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NONLINEAR BLACK-BOX IDENTIFICATION
OF DISTILLATION COLUMN MODELS —
DESIGN VARIABLE SELECTION
FOR MODEL PERFORMANCE ENHANCEMENT

WEI-MING LING*, DANIEL E. RIVERA*

Conventional linear system identification techniques fail to capture the strong
nonlinearity characteristic of distillation processes. On the other hand, general
theories to guide selection of design variables in nonlinear system identification
methods, such as the model structure selection, are lacking. In this paper, using
the results of a binary distillation column simulation as a basis, problems re-
lating to the proper selection of model structure and input perturbation design
for nonlinear system identification are investigated systematically. Three com-
monly used model structures including the second-order Volterra model, block-
structured models and the NARX model are considered. Identification results
using a control-relevant technique are also presented where the goodness-of-fit
is naturally represented: by closed-loop performance requirements.

1. Introduction

Dynamics of distillation columns are often characterized by strong nonlinearity, strong
interaction and ill-conditioning. These characteristics make it difficult for conven-
tional linear system identification techniques to deliver satisfactory models (Chien
and Ogunnaike, 1992). Most of the recent studies on distillation system identifica-
tion have focused on the interaction and ill-conditioning issues (see e.g. Gaikwad and
Rivera, 1997; Jacobsen, 1994). The nonlinearity problem is usually avoided using
some ad hoc methods. For example, the steady-state gain of a high-purity distillation
column system changes significantly as the operation point changes. As a result of this
strong steady-state nonlinearity, a model estimated from linear identification methods
may display significant variation even with a small change in the input perturbation
design (Chien and Ogunnaike, 1992). To avoid this problem, a common practice is to
fit a linear model to the high frequency part of plant response which is less vulnera-
ble to the steady-state process nonlinearity. Otherwise, the input perturbation used
in the identification procedure must be restricted to a very limited operation range
which may pose some implementation difficulty in practice.
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System identification is the process of estimating system models from in-
put/output measurements. The effectiveness of an estimated model is influenced
by several different factors including model structure selection, input perturbation
signal design, choice of weighting functions, etc. These factors are often referred as
design variables in an identification procedure. The question of how to select these
design variables is of fundamental importance in practice. In this paper, we consider
to use three most commonly used model structures to describe distillation column
dynamics. These are the second order Volterra model, block-structured models and
the NARX (Nonlinear AutoRegressive with eXogenous) model. Using the model pre-
dicted steady-state responses and step responses of different amplitude as a criterion
of model predictive ability, advantages and limitations using these model structures
for distillation column system identification are evaluated. Influence .of the input
perturbation on the final model performance is also studied in the similar fashion.

A mathematical model, no matter how complicated it is, is always a simplified
image of a real-life system. Only a portion of the system characteristics can be
captured in a model. The issue becomes more evident for nonlinear systems because
of the richness of nonlinear world. In this context, it is desired that intended model
applications are directly accounted in identification procedures. Hence if the identified
model is used for control design, a control-oriented or control-relevant method for
identification is warranted. The method can be regarded as a weighted prediction
error method where the weighting function is determined by the control requirement,
such as the desired closed-loop speed of response. In this setting, the goodness-of-fit
is naturally influenced by closed-loop performance requirements.

The paper is organized as follows. In Section 2, the distillation column model
considered in this study (based on an existing pilot-scale column) is described. Sec-
tion 3 discusses identification results using a second-order Volterra model. Limitations
of a second-order Volterra model in describing the column dynamics are discussed.
Identification results using block-structured Hammerstein and the Wiener models are
presented and compared in Section 4. Some inherent limitations of block-structured
models are explained. Influence of the input perturbation design on the final model
performance is also discussed. Section 5 presents identification results using a NARX
model. Control-relevant identification results are given in Section 6. Finally, Section
7 provides a brief summary and some discussion.

2. Distillation Column Considered in the Study

The distillation column considered in this study is a pilot binary column. It is built of
high temperature Pyrex glass, 3 inches in diameter, with 26 sieve trays (without weir),
a reboiler and a total condenser. The feed tray is located on the sixteenth tray with
the reboiler counted as the first tray. A refractometer mounted in the distillate stream
enables on-line top product composition measurement. Thermocouples located on
every other trays provide the tray temperature profile measurement. Four control
loops were implemented to regulate the process operation. Two liquid level control
loops control the reflux flow drum and the column bottom liquid levels. A composition
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control loop can be used to control the distillate composition by regulating the reflux
flow rate. The reboiler steam flow rate is regulated via a steam pressure control loop.
The column is equipped with the Honeywell TDC3000! distributed control system
on which all the measurement and control loops are implemented. Hence the column
provides an ideal testbed for process identification and control studies. Table 1 shows
the column normal operation conditions.

Table 1. Normal operation conditions of the column.

Mixture Methanol/Isopropanol
Feed flow rate (mol/min) 3.0
Feed temperature (K) 303.15

Feed composition (mol % ) Methanol 0.42/Isopropanol 0.58
Reflux flow rate (mol/min) 3.3

Reflux flow temperature (K) || 333.15

Reboiler heat duty (J/min) 0.1850e+6

Column top pressure (atm) 1

A rigorous model? for the column was developed based on the tray mass and
energy balance, phase equilibrium thermodynamics and tray hydraulics (Ling, 1993).
In the model, Murphree vapor-phase efficiency estimated from experimental data on
the real pilot column was used to correct equilibrium phase compositions. Compo-
nent phase equilibrium coefficients and the material flow enthalpy were estimated
using the RKS (Redlich-Kwong-Soave) equation of state (Soave, 1972). To verify
model accuracy, several step and pulse perturbations with amplitude up to £15%
of the normal operation date were applied to the reflux flow rate and corresponding
distillate composition and tray temperature responses were measured from both the
real pilot column and the model simulation. Comparison of the experimental and the
simulation results showed that a prediction error less than 5% was obtained. To aid
in understanding the nonlinear characters of this simulated column, column responses
to different amplitude step inputs are given in Fig. 1.

We shall use this simulated column to generate the input/output data required
in the following identification studies. Only the single input, single output problem
will be considered with the reflux flow rate as the input variable and the top distillate
composition as the output variable. The noise/disturbance effect is intentionally
excluded, i.e., no artificial noise will be added to the input/output data collected.

1 TDC3000 is a registered trademark of Honeywell Inc.
2 FORTRAN program for the model is available from the authors upon request.
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Fig. 1. Distillation column step responses to various input magnitudes.

3. Identification Using a Second-Order Volterra Model

A large class of nonlinear time invariant systems can be represented by Volterra series
models (Rugh, 1981; Schetzen, 1980):

; j=1

x>
n=1 i1=1 in =in_1

In practice, the sum must be truncated to some finite upper limit and the model is
usually restricted to the second or third order due to the number of model parameters
involved. In this study, we shall consider the second order Volterra model of the
following form:

M M M

y(n) =Y aliuln— ) + 3. b, uln - uln - ) (2)

=1 1=1 Jj=t

It is well known that when the third-order moment of the input sequence u is
identically zero, i.e.,

Tuuu (iaj’ k) = E[u(n - z)u(n - j)u(n - k)jl =0 Vi,j’ k (3)



Nonlinear black-box identification of distillation column models ... 797

where E denotes the expectation operation, Volterra kernels in (2) can be estimated
as

M
ryu(k) = Z a(i)ryu(k — 1) 4)
i=1
M M
"'yuu(lam) = ZZb(i,j)’l‘uuuy(i,j,l,m) (5)
=1 j=1

where r represents correlation functions of corresponding sequences. In (4) and (5),
estimation of the first- and second-order kernels are decoupled, i.e., only the first-order
kernel a(i) is involved in (4) and only the second-order kernel b(i,j) is involved in
(5). Equation (4) is exactly the same as the correlation analysis estimator for a linear
system (Ljung, 1987).

Many commonly used signals such as Gaussian white noise, a sinusoid wave
or any symmetrically distributed sequence satisfy the condition in (3). Usually, u
is designed to have white noise-like correlation functions such that the estimation
problem for each kernel can be further decoupled. For a zero-mean white noise input,
the kernel estimation problem in (4) and (5) gives the following simple closed-form
solution (Pearson et al., 1992):

. Tyu(i)
a(z) = %—' (6)
[(;yi(;){f)ﬂ ii=y
b(i,j) = 7 (7)
Fyuu(6,7) if i
(20%)
where ¢? is the variance of the input sequence and & its kurtosis. The accuracy of

the kernel estimates can be improved by using white noise input sequences of different
probabilic distributions for estimation of different kernel parameters (Pearson et al.,
1992). But a trade-off is that more input sequences require a longer experimental
time in practice. In this study, we use the following two-input-sequence approach to
estimate the Volterra kernels:

1. Excite the plant with a low amplitude pseudo random ternary sequence (PRTS)
and estimate the first-order kernel using (7) from the corresponding measure-
ments.

2. Excite the plant with a large power Gaussian white noise sequence and estimate
the second order kernel from the corresponding measurements. The power of
the Gaussian white noise input is desired to be large but not large enough to
excite the plant behavior higher than the third-order.

For a random input, condition (3) is satisfied only if the input sequence is suf-
ficiently long. Using periodic pseudo random input sequences such as the PRTS has
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the advantage that their correlation functions can be obtained to their full accuracy
by making summation over only one period, i.e.,

N

Fualioi ) = Jim > uln~du(n - fuln -~ k)
n=—N
1 P
= = Z u(n —i)u(n — Hu(n — k) (8)
P
n=0 )

where P is the periodic length of the. pseudo random sequence. The relation in
(8) also applies to all the cross- and the auto-correlation functions involved in (4)
and (5). But a pseudo-random sequence has the white noise-like even-order auto-
correlation functions only up to the second order and its fourth-order auto-correlation
function involves some deeper issues (Barker and Pradisthayon, 1970). To simplify
the problem, a simple Gaussian white noise sequence is considered here for the second-
order kernel estimation.

The PRTS input with an amplitude in the range [—0.15,0.15], which corresponds
to about 5% of the steady state reflux flow rate, is generated using a 5-stage shift
register with a switching time 3 minutes (Godfrey, 1993). One cycle of input/output
data are collected at a sampling frequency of 1/180 Hz, but the data collection process
is started from the second cycle to avoid the initial state effect. The Gaussian white
noise sequence with a variance 0.015 is generated with the same switching time and
1000 data are collected at the same sampling frequency among which the first 700
data are used for kernel estimation and the last 300 data will be used as the cross
validation data set.

To estimate the Volterra kernels, model parameter M in (2) must be specified.
Tests using step inputs indicate that the plant settling time is less than 90 minutes
in the interested operation range. In this context, M should be chosen as 30. Since
the number of model parameters involved with the second-order kernel increases sig-
nificantly as M increases, instead of rigidly adhering to the model structure in (2),
we consider to use different M for the two kernels. Actually, we found that by fixing
M = 30 for the first kernel, the model prediction error based on the cross validation
data set remains almost the same when M > 18 are selected for the second-order
kernel. Hence M = 30 for the first-order kernel and 18 for the second-order kernel
are determined. Estimated Volterra kernels are shown in Fig. 2.

Model predicted step responses and the steady-state response are compared with
those of the true plant in Figs. 9 and 10. As indicated in these figures, the estimated
Volterra model correctly predicted the plant behavior in the operation range approx-
imately covered by the input perturbation signals. But increasing the input signal
power will lead to a model with almost the same or worse predictive ability. It sug-
gests that further increasing the input signal power will significantly excite the plant
behavior higher than the second or third order. This result can be expected as we ex-
amine the steady-state response of a second-order Volterra model. At a steady-state,
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Fig. 2. Kernels of the second-order Volterra model.

model (2) reduces to

M M M
ys =us Y _a(i)+uld Y b(i,j) 9)
i=1 i=1 j=i

This corresponds to a symmetric parabola while the steady state response of a distil-
lation column typically displays a shape shown in Fig. 10. If a larger operation range
is desired to be covered by a Volterra model, a third- or higher-order model should
be used which will drastically increase the number of model parameters. To include
the higher-order nonlinearity without introducing too many model parameters, an
alternative is to use block-structured models.
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4. Identification Using Block-Structured Models

Block-structured models describe nonlinear systems using interconnected linear dy-
namic elements and memoryless nonlinear elements. Various block-structured model
representations have been discussed in (Haber and Unbehauen, 1990). Among them,

the simple Hammerstein and the Wiener models give an easy to handle description
(Fig. 3).

u(t) Linear x1(t) | Zero-memory | x2(t) Linear y(t)
— Dynamic ——  Nonlinear [  Dynamic =
Element G(2) Element f(.) Element H(z)

Wiener model Hammerstein model

Cascade model
Fig. 3. Diagrammatic representation of typical block-structured models.

Clearly, the block structure is only an idealized image. Few real life systems can
be exactly partitioned into those blocks in Fig. 3. Yet block-structured models are
preferred in some applications because design and analysis tools for linear systems
can be extended for these models. One of the most commonly used block-structured
models must be the logarithmic transformation method proposed by many authors in
the distillation control studies (see e.g. Skogestad, 1992).

4.1. Effect of the Logarithmic Transformation

Let y represent the distillate composition measurement. A frequently used logarith-
mic transformation has a form

Y
I-y
Clearly, if the plant can be approximated by a Wiener model with a memoryless
nonlinear element given by

1
= 1+ e——(a1x1+a2) (11)

yt = log (10)

Y

where a; and as are some constants, the plant nonlinearity can then be effectively
reduced by the transformation (10).

For the column in this study, a plot of y; versus y is given in Fig. 4. The
discrepancy between the logarithmic transformation and the true plant state-state
nonlinearity is obvious even though the transformation (10) is consistent with the
plant response at the sense that y — 1 as z; — oo (Eskinat et al., 1991).
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Fig. 4. Effects of the logarithmic transformation block on the steady-state
response.

4.2. Identification Using a Wiener Model

An natural extension to the ad hoc relation (11) is to use a general Wiener model
to approximate the column dynamics. If the memoryless nonlinear element in the
Wiener model is analytic, it can be represented as a polynomial. Denote the linear
dynamic and the nonlinear memoryless elements respectively by

bzl 4 by

G(z) = 7 I S — (12)

fl@)=z+ 71532 +’Y2:c3 + 73:64 + - +’y¢9:l+1 (13)

To make the model unique, the constant term in the polynomial (13) is set to unity.
We use the well-known prediction error method to estimate the model parameters.
Without noise, we have

N
6 = arg min Z [y(t) - gj(t)]2 (14)
t=1

subject to the constraint that all the poles of G(z) lie in the unit circle. In the
estimation problem posed in (14), 8 represents the vector of model parameters 6 =
b1 -+ bmar -+ an M - ], y is the output measurement and § its model
prediction; N is the total number of measurements.

Input/output data are generated using a white noise input perturbation uni-
formly distributed in the range [-0.5,0.5] with a sampling frequency of 1/180Hz
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Table 2. Wiener and Hammerstein model parameters.

Model H by a1 Y1 Y2 Y3
Wiener 0.02_35 ~0.7792 -17.4903 1.2327 -1.3600
Hammerstein || 0.0199 -0.7687 —1.2184 1.2402 —1.3386

and a switching time of 18 minutes (6 sampling intervals) (Fig. 5). 700 data pairs
are collected for model parameter estimation and other 300 data are collected as the
model cross validation data set. Using a model structure with a first-order transfer
function for the linear dynamic element and a polynomial of degree 4 for the memory-
less nonlinear element, estimated model parameters are given in Table 2. Increasing
the order of linear transfer function or the degree of polynomial will not significantly
decrease the mean square prediction error on the basis of the cross validation set.
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Fig. 5. Input/output simulation data for identification purposes.
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We use the steady-state response to evaluate the model predictive ability. In
Fig. 6, the model predicted steady-state response (Model 1) is compared with that
of the plant. As expected, prediction results of the Wiener model are significantly
improved around the normal operation point, compared to the simple logarithmic
transformation method. But at a high purity range, it deteriorates rapidly. Changing
input signal design, a better result can be obtained. For example, if a Gaussian white
noise input perturbation with a variance of 0.1 is applied, the prediction result at the
high purity range is significantly improved (Model 2, Fig. 6). Yet for the two input
cases the mean square model prediction error based on the cross validation data set
remains in the same level. This result reveals the nature of a block-structured model:
it can only capture part of the plant characters. What part of the plant characters
will be captured by the model depends on what characters are prominently excited
by the input perturbation.
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Fig. 6. Comparison of steady-state responses of three Wiener models.

In the input signal design, a quite large switching time is adopted. From a
practical standpoint, the larger switching will lead to a longer experiment time if the
number of measurement remains the same. But a large switching time is important
here for the estimated model to capture the plant steady-state nonlinearity. For
example, using a uniformly distributed white noise input of the same power but with
a switching time of 3 minutes, and still 700 input/output data pairs are correlated,
the resulting model now gives a quite different result as shown in Fig. 6 (Model
3). Intuitively, a larger switching time gives the plant a better chance to display its
steady-state behavior.



804 W.M. Ling and D.E. Rivera

0.05 T T T T T T T

=

o

&
T

solid: plant

dashed: Hammerstein model 1

S
2

dashdot: Hammerstein model 2

dotted: Hammerstein model 3

Distillate composition change

t
=4
-
(4]

l 1
-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Reflux flowrate change

Fig. 7. Comparison of steady-state responses of three Hammerstein models.

4.3. Identification Results Using a Hammerstein Model

The Wiener model can be regarded as a natural extension to the logarithmic transfor-
mation method. On the other hand, the second-order Volterra kernel in Fig. 2 shows
that its diagonal terms are dominant. This fact suggests that a Hammerstein model
can be used to approximate the column dynamics. Using a first-order transfer function
for the linear dynamic element, a polynomial of degree 4 for the memoryless nonlinear
element, estimated model parameters from the input/output measurements in Fig. 5
are given in Table 2. Motivated by the results of Eskinat et al. (1991), Narendra and
Gallman’s algorithm (1966) was applied for model parameter estimation. )

Model-predicted step and the steady-state responses are used to evaluate per-
formance of the estimated model. As indicated in Figs. 9 and 10, the model well
approximates the column dynamics in a neighborhood of operation range covered by
the input perturbation signal. When compared with the Wiener model, the Ham-
merstein model better captures the plant behavior at the high purity range (Fig. 7).
But the model prediction result becomes a little worse at the low purity range. It
is possible to manipulate the design variables, e.g., input signal design such that the
model captures the plant low purity behavior better. But consequently, fitting in the
high purity range will deteriorate. This result is caused by the inherent limitation
of the Hammerstein model structure. The nominal time constant of a Hammerstein
model is solely determined by its linear dynamic element and will not change as the
operation point changes. On the other hand, the plant nominal time constant is much
larger at the low purity range than at the high purity range, as evidenced in Fig. 1.
Hence, there is a trade-off between fitting to the high purity and fitting to the low
purity range when a Hammerstein model is applied.
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Unlike the Wiener model case, a Hammerstein model is more robust to the se-
lection of the input signal switching time. For example, using the same three input
perturbations as in the Wiener model case, steady-state responses of the resulting
Hammerstein models display much less variation than the Wiener model even though
the trade-off between fitting to the high purity and fitting to the low purity ranges
mentioned earlier can be observed, as shown in Fig. 7. This robust property of the
Hammerstein model may attribute to the fact that a Hammerstein model itself is less
flexible than a Wiener model in the sense that step responses of a Hammerstein model
will not display quantitatively different behavior for different step amplitudes as the
Wiener model does (Pearson, 1994). Consequently, a Hammerstein model is not able
to capture very different plant characters even though the input perturbation may

. have excited them.

It is clear at this point that due to the inherent limitations of a block-structured
model, it is unavoidable to make some trade-offs in fitting a model to different plant
characters. Even though the difference for the distillation column in this study is not
so significant, from the system identification standpoint, a question naturally arisen is
that how an optimal trade-off can be obtained. Clearly, the problem depends on the
intended application of the estimated model. If the estimated model is for the process
control design, we shall address the problem using a control-relevant identification
technique in Section 6. But before proceeding to the control-relevant issue, we consider
to use another class of more general models to describe the column dynamics, namely
the Nonlinear AutoRegressive with eXogenous input (NARX) model.

5. Identification Using the NARX Model

A polynomial NARX model represents the process output as a polynomial function
of the previous inputs and outputs (Leontaritis et al., 1985).
y(n) = fly(n—1),...,y(n—ny),u(n - 1),...,u(n — nu))

L L

L
= 0o + Z eilwil (n) + Z z Hil’izzh (n)xiz (n) +oe

i1=1 i1=112=1;

+ ; i Oy iy () - 4, (1) - (15)
i1=1  ip=ip_i
where
| L=ny+n,
and
zi(n) =y(n—1); z(n)=yn—-2); ...; 2n,(n) =y —ny)

Tn,41(n) =u(n—1); ...; 2r(n) =u(n—ny)
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Equation (15) forms a linear-in-parameters model whose parameters can be estimated
using the least squares method in a closed form.

The number of parameters contained in model (15) is given by
(L+1)!

L\
where [ is the degree of the polynomial. A full order model (15) usually contains too
many parameters to be practical. But it can be expected that not all the terms in
the model are significant in describing the plant dynamics. It is a common practice
in the NARX model estimation to form a combined parameter estimation and model
structure determination algorithm based on an orthogonal decomposition least squares
method (see e.g. Korenberg et al., 1988; Chen et al., 1989). The model structure
determination step sequentially picks up those model terms which are most likely to
decrease the model prediction error. The number of model terms included in the
final model is usually determined using some information criteria such as the Akaike
information criterion (Akaike, 1972).

In this study, the orthogonal least squares method based on the modified Gram-
Schmidt decomposition procedure is applied to estimate a distillation column model.
In model (15), let n, = ny, = 3 and ! = 4. Using the input/output measurements
in Fig. 5, a model with 7 terms is obtained. Estimated model parameters and the
corresponding model terms are given in Table 3.

M=

Table 3. NARX model parameters.

I Term Parameter ” Term Parameter—l
z(n —1) 0.0274 z(n — Dz(n —2) 0.0439
z(n —2) —0.0080 z(n—Dy(n—-1) —0.3529
y(n—1) 0.8054 || z(n — 1)z(n — 2)y(n — 1) —0.3381
z*(n - 1) —0.0510

Again, the model predicted step and the steady-state responses are used to eval-
uate the model performance. As indicated in Figs. 9 and 10, the plant response is
accurately predicted by the NARX model. The accuracy of the estimated model can
also be observed from another angle. The linear part of the NARX model is given by

0.0274271 — 0.00802 2

1—0.8054z"1
In Fig. 8, its impulse response is compared with the first-order Volterra kernel ob-
tained in Section 3. Clearly, the plant linear character has been correctly captured
in the NARX model. When compared with the second-order Volterra and the block-
structured models, the predictive performance of the NARX model is clearly im-
proved, as expected. But the model is essentially a local model: outside the neighbor-
hood of the operation range covered by the input perturbation signal, the accuracy
of the model prediction result deteriorates quickly.

F(z) = (16)
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Similary to the Wiener model case, the model predicted steady-state response will
deteriorate as the switching time of the input signal decreases but not as drastically as
in the Wiener model case. If the steady-state nonlinearity is important to the intended
model application, for the column in this study, it seems that using a switching time
not less than the plant nominal time constant is appropriate.

6. Control Relevant Identification

As noted in the Introduction, a mathematical model, no matter how complicated, is
always a simplified image of a real-life system. The situation becomes more apparent
when the model’s descriptive ability is restricted to a simple model structure such as
the block-structured model. Various design variables in an identification procedure
can be used to influence the goodness of fit on the estimated model. Clearly, selection
of the optimal design variables depends on the intended model application. In this
context, it is desired that intended model applications are directly accounted in an
identification procedure. In this section, we assume that the estimated model will be
used for process control design. A control-relevant identification method proposed by
Ling and Rivera (1995; 1996) is considered to estimate a Hammerstein model for the
distillation column simulation.

The control-relevant identification method is summarized as follows. The method
consists of two steps. In the first step, a Nonlinear AutoRegressive and Moving Av-
erage with eXogenous (NARMAX) model is estimated from the input/output mea-
surements in a usual way. For the noise/disturbance-free problem in this study, the
NARMAX model reduces to a NARX model. In the second step, a restricted complex-
ity model such as the block-structured model is obtained through a control-relevant
model reduction procedure.
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Fig. 9. Step responses of different models (solid: plant, dashdot: Volterra
model, dotted: Hammerstein model, dashed: NARX model).

For the case where the restricted complexity model is a Hammerstein model,
let both the NARX and the Hammerstein models be represented in their respective

Volterra series model forms:

P=p1+ps+--+pp,

D=p1+pPy+ - +py

The closed-loop performance of the estimated model is accessed through the non-
linear IMC design in Fig. 11 (Doyle et al., 1995). The control-relevant model reduction
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Fig. 10. Steady-state responses of different models (solid: plant, dashdot:
Volterra model, dotted: Hammerstein model, dashed: NARX model).

problem is then stated as (Ling and Rivera, 1995):

P = arg n})ilnuewl[r— d]”2

Py = arg n}in“ewg[r—d]’l2
D2 (17)
Dn = arg ngin“ewn[r —d]”2

where € = I — F'; wy is a function of py,p1; wsy is a function of wq,ps,Ps and so
on (see Ling and Rivera, 1995). Minimization problems in (17) can be numerically
effectively solved as discussed in (Ling and Rivera, 1996). An important feature of the
estimation problem posed in (17) is that the selection of proper identification design
variables is now replaced by parameters related to the closed-loop control performance
requirements such as the desired closed-loop speed-of-response (¢) and the external
signals that the control system is most likely to track or reject (r — d).

The effects of a control-relevant approach were examined on the distillation col-
umn simulation. We assume that the control objective is to track a step set point
change in Fig. 12 and a first-order linear filter F' according to

(1-26)z"1

P& =15

6 = exp(—3/15) (18)

is used in the nonlinear IMC design. In the control-relevant approach, a Hammerstein
model with a third-degree polynomial memoryless nonlinear element and a first-order
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Fig. 11. Nonlinear Internal Model Control structure used to assess model
control-relevance.

Table 4. Control-relevant (C-R) vs. open-loop optimal (O-L) Hammerstein
model parameters. The open-loop error (O-LE) is the 2-norm of the
prediction error. The closed-loop error (C-LE) is the integral square
error for a —0.03 setpoint change.

Model H by ay " Yo ‘ O-LE | C-LE j

Model 4 (C-R) || 0.0217 —0.7768 —2.0833 1.7878 | 0.2613 | 5.5256e-5
Model 5 (O-L) || 0.0204 -0.7660 —1.3775 0.8977 | 0.2593 | 9.5340e-5

linear dynamic element is estimated using as a starting point the polynomial NARX
model estimated in Section 5. Estimated model parameters (Model 4) are given in
Table 4. Correspondingly, the Hammerstein model parameters which minimize the
open-loop prediction error to the identification data are obtained (Model 5 in Table 4).

In Fig. 13, the closed-loop performance of both models is simulated for the case
of a —0.03 setpoint change. From the standpoint of open-loop criteria, the control-
relevant model appears less adequate; however, comparison of the closed-loop error
(Table 4) indicates that this model provides an improvement in closed-loop perfor-
mance. Figure 13 shows that the control-relevant model reduces overshoot and de-
creases settling time while displaying a less aggressive manipulated variable response
than that obtained from the open-loop model-based controller.

7. Summary and Discussion

Nonlinear black box identification of a simulated binary distillation column has
been investigated. Three commonly used model structures including the second-order
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Fig. 12. Set point changes assumed in control-relevant estimation, Hammer-

stein Model 4.

Volterra model, block-structured models and the NARX model were used to describe
the column dynamics. The performance of these models is evaluated based on their
steady-state response and step responses of different amplitudes. Among them, the
NARX model provides the most accurate approximation to the column dynamics.
A second-order Volterra model, despite the fact that it can display the asymmetry
response phenomenon (Pearson et al., 1992) which is clearly observed in the distil-
lation column response, can correctly capture the column dynamics only in a quite
limited operation range. For the block-structured Wiener and the Hammerstein mod-
els, their limitations and some trade-offs among fittings to different plant characters
were explained. It is pointed out that if the identification design variables such as
the input design are selected properly a block-structured model can well approxi-
mate the column dynamics. But the problem how to select those design variables
must be accessed in an ad hoc manner. When the estimated model was used for
control design, a control-relevant identification method was applied to overcome this
difficulty. In the control-relevant method, those identification design variables are
represented by the closed-loop performance requirements such as the desired closed-
loop speed-of-response. Closed-loop performance requirements naturally influence the
goodness-of-fit in the model.

For all the model structures, it was emphasized that if the system steady-state
nonlinearity is important for the intended model application, as it does for most pro-
cess control applications, the input signal switching time should be made sufficiently
long. For the column considered in this study, it seems that a switching time not
less than the plant nominal time constant is appropriate. Because most distillation
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Fig. 13. Closed-loop responses (solid: reference, dashdot: control-relevant
Hammerstein model (Model 4), dashed: open-loop optimal Hammer-
stein model (Model 5)).

processes display a slow open loop response, this corresponds to a quite long switching
time.
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