. Thus

J
tig = Ziﬂijpjd (3)
j=1

where pjq is the loading for variable j in dimension d, and there are k process
variables used in the calculations. Thus we can decompose t;y_into k terms z;;p;q
for j =1,...,k These k terms are the contributions to the score t;4. The contri-
bution plot is a bar chart of these k& contributions, scaled as indicated below. The
contributions for this batch in dimension 1 and the loadings in dimension 1 are shown
in Fig. 2.
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Fig. 2. Contributions to batch 208 and loadings in dimension 1.

Conceptually, contributions are different than loadings. Loadings represent vari-
ability across the entire data set. Contributions represent the particular process
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variables that were unusual for a given batch. Our goal is not to interpret the load-
ings; instead, we use contributions to help us interpret events that are identified as
special causes by querying the underlying data.

A practical difference between contributions and loadings occurs when some of
the process variables have a value close to zero, even though those same variables may
have large loadings. This is illustrated in Fig. 2. The loadings suggest that variables 3,
5, 19 and 25 are important—these variables related to silver concentration difference
from setpoint during the start of the batch (3), difference in silver concentration
from the start to the end of phase 1 of the batch (5), silver concentration standard
deviation during phase 2 of the batch (19) and total amount of salt delivered (25).
The contributions tell a different story, with variables 12, 13, 16 and 17 having the
biggest contributions. All four of these variables refer to problems with silver or salt
pressures (12 and 13 relating to silver pressure and 16 and 17 relating to salt pressure).
Thus interpreting the loadings would potentially detect a different process problem
for this batch than actually occurred, which was a pressure problem in both the salt
and silver delivery systems. Investigation found this problem to be caused by the
installation of a different type of valve.

We point out that control charts confirm that variables 12, 13, 16 and 17 are
indeed out-of-control in this batch, while control charts for the variables with the four
biggest loadings do not indicate an out-of-control condition. We recommend the use
of univariate control charts as a confirmatory practice following a diagnosis by use
of contribution charts. Although this is not necessary (and sometimes ineffective), it
seems to be an important psychological reinforcement to engineers and operators who
might be uncomfortable with multivariate statistical calculations.

We note that there is no definition of what constitutes a big contribution. This
has been left up to the judgment of the observer, just as in past efforts to interpret
the loadings, the selection of large loadings was often subjective. Research needs to
be done to quantify which contributions are significantly different from zero. Since
we have already identified the batch as being out-of-control, the purpose of the con-
tribution plots is to suggest to the engineer where to begin the investigation. In the
vast majority of the cases, information found via contribution plots has turned out
to be practically significant, in spite of the absence of formal statistical tests.

4. Residual Contributions

Recall that our definition of T2 does not use all possible dimensions. Thus we have
some loss of information for each batch, which can be quantified into a residual mea-
sure ; for batch 7, defined as

Qi = (xi — %) (x; — %)’ (4)
where X; is the (row) vector of predicted values of the (centered and scaled) data for
batch 7 based upon @ Principal Component dimensions.

A large @) value can be interpreted that the observation does not follow the
covariance structure estimated by S. This can happen when either a sensor fails, or
the process shifts resulting in a new covariance structure for the process.
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Sensor problems can be serious enough to warrant immediate attention if the
number reported by the sensor is used for some type of feedback or feedforward
control. If the sensor problems occur or the process shifts, () will increase to reflect
this problem. When this is the case, the engineer should attempt to eliminate the
new process phenomena and return the process to its operating state observed in the
training set. If this is not possible or desirable, and the new process phenomena will
continue, then a new S matrix for computation of T2 is needed.

But again the question arises—just like it did for T?—if @ is out-of-control,
which process variables caused it to be out? Again, we can compute contribution
plots for Q. There are k elements in x; — X;, and the squares of these % wvalues
are plotted as bars in a contribution plot for (). Examples of a @ control chart and
contributions for an out-of-control batch are shown in Figs. 3 and 4, respectively. For
batch 101, which has the largest @ value, the process variables which are unusual
and which contribute the most to the large () are variables 22 (standard deviation
of salt flow during phase 2) and 25 (total amount of salt delivered), and there may
be some secondary contribution from variable 26 (final silver concentration average).
Note that here there are no indications that anything was amiss during phase 1 of
the batch and that the biggest problems came from the improper behavior of the salt
delivery system. The engineering investigation discovered a sensor problem (typical
for large @ values) affecting the feedback control.

5. Comparisons with Other Common Approaches

Before continuing with the example, we discuss some of the potential advantages of
using contribution charts, compared to other methods. Specifically, why do we not
simply perform the investigation using 27 control charts of the process variables?
What is gained by the multivariate approach? We present several advantages of using
multivariate statistics with contribution plots:

1. Multivariate statistics can detect multivariate outliers, while control charts can-
not. Specifically, T? and/or @ can flag points that would not be detected by
3s limits on control charts. In this data there were two such batches, although
in any given data set multivariate outliers may be more or less frequent.

2. Univariate control charts of many variables give misleading information (i.e. false
signals), unless the limits for each are appropriately widened. This is impractical
when there are a great many variables. Multivariate methods avoid this difficulty
by controlling the type I error at acceptable levels in a straightforward manner.
For example, suppose a process had ten variables that were approximately mu-
tually independent (possibly included in a larger set of correlated variables) that
were all in control with 2s control limits. The probability that any of these 10
variables is within its £2s limits is approximately 0.95. The probability that all
are within the limits is .95' ~ 0.60 (assuming independence of all 10 variables).
Thus there is a 40% chance that at least one variable will exceed its 42 s limits,
when, in truth, all variables are in control.



782 P. Miller, R.E. Swanson and C.E. Heckler

60 T T T T

50F ]

[\
o
T

1

0 50

Batch

Fig. 3. @Q (residual) control chart with 95% control limit.

Contribution to @
_ o = m e
S [@) co (o] [\ BN (@)% o]
T T T T T T T
]
1 1 1 1 1 A 1

[\o]
T

Oﬂﬂmmﬂmmﬂ = 1

0 5 10 15 20 25 30
Batch

Fig. 4. Contributions to  for batch 101.

3. Control charts focus on one variable across all batches. Contribution plots focus
on all variables for one batch. Thus interpreting what problems exist in the data
for a batch is easily done from contribution plots, but not easily done from control
charts.

4. The use of multivariate statistics with contribution plots allows all of the variables
collected to be used in an investigation. It allows the engineer to resist the
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urge to keep the number of variables down to a manageable number (in our
experience manageable means 5-10 variables). This is important for two reasons.
First, variables are often left out of an analysis due to engineering judgment that
they are not as important as other variables; however, if the process should
unexpectedly change, it may become an important variable (and will usually be
indicated by a large value of @). We have seen several examples of this; for
example, a pump had behaved well for a long period of time so there was very
little variability in the flow rates based upon this pump. Removing the flow rates
for this pump from the analysis would have caused us to miss the problems that
occurred when the pump began to fail. A second reason one would not want to
remove variables from the analysis is that often the collection of variables found
via contribution plots may tell the story of the problem better than if we had used
a subset of the variables and therefore found only a subset of the out-of-control
variables. (Of course, one would not want to include in the data every possible
variable; a method developed by Bopp and Grant (1989) provides guidance for
which variables belong in the data set.)

6. SPC Using Scores

Up to now, we have used trend plots of 7% and @ to identify out-of-control batches,
followed by the use of contribution plots for cause identification. Plots of the Principal
Components scores are also an effective tool for identifying special causes.

Scores are often plotted as a scatterplot of two dimensions. This provides a “two-
dimensional window” that lets us observe the structure of our 27-dimensional data. In
this scatterplot, we often see clusters or other features. Problems that are similar in
the data will usually cluster together, regardless of their relationship in time sequence.
This is another major advantage of the multivariate approach over standard control
charting techniques, which display data in time sequence only.

For example, consider the group of five batches in a cluster shown in the scatter-
plot of the scores of dimension 1 and 3 in Fig. 5. These five batches are non-sequential
in time sequence; they are batches 31, 142, 147, 220 and 221. We would like to know
what process variable(s) caused these five batches to differ from the normal process
operating conditions, which is represented by the cluster of batches at the origin. So
far we have discussed contributions to the score of a single batch. We extend this
idea now to contributions for multiple batches.

When we compute the contributions, we can replace z;; with a suitably chosen
average, or other linear combination of the data. In this case, we would use the
average value 7 ;, where the averaging is over the batches of interest. This in effect
compares the average value of the batches of interest to the mean of all the process
variables, which is zero for each (mean centered) process variable.

The average contribution to the scores in dimensions 1 and 3 for the five batches
is shown in Fig. 6, and a time sequence plot of variable 13 is shown in Fig. 7, with
the batches of interest indicated with asterisks. Variables 12 and 13 (both relating to
silver pressure) were the major contributors in dimension 1, while variables 4 (average
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silver concentration during phase 1) and 6 (valve timing mismatch) also show up
with large contributions in dimension 3. Unlike the problem with batch 208 discussed
earlier, there is no indication that there was any problem in the salt delivery system.
An engineering investigation discovered a “plug” in the silver delivery system, which
caused pressures to back up, the incorrect amount of silver was delivered on time and
the resulting chemical reaction did not take place properly. Each of the five batches
had to be thrown out. By changing procedures, the likelihood of this happening again
was minimized, thereby increasing the quality of the process and reducing waste.
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Fig. 7. Time sequence plot of process variable 13 with the 5 batches
in the cluster indicated by asterisks.

We contend that without this scatterplot, it would have been extremely difficult,
if not impossible, for an operator or engineer to recognize that the same pattern of
problem variables occurred in these batches widely separated in time. Looking for non-
sequential patterns in 27 different control charts is an eztremely difficult perceptual
task. With the scatterplot, the similarity of these batches is immediately obvious.
With the contribution plot, the variables that are causing this out-of-control situation
are easily detected.

The fact that there were five similar batches with this defect made the search for
a solution more urgent, and allowed more resources to be directed at the problem.
Had the engineers only known about the last batch (or in this case batches 220
and 221, which were sequential) the perceived magnitude of the problem, and hence
the availability of the resources to solve the problem, would not have been so great.

The scores can be plotted in time sequence, with control chart limits if desired,
to detect additional special causes in the data. Such a plot (without control chart
limits) is shown in Fig. 8. Shewhart control chart rules for detection of special causes
may be applied to this chart. Univariate EWMA or CUSUM techniques may be used
on the scores as well to detect special causes. One such special cause that warrants
further investigation is the level shift that occurs in score 3 at batch 74.

Score plots are very useful for detecting shifts and drifts in the process, while
T? and @ are usually less useful for detecting shifts and drifts. (Note that for this
example, prior to batch 74 the scores were running at approximately —2 and after
the change they were at approximately +2, so 7% would not show this process shift
as being out-of-control.) As before, knowing that score 3 has shifted is not enough
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Fig. 8. Time sequence plot of score 3, with dotted line between batches 73 and 74.

information for the engineer to begin diagnosing the problem. Thus we need to tie the
change in score 3 at batch 74 back to the original process variables using contributions.

In this situation, we want to compare the process before batch 74 to the process
after batch 74, and so we would use the average z;; before the shift minus the average
x;; after the shift. We may decide to choose 10 batches prior to the shift and 10
batches after the shift to compute the contributions. The number 10 is entirely based
upon the judgment of the engineer and knowledge of the process; other sample sizes
may be appropriate in other situations. In this case, the linear combination of the
data has weights of 4-0.1 for batches 64 through 73, —0.1 for batches 74 through 83
and O elsewhere. The contributions are the % values of

73 83
(Zmij—inj)pjg/lo, jzl,k‘
i=64 =74
and are shown in Fig. 9, in which it is clear that variables 10, 18 and 27 are contribut-
ing to the shift. A time sequence plot of variable 18 is shown in Fig. 10, confirming
that it did indeed shift at batch 74. All three of the variables with the largest contri-
butions related to the temperature control in the batch, and in fact the engineering
investigation did turn up problems in this area which took a while to solve. Note
that in Fig. 10, the process variable returns to its state before batch 74 somewhere
around batch 105. Also around batch 105, the scores in dimension 3 do not return to
their level before batch 74, indicating that other process phenomena are affecting the
scores.

Sometimes, a drift upwards or downwards will be seen in the time sequence plot
of the scores. In that situation, a linear combination of the data that estimates a
slope will be useful for determining which process variables were drifting, causing the
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score to drift. Other linear combinations of the data can be used when appropriate.
For example, if we saw n batches in a row drifting upwards or downwards, we could
use the first order orthogonal polynomial for n data points as the weights for the
linear combination of the observations.
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7. Scaling of Contribution Plots

We have used two different scaling methods for plotting the contributions to the
scores. The idea is to make the variables with the biggest contributions stand out
visually. Both methods have been found to be useful, and both have been found to
have certain drawbacks. The two methods either “zoom in” or “zoom out” on the plot,
but leave the pattern of bar heights unchanged. The plots in this article use method
1 below. @ contribution plots are arbitrarily scaled.

Method 1—Maximum Contribution Scaling. For dimension d, we plot
T;jpja/ maxy; |zijpje| for j = 1,...,k. In this way, we compare the contributions
for batch ¢ to the maximum, in absolute value, of the contributions for all of the
batches. If the contribution for batch ¢ is %1, then this represents the worst devi-
ation from the mean of all of the batches over all variables. The drawback to this
method is that a batch which is a problem but not the biggest problem in the data
set may appear to have only “small” bars. Another problem is that all dimensions
will have the same scaling; we know that all dimensions are not equally important
and the common scaling could be misleading.

Method 2—Within-Batch Scaling. For dimension d, we plot zi;jpjq/ Zj |%3;pjal
for  =1,...,k. The biggest bars in this method are truly the ones which contribute
most to the score for this particular batch and the height of the bar is roughly the
proportion of the variable’s contribution (it would be exactly the proportion if all of
the values z;;p;jq had the same sign). However, the drawback to this approach is that
a batch which really is just random noise on all variables will still show “big” bars.

8. Other Uses of Contributions

Although this article deals with Principal Components Analysis, contributions can be
used with other dimension reduction techniques. Two that come to mind are Factor
Analysis (FA) and Partial Least Squares (PLS). FA has been used for many years,
mostly in the social sciences, while PLS is much newer and is slowly gaining attention.
PLS tends to produce scores that contain more information about process variables
that affect one or more response variables, such as quality characteristics. We refer
the reader to Kresta et al. (1991) and Piovoso et al. (1992) for examples of using
PLS for statistical process control. In addition, we believe that contribution plots
might be helpful in any exploratory analysis of a multivariate data set, regardless of
the application. Thus we can envision their use in analyzing data from marketing,
econometrics, chemometrics, physical sciences, etc.

9. Comparison to Hayter and Tsui

Hayter and Tsui (1994) address the same issue as we do. They suggest a technique for
identifying variables that are unusual once a multivariate statistic has indicated an out
of control situation. There are two drawbacks to utilizing their method: it requires
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a simulation, and it misses situations where there are subtle but critical shifts in the
correlation structure of the variables. We pick these shifts up by signaling an out of
control observation via the @ statistic, and then proceed in making a contribution
plot for ) identifying the out-of-control variables in the out of control observation.
We contend that out of control observations triggered by @ are just as important,
and maybe more so, than out of control observations triggered on T2. For example,
when a pump begins to fail its output begins to change its correlation relative to its
input. This is picked up very quickly by Q.

It is simple to illustrate the above point with the Linnerud Health Club Data
given in Jackson (1991, p.267). If one does a two-dimensional PCA analysis on the
twenty autoscaled weight, pulse, and waist measurements, one can generate the Q
Plot shown in Fig. 11. Observation #9 (i.e. the 176 pounder with the 31 inch waist)
is clearly indicated as being “out of control”. A variable Contribution Plot, Fig. 12,
clearly shows that weight and waist are unusual. Autoscaled observation histories of
these variables clearly show the reason for this out of control signal. The weight and
the waist of this health club member move in opposite directions to what would have
been expected. The maximum standardized value of the variables for this observation
are all less than 2.0 in magnitude. This observation is clearly unusual and would not
have been triggered with the Hayter and Tsui approach with a 0.05 error rate. In fact,
the critical value for a 0.05 error rate in the Hayter and Tsui approach is about 2.3.
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Fig. 11. @ Plot for Linnerud Health Club Data.

10. Summary and Recommendations

We have introduced a new statistic and plot to provide the missing link between mul-
tivariate out-of-control signals and the original variables which cause the multivariate
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Fig. 13. Auto-scaled observation histories of Linnerud Health Club Data.

statistic to go out-of-control. We believe that this overcomes one of the primary
difficulties in using multivariate statistics for multivariate quality control applications.
Indeed, our experience is that operators and engineers can interpret and make use
of the information contained in contribution plots and in the 72,Q and score plots,
even if they cannot completely explain or understand the method of calculation.
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The use of multivariate statistics with contribution charts has numerous advan-
tages over ordinary Shewhart or other univariate charting procedures. Some of these
advantages are: reduction of the number of charts needed to monitor the process;
ability to handle correlated variables and detect multivariate outliers; charts which
show all variables for the batch of interest; and grouping of similar problems together
even if they are non-sequential. In addition, the contribution plot idea detects and
diagnoses more problems than the Hayter and Tsui approach or the Fuchs and Ben-
jamini approach. The contribution method also requires only standard PCA software
and standard graphics capabilities; no simulations or new types of graphics need to
be programmed.

There is a need for research regarding type I error rates for non-normally dis-
tributed data. Also, methods need to be developed to detect what constitutes a
significant bar on the contribution plots.

Although the use of contribution plots could potentially lead to a lot of plots
being generated, we believe that the engineer should use the plots as a means of navi-
gating through the data to the pieces of information that will guide his investigation.
Graphical methods of presentation are essential if process experts are to be effectively
involved. When implemented in a highly interactive graphical computing environ-
ment, our methods have proven to be a catalyst for linking engineers with their data,
solving problems and increasing process knowledge.
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