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ISSUES IN NONLINEAR PARAMETER ESTIMATION
AND MULTIVARIATE MODEL DISCRIMINATION:
APPLICATIONS IN POLYMER REACTION
ENGINEERING

TraomMmAas A. DUEVER*, ALEXANDER PENLIDIS*

In this paper an overview is given of issues in parameter estimation, model
discrimination, and optimal sensor selection as they relate to the modelling
of copolymerization processes. The problems are discussed in the context of
a comprehensive polymerization simulation package that is being developed,
which includes an extensive database. A brief desciption of the modelling equa-
tions together with a listing of equations used to predict copolymer composition,
triad fractions and polymerization rate, which are the primary responses used
throughout this paper, is given. The problem of reactivity ratio estimation is
reviewed and a method based on the Error-in-Variables model (EVM) is de-
scribed which has the advantage that it properly accounts for all the errors in
the measurements being used in the estimation. Two methods for describing
the uncertainty in the estimates obtained are given. The first establishes ap-
proximate elliptical contours which are approximate in both shape and size.
The other approach offers an improvement in that contours having the cor-
rect shape are calculated. The problem of discriminating between two models
based on the terminal and penultimate mechanism using the method proposed
by Buzzi-Ferraris and Forzatti (1983) is described. Simulations using copolymer
composition, triad fractions and copolymerization rate are compared. An exper-
imental verification for styrene/methyl methacrylate and triad fraction data is
discussed and contrasted with previous experimental results. A comparison be-
tween experiments designed using the model discrimination criterion and those
using equally-spaced points shows that in general the designed experiments are
better able to correctly discriminate. Furthermore, even in those cases when the
equally-spaced experiments lead to correct model discrimination, they usually
lead to poor estimates of the model prediction error and the parameter uncer-
tainty. Finally, the problem of optimally selecting sensors for a polymerization
process is discussed. The approach shown uses a Kalman filter to optimally com-
bine the polymerization model with process data. The different sensor scenarios
are ranked using the determinant of the state covariance matrix.
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1. Introduction: Mathematical Modelling and Simulation Pack-
ages for Polymerization

Polymer reaction engineering is the combination of polymer science, chemistry and
technology with process engineering principles. In the polymer reaction engineering
spectrum, the fundamental phase consists of detailed investigations of polymerization
reaction kinetics, guided by rigorous statistical experimental design techniques. On
the other side of the spectrum, the applied phase consists of computer simulation and
experimental studies of polymer reactor design, optimization, monitoring and control
problems. The link between the fundamental and applied phases is mathematical
modelling of polymerization systems, i.e., the effort to develop a repository of our
understanding and knowledge of polymerization processes.

Mathematical models and their role in science and engineering are points of
constant debate, especially when models are employed in an industrial environment.
The role of a mathematical model is often misinterpreted. As a result, we frequently
blame the model, instead of blaming our own lack of understanding about a process
as well as our reluctance to experiment with a process in a meaningful and systematic
way. Why then are models useful?

Models enhance our process understanding since they direct further experimenta-
tion. They act as a reservoir of one’s knowledge about a process, and hence they may
reveal interactions in a process that may be difficult, if not impossible, to predict solely
from memory or experience, especially when many factors vary simultaneously. Since
a model is a concise, compact form of process knowledge, models enhance transferabil-
ity of knowledge; they may act eventually as an “inference engine”, closely resembling
the train of thought of an experienced human. In a sense, mathematical modelling is
the best way to find out what one does not know about a process.

In developing the simulation package our efforts have been centred around the
development of a general, flexible, user-friendly, computer simulation tool for the
modelling of multicomponent bulk/solution/emulsion polymerization systems. De-
veloping the modelling package is not an isolated effort; rather, we are committed
to the long-term development in parallel of a comprehensive polymerization database
for characteristics of monomers (currently the database includes fifteen widely used
monomers), initiators, solvents, emulsifiers, chain transfer agents, inhibitors, rate con-
stants, etc. This database is of course an integral part of the computer simulation
package, as it constitutes the important link between polymerization kinetics and
polymer reactor design.

The computer package is an extremely powerful tool for research, training and
educational purposes. It guides and directs further experimentation, as there is a
constant interplay between the experimental/parameter estimation phase and the
simulation /extrapolation to new conditions/design of experiments phase. Extensions
to “recipe design” situations and to tackling “what-if-type worst-case” scenarios are
quite obvious. More details and additional package/database applications can be
found in (Penlidis, 1994; Gao and Penlidis, 1996).

Despite revolutionary advances in both computer hardware and software, the
problem of bringing process data (knowledge) into a mathematical model in an optimal
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fashion remains. It is this aspect of the simulator development effort that we wish to
discuss in this paper. This ultimately leads to issues in nonlinear parameter estimation
and multivariate model discrimination, for example. In Section 2 the models used in
this work will be introduced. Section 3 deals with the estimation of reactivity ratios
which are key kinetic parameters used to model copolymerizations. In Section 4, we
will summarize our work on model discrimination which combines simulations with
experimental verification. Section 5 describes some of the results we have obtained in
assessing the usefulness of different measurements using optimal sensor selection. We
end the paper with some concluding remarks and future directions.

2. Copolymerization Models

As an example we will consider bulk copolymerization. A general reaction scheme
which applies to this process would be made up of the following steps:

1. Initiator decomposition:
1—2" _oRe (1)

2. Reaction of primary radicals with monomer:

ki

Ry + M, ——— R}, (2a)
k!

Ry + My ——— R, (2b)

3. Primary radical termination:

ko '
Ri;) + R’V:,’ij #'_) Pn (3)
4. Propagation:
. kijk °
nyij T Mk ——— Ry 1k (4)

5. Transfer to monomer:

o ken,ije

mij + My ——"— P, + R{, (5)
6. Branching reactions; transfer to polymer through:
(a) hydrogen abstraction:

Ry + P —2 4 R® + P, (6a)
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(b) terminal double-bond polymerization:

L] k* L]
Rn + Pm —P—> Rm—}-n (6b)

(c) internal double-bond polymerization:

P
RT: + Pm — Rr.n+n (GC)

7. Termination reactions:

7;,1']' + R‘r:b,kl iiL) Ppym or Py + Py, (7)
In this reaction scheme, I refers to the initiator, R;% is the primary radical, M} is
a monomer molecule of type k(k = 1or 2), R, and Ry, are radicals of length 1
ending in Monomers 1 and 2, respectively, R, ;. are free radical chains of length n
ending in monomer units ij (i,5 = 1 or 2), P, is a polymer molecule containing n
monomer units and R is a free radical chain containing n monomer units.

Based on this reaction scheme, the model is developed as a set of ordinary differ-
ential equations. The equations include a balance on the total moles of radicals, the
moles of Monomers 1 and 2 being consumed, and the moles of monomer incorporated
in the copolymer. The equations also include the change of conversion with time,
the change in volume with time, the moments of the molecular weight distribution,
and the change in the triad fractions with time. A listing of the equations and more
details are given in (Burke, 1994).

In the above reaction scheme, the assumption has been made that penultimate
reaction kinetics are applicable, whereby the next to last unit of the propagating poly-
mer radical influences the reaction rate. As mentioned in the introduction, this is one
of two prominent mechanisms which have been proposed to describe the propagation
step. The other is the terminal mechanism, in which only the terminal unit of the
propagating radical is thought to affect the rate. This leads to two different models,
the terminal and the penultimate model. The problem of discriminating between the
two will be discussed later. The propagation step in the terminal mechanism can be
represented as

R ki . .

Rn,i + MI — Rn+1,j 5, =12 (8)

Although there are four propagation rate constants, k;j, the rate is usually ex-

pressed in terms of the two homopolymerization rate constants k11 and ko and two
monomer reactivity ratios defined by

ki1 kao

] = ——, T3 = —- 9

1 k127 2 ]Cgl ( )

The penultimate propagation step is represented by eqn. (4). The rate of poly-

merization is expressed in terms of two homopolymerization rate constants k;1; and
ka2, four monomer reactivity ratios

r1] = y Tor = , T2y = =, Tip = — (10)
20
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and two radical reactivity ratios

ka11 k122
§1 = —, sd = — ].].
Y7 ki > oz ~ (11)

It is interesting to note that the resulting terminal and penultimate models are
nested; i.e., by setting 717 = 721, 722 = 712 and s; = $g, the penultimate model
equations can be reduced to those describing terminal kinetics.

Finally, in the subsections that follow, model equations will be summarized which
predict some of the more common measurements which are made on the copolymer
systems including copolymer composition, triad fractions and polymerization rate.
For all the three responses, only the terminal model predictions will be reported. The
equivalent penultimate model equations can be found in (Burke, 1994).

2.1. Copolymer Composition

The instantaneous copolymer composition F; (mole fraction of Monomer 1 in the
copolymer) is given as a function of the monomer feed mole fractions f; and f, and
the reactivity ratios r1 and ry by

i+ fif
rifi+2fifa+rof2

Above small conversion levels, the change in feed composition with conversion, z,
must be accounted for, as discussed by (Burke et al., 1994a).

F = (12)

2.2. Sequence Distribution

Information about the structure of the copolymer in terms of the distributions of
different sequences of monomer triads can also be predicted as a function of monomer
feed compositions and reactivity ratios. Terminal model predictions of instantaneous
Monomer-1 centred triad fractions A, where i, j and k refer to either Monomers 1
and 2, are given as ’

A = 5+ rifi 3 (13a)
rifi +2rififa + f3
rifife
Ary = =
211 = A112 o fifa ¥ 12 (13b)
2
Aoz = /3 (13c)

rifE+2rififo+ f2

Model predictions for Monomer-2 centred triads are obtained by interchanging the
subscripts for Monomers 1 and 2.
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2.3. Copolymerization Rate

The terminal model prediction of the overall propagation rate is given as a function
of the monomer feed composition, reactivity ratios and the homopolymerization rate
constants ki3 and kos by

ke = TifE+2fifa+r2f3
P rifi rafe
ki1 ko

(14)

Additional details on how the polymerization rate, kp, is measured are given in (Burke
et al., 1995).

3. Reactivity Ratio Estimation

Reactivity ratios are key parameters which are required for designing, controlling and
optimizing the performance of polymer reactors. Knowledge of the reactivity ratios
allows for the prediction of copolymer composition, composition drift, sequence length
distribution and polymerization rate as indicated by eqns. (12)—(14). These variables
in turn are important in determining polymer properties and performance of the
products made from the polymer. Reactivity ratios are usually estimated from low
conversion ampoule experiments in which the assumption is made that no composition
drift occurs and that the polymerization is in the chemically controlled regime. Data
is then collected by measuring the copolymer composition, F; of copolymers made at
several different initial feed compositions, f; and f,. From this data the reactivity
ratios can be estimated using eqn. (12). As pointed out by Rossignoli and Duever
(1995) this model is nonlinear in the parameters and therefore requires an appropriate
nonlinear estimation procedure. Behnken (1964) and Tidwell and Mortimer (1965)
published approaches based on ordinary nonlinear least squares. Since the errors in
measuring the polymerization feed composition f; and copolymer composition Fj
can be comparable, we prefer using the Error-in-Variables Model (EVM) in which
errors in all of the measured variables are taken into account (Dube et al., 1990;
Rossignoli and Duever, 1995). Even though in the cases where the error in F is
much greater than fi, nonlinear least squares is sufficient, we feel that EVM is the
preferred approach. If nothing else, EVM forces the user to think about the errors
present in all of the measurements made. Details of the implementation of EVM to
the reactivity ratio estimation problem can be found in Rossignoli and Duever (1995).

Figure 1 shows the application of the EVM based estimation method to a simu-
lated example involving the system styrene/methyl methacrylate, the data for which
are shown in Table 3 of Rossignoli and Duever (1995). The triangle represents the
true values used to simulate the data, while the circle represents the parameter esti-
mates. Figure 1 also shows two different estimates of 95% joint probability contours
which are used to quantify the uncertainty in the parameter estimates. The solid
line depicts a relatively rough approximation to the joint posterior probability region
for the estimated parameters, based on the assumption that the parameter estimates
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are distributed as a multivariate normal, resulting in the elliptical posterior proba-
bility contour shown. Both the shape and probability content of this contours are
approximate. The dashed line represents a somewhat better approximation to the
joint posterior probability region. This approximation has the interesting property
that it gives contours of correct shape (not in general elliptical), but approximate
probability content. Equations for calculating these contours are given in Rossignoli
and Duever (1995).

The design of reactivity ratio experiments was addressed by Tidwell and Mor-
timer (1970). They used the well-known D-optimality criterion to arrive at the fol-
lowing rules of thumb for approximating the design points:

~ 2 ~ T2
f11—2~+—’r17 le— 2+7'2

(15)

Using only these design points places a lot of trust in the validity of the model
(eqn. (12)). If any doubt exists about the model, then additional design points should
be added and some of these should be replicated to allow for lack of fit testing. Burke et
al. (1993) have examined the problem of constrained designs. In the application of D-
optimality, design points at the extreme conditions are often suggested. In copolymer
systems, factors such as partitioning effects, phase separation or precipitation can
often occur which interfere with the propagation step and lead to “apparent” reactivity
ratios. Hence it is often desirable to constrain the design space to regions where these
effects are not present.

4. Model Discrimination

When developing mechanistic models to describe processes, there are often several
competing models. The question about which of the competing models is “best” and
how the latter is chosen must then be addressed. Several models have been proposed
to describe free-radical copolymerization, the most prominent of which are the termi-
nal and penultimate models. In the past the approach taken to discriminate between
these two models has been rather ad-hoc from a statistical point of view. Figure 2
shows a typical approach from the paper by Hill et al. (1982). Here ampoule ex-
periments were performed equally spaced over the entire range of feed compositions
to conversions of less than 5%. Copolymer composition was measured and used to
estimate terminal and penultimate reactivity ratios using instantaneous composition
equations. Since the terminal model and penultimate models are nested, an F-test
was used to show if the added parameters in the penultimate model provided a sig-
nificantly better fit of the data. These experiments do not seem to be optimal for
either parameter estimation or model discrimination. In this section, an approach
based on statistical model discrimination will be described. A summary of simula-
tion and experimental results will be given. As well, a comparison between results
based on equally-spaced experiments and those designed using model discrimination
methodology will be described.
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Fig. 1. The 95% joint probability contour for the application of EVM to the esti-
mation of reactivity ratios. The solid line represents the elliptical contour,
while the dashed line represents the contour having the correct shape but
approximate probability level. The “triangle” represents the true parameter
values used to simulate the data, while the “circle” is the point estimate.
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Fig. 2. Copolymer composition data of Hill et al. (1982) for styrene/acrylonitrile.
The solid line shows the fitted terminal model, while the dotted line shows
the fitted penultimate model.
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In the general model discrimination scenario, m different models are proposed
to describe a process:

yizfi(m,&-)—#ei, 1=1,2,...,m (16)

where y; represents one or more responses, = represents the independent variables
used to describe the input conditions, #; are the parameters, f; is the 4-th of m
candidate models and e; is the error term. Model discrimination is a sequential
procedure consisting of two steps:

e experimental design
e data analysis

applied in a sequential, iterative fashion. In the initial stage parameter estimates
are obtained from the literature, past work, or by performing n — 1 preliminary
experiments. One then performs the next (n-th) experiment for those values of z
identified by an appropriate model discrimination criterion, which locates where there
are the largest differences between the model predictions.

In our work we compared three different criteria for model discrimination: the
exact entropy approach by Reilly (1970), the approach published by Hsiang and Reilly
(1971) and the method of Buzzi-Ferraris and Forzatti (1983). We compared these cri-
teria with a simulation study involving three different copolymer systems and three
different measurements or combination of measurements, namely copolymer composi-
tion (Burke et al., 1994a), triad fractions (Burke et al., 1994b) and rate and copolymer
composition (Burke et al., 1995). In these studies we also studied the effects of error
level and quality of initial parameter estimates. Since the most promising of the dis-
crimination methods we looked at was that of Buzzi-Ferraris and Forzatti (BFF) a
summary of the simulation and experimental verification results for this method will
be presented.

The BFF criterion chooses the n-th model discrimination experiment by maxi-
mizing the criterion given by:
m—1 m

> @i—9)°

i=1 j=i+1

(17)

where s? is an estimate of the experimental error variance and s? is an estimate of the

prediction variance for the i-th model. The multivariate extension of this criterion is
reported in Burke et al. (1994b). The criterion has the desirable property that if T' <
1 for all z,, then no discrimination is possible and either more parameter estimation
experiments are needed or all of the candidate models are equally good descriptions
of the process. Since the criterion in eqn. (17) is a simple ratio of the variance in the
difference between predictions to the average variance in the predictions, and since
the models are nested, the models can be compared using an F'-test:

(SSRa — SSRa) |(k1 — k2)
SSR1 ](TL - kl)

(18)
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where SSR; and SSRs; are the sums of squared residuals for both models calculated
from the regression analysis, and k; and ks are the number of parameter values in
each model, respectively. The F' value calculated in (18) is then compared to the
F-distribution with k1 — ko and n —k; degrees of freedom to determine whether the
extra parameters in Model 1 provide a significantly better fit to the data.

4.1. Copolymer Composition

For each of the three copolymer measurements considered, the effects of three vari-
ables including measurement error level, initial parameter estimates and the model
used to generate the simulated data, were studied by simulation. The experimen-
tal design for each simulation run is shown in Table 1. This design was repeated
for each of the three copolymer systems considered (styrene/methyl methacrylate,
styrene/acylonitrile and styrene/butyl acrylate) to determine if the nature of the
copolymer system itself had any effect. Each simulation run (row in Table 1) sim-
ulated up to 20 experiments, consisting of initial parameter estimation experiments
and sequential model discrimination experiments.

Figure 3 shows the outcome of a typical simulation run (run 13 from Table 1).
The system and conditions studied here are comparable to those used in the study of
Hill et al. (1982) depicted earlier in Fig. 2. Tt is interesting to note that discrimination
was possible here using half the number of experiments reported by Hill et al.

Tables 2 a—c summarize the results for all three copolymer systems studied. For
each “Simulation Model” there are a total of nine cases corresponding to the three
initial parameter estimate values and the three error levels. When the strong penulti-
mate model was used to simulate the data, it was correctly identified in greater than
80% of the cases, while a weak penultimate effect was correctly identified in over 60%
of the cases.

Problems did arise at the high error level. This level was incidently much higher
than typical errors reported in the literature. The problem here manifested itself not in
the choice of the wrong model, but rather in neither model being chosen. The choice of
the correct model was also more difficult for the system styrene/butyl acrylate, where
one of the reactivity ratios is close to unity. Some overfitting by the penultimate
model was observed leading to incorrect selection of the penultimate model when in
fact the terminal model was the correct one. Overfitting leads to an experimental
error variance estimate obtained from the penultimate model, 2. timate> Which is
much smaller than the experimental error variance, o2. This problem was corrected
by running independent replicates to establish the error variance. Overall variation
in the quality of the initial parameter estimates had very little effect on the selection
of the correct model.

The results of the simulation study based on composition data demonstrated that
composition data provides more information for the purpose of discriminating between
the penultimate and terminal models than had previously been thought. Furthermore,
it was possible to determine smaller penultimate effects. Finally, the use of statistical
model discrimination can assist in minimizing the number of experiments necessary
to identify the correct model, compared to previous approaches.
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Table 1. Experimental design for simulation runs.

Run Simulation Initial Reactivity | Error
Model Ratio Estimates | Level
1 Terminal Poor Low
2 Terminal Poor Medium
3 Terminal Poor High
4 Terminal Neutral Low
5 Terminal Neutral Medium
6 Terminal Neutral High
7 Terminal Good Low
8 Terminal Good Medium
9 Terminal Good High
10 | Strong Penultimate Poor Low
11 | Strong Penultimate Poor Medium
12 | Strong Penultimate Poor High
13 | Strong Penultimate Neutral Low
14 | Strong Penultimate Neutral Medium
15 | Strong Penultimate Neutral High
16 | Strong Penultimate Good Low
17 | Strong Penultimate Good Medium
18 | Strong Penultimate Good High
19 | Small Penultimate Poor Low
20 | Small Penultimate Poor Medium
21 | Small Penultimate Poor High
22 | Small Penultimate Neutral Low
23 | Small Penultimate Neutral Medium
24 | Small Penultimate Neutral High
25 | Small Penultimate Good Low
26 | Small Penultimate Good Medium
27 | Small Penultimate Good High
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Table 2. Application of the Buzzi-Ferraris method using composition data.

Model Chosen as Best

Simulation at 95% Confidence
Model (number of simulation runs)
Terminal Penultimate Neither

2a Application to styrene/methyl methacrylate

Terminal 4 1 4

Strong penultimate 1 7

Small penultimate 1 5 3
2b Application to styrene/acrylonitrile

Terminal 2 2

Strong penultimate 0 9

Small penultimate 1 6

2c Application to styrene/butyl acrylate

Terminal 1 1
Strong penultimate 2 6
Small penultimate 1 5 3

4.2. Triad Fractions

As indicated in eqn. (13), copolymer triad fractions depend upon the same reactivity
ratios as copolymer composition. In fact, they are simulated using the same models as
copolymer composition. One characteristic which is important to note for the purpose
of parameter estimation is that Monomer-1 and Monomer-2 centred triad fractions
sum to unity respectively, i.e.,

A + Anoyonn + Az = 1 (19a)

Azzz + Aoziq122 + A1z = 1 (19b)

It is well-known that when multiple responses exhibit collinearity, as the triad
fractions do here, this can have adverse effects on the stability of the parameter
estimates obtained. The solution here is to use only four of the six triad fractions.
This was accomplished here by removing that triad fraction from each group which
had the smallest measured value. Parameter estimation is accomplished using the
determinant criterion introduced by Box and Draper (1965).

The results for the three systems are summarized in Tables 3 a-c. In comparison
with the composition results shown in Table 2, in almost every case the correct model
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Table 3. Application of the modified Buzzi-Ferraris method using triad frac-

tion data.
Model Chosen as Best
Simulation at 95% Confidence
Model (number of simulation runs)

Terminal Penultimate Neither

3a Application to styrene/methyl methacrylate

Terminal 9 0
Strong penultimate 0 9
Small penultimate 0 9
3b Application to styrene/acrylonitrile
Terminal 9 0 0
Strong penultimate 0 9
Small penultimate 0 9
3c Application to styrene/butyl acrylate
Terminal 8 0
Strong penultimate 0 9
Small penultimate 0 9 0

was identified. The use of triad fractions therefore greatly improved our ability to
correctly discriminate compared to composition data (the correct model was picked
in greater than 98% of the simulations). This improvement is due to the use of four
triad fractions instead of just one copolymer composition measurement.

4.3. Copolymerization Rate

The penultimate model for predicting copolymerization rate (eqn. (14)) contains eight
parameters including four reactivity ratios (eqn. (10)), two radical reactivity ratios
(eqn. (11)), and two homopolymerization propagation rate constants, k111 and kaaa.
When an attempt was made to estimate all eight parameters using only rate data,
the estimates obtained were highly correlated and unstable, indicating that by them-
selves, rate data do not contain sufficient information. To obtain better parameter
estimates, rate data were combined with copolymer composition data, which reduced
the correlation in the estimates. When rate and copolymer composition were com-
bined, the results as far as model discrimination are concerned are similar to those
obtained for triad data (Burke et al., 1995).
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4.4. Experimental Verification

Having studied the penultimate/terminal model discrimination problem by simula-
tion, an experimental verfication study was carried out. Low conversion ampoule ex-
periments were carried out using the styrene/methyl methacrylate copolymer system.
This system was chosen since it is of considerable academic interest and contradictory
results have been reported in the literature about the presence of a penultimate effect.

In the first phase, eight parameter estimation experiments were carried out, which
consisted of two independent replicates of the four optimal compositions which were
identified using a multiresponse D-optimality criterion similar to that reported by
Draper and Hunter (1966). Triad fraction data was then collected using *C-NMR
with peak assignments as reported in the literature by Aerdts (1993).

Figure 4 shows the joint 95% confidence region for the terminal model reactivity
ratios. This contour defined by eqn. (4) of (Burke et al., 1996) has the correct shape
but approximate probability level and represents a significant improvement over the
elliptical approximation which can be obtained based on a linearization of the model
and standard linear regression theory. Figure 5 shows a confidence contour calculated
for parameter estimates calculated from a set of triad fractions for the same copolymer
system using the same number of experiments reported by Maxwell et al. (1993).
Comparison of the two plots demonstrates the effect of the experimental design used.
In the Maxwell et al. data set, very few experiments were carried out at high styrene
content and therefore rs, the reactivity ratio for methyl methacrylate, is estimated
much more precisely than r; the reactivity ratio for styrene. In fact, the open contour
indicates that the estimate of r; is indeterminate.

In Phase 2 of the investigation, the multivariate analog of the BFF criterion was
used to design the first model discrimination experiment. However, over the entire
monomer feed composition, the design criterion T' was less than p, the number of
independent measurements or responses available from an experiment. As with the
single response case, when T' < p, this is an indication that model discrimination is not
possible. The fact that the maximum of the criterion value was less than p indicates
that either the two models are equivalent or that additional parameter estimation
experiments are necessary to reduce the variance of the parameter estimates and
hence the model predictions. Therefore an additional estimation experiment was
designed using the G-optimality criterion, which choses an experiment to minimize the
maximum predicition variance, or in the multiresponse case the trace of the prediction
covariance matrix.

Figure 6 shows the joint confidence region obtained after addition of the ninth
experimental point. By comparing with Fig. 4, it is evident that the addition of a
single additional experiment has caused a dramatic reduction in the uncertainty of the
terminal model parameter estimates. Figure 7 shows the marginal joint confidence
region for the penultimate parameters r;; and rs;. Note that the terminal model
line ry3 = r2; passes through the joint confidence region slice. This together with
the appropriate F-test indicates that there is no significant improvement obtained
here in describing the data by using the penultimate model and hence the terminal
model appears to be an adequate representation of the data. Additional details on
the experimental verification can be found in Burke et al. (1996).
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4.5. Equally-Spaced Data

Earlier on, in discussing Fig. 2 which shows the data collected by Hill et al. (1982),
it was pointed out that a common approach is to space experiments evenly over
the entire composition range. The data shown in Fig. 2 are based on a total of
14 experiments. Figure 3 shows the results of a simulation run carried out under
conditions similar to those used to collect the data in Fig. 2. It was noted that using
the statistical model discrimination approach only 7 experiments were necessary to
correctly select the penultimate model, hence indicating that fewer experiments could
be used. However, this comparison is not entirely fair and begs the question: could
7 equally-spaced experiments also correctly identify the “true” model? To answer
this question an additional set of simulation experiments was run, in which equally-
spaced experiments were carried out under identical conditions to those using the
BFF criterion. In addition, exactly the same number of experiments was used. For
example, Fig. 8 is the plot corresponding to Fig. 3 for the equally-spaced case. In
both cases the same conditions were used: composition data, the strong penultimate
model, low level of experimental error and neutral initial estimates. In this particular
case, the analysis did show that the penultimate model was the best model for the
system based on seven equally-spaced experiments. However, this was not the case
for equally-spaced experiments in general.

Table 4 compares the results of the equally-spaced simulations with those ob-
tained using the BFF model discrimination criterion. The experiments designed using
the BFF method were better able to identify the correct model regardless of which
“true” model was used to generate the data. Noticeable improvements were also made
at all levels of experimental error and for all values of the initial reactivity ratios. In
particular, the table shows that it is most crucial to use designed experiments when
the terminal model is used to generate the data, when the error level is high, and
when the initial reactivity ratio estimates are poor. It is important to point out that
while this result is not unexpected, it corresponds to a very realistic scenario, in that
when one carries out actual experiments, one is always faced with experimental error,
one never knows which model is “true”, and one can never know the accuracy of initial
parameter estimates.

Table 5 shows the comparison between equally-spaced experiments and BFF
designed experiments for triad fractions. In this case, equally-spaced experiments
performed as well as those designed using BFF as far as choosing the correct model.
However, an important point that came out of the comparison, is that differences
did occur between the two approaches with respect to the accuracy and precision of
the resulting parameter estimates. In all of the simulations involving designed ex-
periments, there was independent replication of experiments. Given the low number
of experiments relative to the number of model parameters, this use of replication
should produce a better estimate of the experimental error variance than would be
obtained by equally-spaced experiments. In fact, when the variance estimates were
examined, it was found that equally-spaced experiments were much more likely to un-
derestimate the true error covariance matrix. In the case of triad fraction data, based
on regression of the terminal model, equally-spaced experiments produced lower esti-



832 T.A. Duever and A. Penlidis

Table 4. Summary of simulations involving copolymer composition. Compar-
ison of equally spaced experiments with those designed using the
BFF method.

True Model Chosen as ‘Best’ (% of simulations)

A. Based on Model Used to Generate the Data

True Equally -spaced Buzzi-Ferraris
Model Experiments  and Forzatti Method
Terminal 7.4 25.9
Strong penultimate 48.2 81.5
Small penultimate 37.0 59.3
All models 30.9 55.6

B. Based on the Level of Experimental Error
Error Equally-spaced Buzzi-Ferraris
Level Experiments and Forzatti Method
Low 37.0 63.0
Medium 40.7 63.0
High 14.8 40.7

C. Based on the Initial Parameter Estimates
Initial Reactivity Equally-spaced Buzzi-Ferraris
Ratios Experiments  and Forzatti Method
Poor 22.2 51.9
Neutral 40.7 48.1
Good . 29.6 66.7

mates of the covariance matrix in 85% of the simulations. For the penultimate model
this number was 82%. Therefore, even though equally-spaced experiments correctly
identified the right model, the variability of the measurements was underestimated.
Since the estimated error covariance matrix is used in the calculation of the covariance
matrix for the estimated parameters, the variability of parameter estimates will also
be underestimated.

5. Optimal Sensor Selection

As the discussion in Section 4 has revealed, the ability to discriminate between dif-
ferent models depends, at least to some extent, on the type of measurement used,
i.e., better discrimination was achieved with triad fractions compared with copolymer
composition for example. Furthermore we know that triad fraction data can lead to
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Table 5. Summary of simulations involving triad fraction data. Comparison
of equally spaced experiments with those designed using the BFF
method.

True Model Chosen as ‘Best’ (% of simulations) |

True Model Equally-spaced Buzzi-Ferraris
Experiments and Forzatti Method

Terminal 100.0 96.3

Strong penultimate 100.0 100.0

Small penultimate 96.3 100.0

All Models 98.7 98.7

more precise reactivity ratio estimates compared with composition data. This leads
naturally to a question about which sensors are optimal for making measurements in
a particular process.

It is obvious that accurate information about the variables (states) of interest is
a key issue in the problems related to estimation, discrimination and process control.
It is therefore important to choose the appropriate sensor design which maximizes the
information contained in the resulting measurements. The sensor design refers to the
type and number of sensors incorporated in a process, their precision and location,
and can also be used to explore the utility of a hypothetical sensor.

While Sections 3 and 4 have dealt with issues related to the development of
the polymerization simulation model, in this section we present an application of the
model, in which it is incorporated into an optimal sensor selection methodology which
can help address the above questions for a given process. It should be pointed out
that an optimal sensor selection study can only be carried out in a meaningful way if
a good process model is available.

The approach which has been taken here involves the use of the Kalman filter.
This state estimation technique filters out the measurement noise in order to follow
the state trajectory of the process. The filtering mechanism is not arbitrary, but
rather consists of the process model combined with available measurements. Hence
the Kalman filter combines process data with the process model in an optimal fashion.

Consider the process model in its linear(ized), discretized form:
Xig1 = ®p Xp + Apug + wy, (20a)
yr = Hp Xy + v (20b)

where X} is the n x 1 state variable vector at time k, uy is the r x 1 manipulated
(input) variable vector, yx the m x 1 measurement vector, H; the measurement
matrix and wy and v are independent Gaussian white noise vectors with zero mean,
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representing the process (model) and measurement noise (uncertainty), respectively.
Equation (20) is derived from the copolymerization model described in Section 2.
State variables here include moles of initiator, moles of Monomers 1 and 2 in the re-
acting mixture, moles of monomer incorporated into the polymer, conversion, volume
of the reacting mixture, moments of the molecular weight distribution and cumulative
triad fractions. Measurements include variables such as conversion, copolymer com-
position, weight-average molecular weight, triad fractions, polymerization rate and
radical concentration. Details describing how the copolymerization model is cast into
the Kalman filter form given by eqn. (20) can be found in DeWitte (1996).

Equations (21)-(25) with initial conditions X, and P, o define the extended

Kalman filter (Brown, 1983; Chien and Penlidis, 1990; MacGregor et al., 1986). First
the deterministic and stochastic state vectors are predicted by

N . Bet1

Ko =K+ [ 1(240,u0),0) 0 (21a)
k

X, k= X5 (21b)

where X g 1/k and X b1 /k are the one-step ahead predictions for the determinis-

tic and stochastic state vectors, respectively, X ,‘j e and X H /k are the corresponding
filtered estimates from the previous step and f(X(¢),u(t),t) is the right-hand side
of the general nonlinear state differential equation description of the process. The
inclusion of stochastic states in the Kalman filter formulation is necessary to elimi-
nate offset in the state estimates when chemical processes experience nonstationary
stochastic disturbances (MacGregor et al., 1986; Gagnon and MacGregor, 1991). The
augmented state vector, composed of both the deterministic and stochastic states, is
then used in the following equations:

Poy1jk = ®xPy/i®F + Ry, (22)
Xit1/bp1 = X1k + Ki(yp1 — A(Xjr1/k:t)) (23)
Povierr = Pryijp — KeHiy1 Py (24)

Ky = Pepy i HY (HiPopr j HY + Ry) 7 (25)

where Py, is the covariance matrix for X, ks Pry1/k41 stands for the covari-

ance matrix for Xji;/xy1, Kj denotes the Kalman gain matrix, R, signifies the
process noise covariance matrix, R, denotes the measurement noise covariance matrix
and h(X,t) is the (nonlinear) measurement model.

Competing sensor designs can be evaluated by their effect on the computed co-
variance matrices which give a measure of the precision, or a measure of the quality
of information, in the corresponding state estimates (Harris et al., 1980). Equations
(22), (24) and (25) are independent of the observations, yx, and can be calculated
iteratively until the covariance matrices converge. For completely observable sys-
tems with positive definite P, /o both Ppi i/ and Py /k+1 Will converge to unique,
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steady state, positive definite matrices denoted by Py /b and P2, Jht1- The opti-
mal sensor design, then, is that which minimizes a scalar function of P. The square
root of the determinant of P is the scalar function chosen, because it is scale invariant
and proportional to the hypervolume of the approximate joint confidence region of

the state estimates. The D-optimality criterion is defined as follows:
min D; = (det (P))?  i=1,2 (26)

where P is Pyyq/p and P is Pyyq /k+1- D2 is the intuitive choice because it con-
tains information after the state estimate is updated by a new measurement (filtered
state), and is the measure we have used in our work.

As an example of the application of this approach we present a case study which
examines the effect of initial feed composition (fio) on the optimal selection of sen-
sors (note that the subscript 1 refers to styrene). Three initial feed compositions
were considered (fio = 0.3,0.52,0.7) in order to capture different behaviours of the
styrene/methyl methacrylate copolymerization. For all simulations in this group of
investigations, the high level of R,, (worst case scenario) was used.

For each value of fio, the simulation program was run for different sensor sce-
narios. The outputs from the program were the values of D, at 5% increments of
conversion, up to 25% conversion. Recall that the optimal sensor set is that which
minimizes Ds.

Typical results from the sensor selection study for fio = 0.3 are shown in Fig. 9,
where the D, values are plotted for each of the sensor scenarios in the order of low
to high D,, corresponding to the most towards the least optimal sensor set. The
numerical symbols plotted correspond to sensor scenarios, which are defined on the
abscissa. The plot thus gives the order of optimality of the sensor sets, and compares
the relative optimality based on the magnitude of the Dy values.

The approach for guiding the reader in interpreting the plot and determining
which sensors are significantly more optimal than the rest is a “scree” plot interpreta-
tion (borrowed from principal component analysis), illustrated for 5% conversion in
Fig. 9. In this plot, a curve is drawn through the first three groupings of sensor sets,
levelling off with the plateau group. The interpretation is that the sensor scenarios
which fall on the steep part of the curve are significantly more optimal than the rest.
The sensor scenarios falling on the flat part of the curve have more or less the same
degree of optimality, and would each give approximately the same amount of infor-
mation about the system. The sensor scenarios which lie above the flat part of the
curve are significantly less optimal than the rest.

The order of optimality in Fig. 9 correlates with the number of measurements
in the sensor sets. The more measurements in a sensor set, the more optimal the
sensor set is. This is to be expected, since more measurements will give more infor-
mation about the system. For instance, sensor set (15) is by far the most optimal.
It essentially employs 6 measurements: 4 triad fractions, one k, measurement and
one [R*] measurement. [R*] denotes polymer radical concentration and appears as
[rad] in the figures. The next most optimal sensor set, (12), has only three measure-
ments: conversion (z), copolymer composition (Fi), and weight-average molecular

weight (M,,).
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Secondly, just examining the sensor pairs, it is immediately evident-that the pairs
which include the conversion (z) sensor are the two most optimal sensor pairs. This
behaviour is also reflected in the order of optimality of the single sensors, where the
z sensor on its own is the optimal single sensor. The reason for the importance of the
conversion sensor could be that conversion changes at a more rapid rate than the other
variables, such as Fy, M, k, and [R*]. Theselatter variables are fairly constant over
the 0-25% conversion range. More information is obtained in the case of conversion,
when the state is changing considerably, and thus the signal-to-noise ratio is high. For
the other variables, the signal-to-noise ratio is low, and less information about the
process is obtained since it is difficult to determine via the respective measurements
whether the states are changing or not.
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Fig. 9. Optimal order of sensors for styrene/methyl methacrylate based on
the Kalman filter technique, fio = 0.3, R.: high level, z = 5%.

Additional results for the other two feed mole fractions (see DeWitte, 1996)
showed that the selection of optimal sensor sets is not affected by the value of fip or
by the conversion level.

Penlidis and Duever (1996) discuss additional case studies including the effect
of model uncertainty, measurement precision, including a near errorless k, measure-
ment, impurity effects and other copolymer systems.
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6. Concluding Remarks and Future Directions

In this paper, we have shown how appropriate experimental design and estimation
methods can assist and enhance the systematic development of a polymer simulation
package. As mentioned earlier, the development of this simulator is an ongoing ef-
fort which in parallel includes the development of a comprehensive polymerization
database. In order to update our polymerization database, we need to address inter-
esting and challenging multiresponse estimation and design problems. The multire-
sponse estimation problems addressed in this paper have usually involved algebraic
equations only. The models we need to address next consist of rather large sets of
integro-differential equations and can have a relatively large number of parameters.
Our future work in this area includes the development of methods that can address
these challenging problems. To do this we are revisiting methods that have been
proposed including an investigation into the properties and performance of the de-
terminant method. We are also looking at promising new methods for parameter
estimation such as the Gibbs Sampler, amoung others.

There is no doubt that the idea of model-aided research and development is
maturing and as our process models improve, they allow us to address a number of
interesting problems. We have illustrated this using the problem of sensor selection.
One important application of this methodology lies in the fact that it can assist in
the identification of promising new sensors.
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