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LAKE BED CLASSIFICATION USING ACOUSTIC DATA'

K. KAREN YIN*, Xing LI*, Joun BONDE**
CARL RICHARDS**, GAry CHOLWEK™"

As part of our effort to identify the lake bed surficial substrates using remote
sensing data, this work designs pattern classifiers by multivariate statistical
methods. Probability distribution of the preprocessed acoustic signal is analyzed
first. A confidence region approach is then adopted to improve the design of the
existing classifier. A technique for further isolation is proposed which minimizes
the expected loss from misclassification. The devices constructed are applicable
for real-time lake bed categorization. A minimax approach is suggested to treat
more general cases where the a priori probability distribution of the substrate
types is unknown. Comparison of the suggested methods with the traditional
likelihood ratio tests is discussed.

1. Introduction

In Lake Superior, lake trout was an important fishery sustaining a large annual com-
mercial yield, which made it a valuable species. As in the other Great Lakes, the
population of lake trout was severely reduced in the 1950’s from sea lamprey pre-
dation and heavy fishing. The rehabilitation of the species did not begin until the
control of sea lamprey was initiated and the closure of commercial lake trout fish-
eries became effective. With the continued enforcement of sea lamprey control and
the limitation of commercial and sport fisheries, the restoration of lake trout appears
hopeful. Since the restoration means the creation and conservation of favorable habi-
tats for its subsistence and reproduction, the identification and quantification of its
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spawning habitat in the Great Lakes become a crucial component of any restoration
program. Given the large area of the shoreline, a detailed survey such as done in
conventional hydrographic surveying would be impractical due to its high cost. With
recent advances in seafloor mapping as well as real-time data storage and processing
technologies, it has become feasible to conduct a survey with relatively inexpensive
remote sensing techniques. Because of the depth requirement in an underwater sur-
vey, and because acoustic waves can propagate far enough in the water to provide
sufficient areal coverage in a timely fashion, an acoustic remote-sensing operation
using sonar was adopted for this project.

Bathmetry and seafloor acoustic remote sensing have attracted much attention
in recent years. Continuing efforts (Alexandrou et al., 1992; Cervenka and Moustier,
1993; Collins and Gregory, 1996; Curran, 1995; Malinverno et al., 1990; Moustier,
1989; and the references therein) have not only designed novel measuring instruments
and improved existing ones, but also led to the development of methodologies for
terrain characterization at different scales. Lake floor classification requires the char-
acterization of surficial substrate type. Although lakes are typically shallower than
seas, the sensing technologies used are similar.

Using underwater sonar method, the time required for signal transmission is de-
termined by the depth of the water; while the returning energy, or the backscatter,
is affected by the characteristics of the lake floor and its immediate subsurface. This
work employs a single-beam echosounder to provide both depth data and the signal in-
put into a bottom classification sensor. RoxAnnry, an instrument recently developed
by Marine Microsystems limited (Scotland), is used for classification. It processes the
output signal from the single-beam echosounder to determine the bottom’s roughness
and hardness, which are used to infer the lake floor type. In general, the classifica-
tion requires several steps including data acquisition and pre-processing, geometric
registration and rectification, pattern recognition, and high-level geographic informa-
tion extraction. This paper is concerned with the pattern recognition step. More
specifically, it aims to improve the design of the surficial substrate type classifier of
RoxAnnry data.

The design of classifiers amounts to the specification of a set of discriminate
functions or tools which are used to divide the measurement space. RoxAnnry sup-
plies three measurements, e;, e; and depth data, to the data acquisition system.
The first two are employed for substrate type classification. Independent DC voltage
readings from 0 volts to a maximum of 4.09 volts, e; indicates the topographical
roughness or the ‘texture’ of the material on the surface of the lake bed while e,
provides information on the relative hardness or acoustic impedance of the lake bed.
It has been shown both theoretically and experimentally that the e; and e; data
contain information on the substrate particle size and type. Ideally, the same floor
type should generate the same e; and ey pair or a unique vector, which appears as a
single point on the two-dimensional e;-e; space. Because of the inherent randomness
of variation in particle orientation, underwater condition, and noise in the remote
sensing equipment, the signal on the ej-e; plane will appear as localized clusters
or clouds of points instead of a single point. Nevertheless, since the regions of the
clusters corresponding to specific bottom surficial substrates are more or less distinct,
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they can be associated to surficial substrate types and therefore serve as a classifier.

The classifiers that have been employed are the so-called RoxAnn squares in
the Hypacky,, software. They are constructed by a superuvised classification method
which uses training samples to learn the correspondence between e;-e values and the
substrate types. The normal procedure is: First, choose test beds with known floor
features for data acquisition. To gather the ground truth information for quantifying
the feature of the lake floor, various methods such as sonar grab samples, visual
inspection by divers, lake bed photographs, and underwater video recording can be
used. Secondly, collect remote sensing data from the test beds chosen. Based on the
correspondence between the floor types and the signals obtained, regions containing
distinct categories are circumscribed on the e;-e; plane. This procedure will result
in a number of rectangles having different shapes and sizes, separated or more or
less overlapped, each representing one type of surficial substrate: fine sand and silt,
mixed cobble, gravel, etc. The delineated plane so obtained can then be used as
classifier for identification of the coverages of other lake floor areas. Figure 1 shows
a typical RoxAnn-square chart in Hypacky,,, which covers twelve different surficial
substrate categories. The future data location on the chart determines the substrate
type of the lake floor from which those data have been collected. It can be seen that
the construction of classifiers such as RoxAnn squares is a crucial step in lake bed
identification and quantification.

coarse
sand

fine sand

el

Fig. 1. Typical RoxAnn squares.
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Similar to other texture quantification process, the classification of the lake bed
is a pattern recognition procedure. Statistical methods are appropriate for pattern
recognition for several reasons. They are suitable for dealing with random variations
in the remote sensing data. They can be used to construct the confidence regions for
classification. And they also allow us to specify overlapped regions and to distiniguish
between them with certain probabilities. Our work incorporated statistical methods
into the existing RoxAnnry technique. Based on a multivariate statistical approach,
confidence RoxAnn ellipses were constructed and were shown to be better classifiers
than the squared ones. For further classification, an approach which minimizes the
expected loss from misclassification is proposed and used to map several types of lake
bed coverage onto the e;-e; plane. To handle more general cases, a minimax proce-
dure is suggested which minimizes the maximum expected loss from misclassification.
The relationship between these approaches and the traditional likelihood ratio tests
is discussed.

This paper is organized as follows: A brief description of the sonar system and the
data acquisition process is given in the next section. The confidence region approach
is employed to design the pattern classifiers in Section 3. Section 4 studies several
isolation methods and provides a figure to facilitate direct lake bed categorization.
Summary and further discussion are provided in Section 5.

2. System Description, Data Acquisition and Preprocessing

Our ultimate goal is to characterize the lake floor according to various surficial sub-
strate types along the entire 350 km Minnesota shoreline of Lake Superior thereby
identifying those regions favorable for lake trout spawning. This requires a survey of
an area of 120 square kilometers for which there is no data available on bottom-type
characteristic for any sizable part. At the initial phase of the project, a number of
regions having a total of 8 square kilometers were chosen, which were believed to be
areas of interest from the historical information on lake trout habitat. These regions
were then prioritized according to their accessibility. In six cruises during the past
two summers, eight regions were surveyed to collect data.

The geometric locations of acquired data were registered by using real-time dif-
ferential GPS, which also provided meter-level position accuracy for the survey vessel
in real time, a very important piece of information for navigating transects.

The two types information needed are depth and bottom category. Given the
large area to be covered, the sensors have to be relatively efficient. A single-beam
echosounder, the Innerspace 4481y, provides both depth data and the signal input
into the RoxAnnty bottom classifier. RoxAnnry processes the output signal from
the Innerspace 4481y to determine the bottom’s roughness and hardness, which, in
turn, are used to infer the lake floor type.

Data integration, reconciliation and initial processing are accomplished with
Costal Oceanographics Hypackr,, software; later analysis was performed with
Arc/Info (Environmental Systems Research Institute). Similar to other remote sens-
ing technologies, the first step in data analysis is to assess data quality and to remove
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the bad data. From our experience, bad data happen occasionally with all echo
sounders. Therefore it is necessary to filter data in Hypacky,, first before further
analysis. Two types of reference data are chosen to support the analysis of RoxAnn
data: video recording and grab sampling.

3. Confidence Region Approach

Due to the random effects from a number of sources, the remote sensing data acquired
are random variables. Using statistical method requires the knowledge of their proba-
bility distribution, which is unknown and must be estimated from the data collected.
In this section, the probability distribution of the remote sensing data is analyzed
first, which is the basis of the next step, building the confidence RoxAnn squares with
predefined significance levels. Such an approach implies the assumption of the inde-
pendence of e;-e; data, which is not always true. Therefore classifiers are designed
for the more realistic conditions where e; and e; are correlated. Elliptical regions
are constructed and compared with squared regions for classification.

To proceed, a few words about the notation are in order. In the sequel, z' will
be used to denote the transpose of z; and Z stands for the estimate of z.
3.1. The Probability Distribution of the Remote Sensing Signal

Supplied by RoxAnnry, each of the two parameters e; and ez consists of two com-
ponents: deterministic and random. In this work we make the following assumptions.

(A1) The noise is additive. Let e;(z) be the signal taken from an arbitrary point of
the lake floor z, where z = (z1,2)" is the geometric coordinate of the point
being surveyed. Then

ei(z) = e, q(z) +eir(z), 1=1,2 (1)

where €; g(z) and e;.(z) denote the deterministic and random components of
ei(z). The former is the ‘true’ value while the latter reflects a combined random
effects originated from various sources.

(A2) The noise is spatially stationary and follows a normal distribution with mean
E{eir(z)} =0
and covariance

0 if Az#£0
E{ei,r(m)e;w(w + Aw)} = (2)
o? if Az=0

2

where 1 =1,2; Az = (Azy,Axs)’; and E is the expectation operator.
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(A3) For the same type of ground coverage, e; 4(z) is a constant regardless of its
geometric location, i.e.,

eid(r) = p;, 1=1,2

Based on assumptions (A1)—(A3), the e;(z) and ex(z) signals have normal distri-
bution with means p; = e1,4(z), p2 = ez q4(z) and variance o? and o2, the same as
the variances of the random components e; »(z) and es ().

Remark. Recall that a spatially stationary process is one with constant mean and
covariance. Assumption (A2) indicates that the process is uncorrelated in the sense

of (2).

In view of the assumptions above, the process e;(z) is roughly ‘independent’
of the spatial variable z. In reality, e;(-) clearly should be z-dependent. However,
in our data acquisition process, we let the survey boat drift over different bottom
types with the sensor collecting data while an underwater video camera recorded the
bottom features directly below it. Data acquired from areas of different substrate
types were stored in separate files. In other words, each area from which data were
taken is essentially ‘homogeneous.” Therefore the assumption of spatial stationality
is valid.

Although (A1)~(A3) are imposed, the means p; and the variances o? are un-
known. In the subsequent development, we will first obtain their estimates and per-
form related data analysis, which are the necessary steps in the determination of
the pattern classifiers. The analysis to follow belongs to the off-line category. The
estimation requires both point estimation method and interval estimation procedure.

Because e;(z) are assumed to be spatially stationary, a natural approach is to use
the sample mean &; and the sample variance S? as estimates of their corresponding

populatlon parameters, p; and o?. For i = 1,2, denote the sample collected by e’
(7 =1,...,n). Define

éz':lzj (3)
j=1

2 1 ¢ 2
5;:5216—62 ‘ (4)
iz

Since this is a large sample case, i.e., n > 1, 1/n can be used in the calculation of
S? to replace 1/(n — 1) without introducing bias. Different from the description in
the preceding paragraphs where the signals are registered according to their spatial
or geometrical location, el (i =1,2; j =1,...,n) are arranged in a sequential order
of its collection as presented in Fig. 2. We then compared these sample distributions
with normal distributions having mean p; and variance o7 estimated from &; and
S?. For each of the eight categories prescribed we displayed the empirical distribution
of the collected data. A typical comparison is presented in Fig. 3, which suggests a
good fit to normal distribution.
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To verify this quantitatively, a Kolmogorov-Smirnov goodness of fit test was
conducted. It requires a hypothesis testing of

Ho: fi(*) ~ N(ui,of)  vs.  Ha: fi()) # N(pi, 07) (5)

where f; () is the probability density function of eg. Consider the sample cumulative
distribution function 7., given by

k ;
T..{u) = - for & <u< ég

for £k = 1,...,n where égl) < e < éz(-") are the order statistics of the sample
e} which take values in (0, 4.09). Choose the test statistics to be the least-upper-
bound of the absolute difference between the empirical and hypothetical distribution

functions and denote it as D,, i.e.,

Dy= sup |T.(u)— ®;(u)] (6)
0<u<4.09

where ®(u) is the cumulative function of A (u;,0?). For a designated confidence level

(1 — @) x 100%, the D, value is compared with the Kolmogorov-Smirnov acceptance
limit A = KSjimit(1 —a). If D, < A we accept the null hypothesis and conclude
that the probability of e} having normal distribution is 100(1—a)%. Table 1 lists one
of the typical test results. Using sample size of 345, it suggests, at a 95% confidence
level, that both e} and e} have normal distribution.

Table 1. Kolmogorov-Smirnov test for fit to A (s, 07).

Du(e:1) | Du(ez2) | A = K Slimit (95%)

0.0527 | 0.0381 0.0657

It should be pointed out that if the sample mean rather than the sample itself is
used in the statistical method, according to the Central Limit Theorem, the sample
mean follows a normal distribution A(u;,07/n) when the sample size n is large
enough. Consequently, normal distribution can be adopted directly without further
verification.

3.2. Confidence RoxAnn Squares

Training sample data were collected from forty-five areas during our three cruises.
Each area was believed to have the same ground coverage. Those data were then
used to train the pattern classifier—to circumscribe the ranges of e; and e; for each
individual substrate type. The pattern classifiers are defined based upon the corre-
spondence between the values of ej-e» pair and the type of surficial substrates. In the
statistical approach each pattern is characterized by its probability distribution. Since
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it has been concluded that each class can be approximated by a normal distribution,
to characterize a pattern only requires to estimate the parameters p; (t=1,2) and
to define their ranges at a certain confidence level from the training data collected.

On the bases of assumptions (Al)-(AS), for a specified positive number 0 <
a < 1, P(le; — p;]/0; < 24/2) = 1—a. Equivalently, we have 100(1—a)% confidence
that p; is within the region

L= (ei_za/2‘7i’ei+za/20’i) for 1=1,2 (7)

Equation (7) provides confidence intervals for the means y; and uy. Using the data
from a surveyed area with certain type of coverage, a confidence square centering at
(&1,&2) and having an area I; x I can be built on the two-dimensional e1-ey plane.
This square can serve as a classifier of the same type of lake floor for data taken
from other areas without ground truth information. For instance, if the square was
obtained from the lake floor covered with gravel under a = 0.05, for any data acquired
falling on this square, we conclude with 95% confidence that the ground coverage of
the area from which the data was taken is gravel. Eight such squares were constructed
under 90% confidence level, each corresponding to one type of floor type as shown in
Fig. 4(a)—(b). The two-dimensional e;-e, plane consisting of these confidence squares
can then be used for future classification. Those areas without enough data support
are labeled as ‘unknown’, or might be types of surficial substrates that do not occur
in the areas sampled or are mixtures that require more data to sort them out from
other categories.

3.3. Confidence Ellipse

The confidence RoxAnn squares were constructed based on individual confidence in-
tervals for y; and p, which implies the independence between the e; and ey data.
A typical set of e;-e; data output from RoxAnnry is displayed in Fig. 5. The pat-
tern suggests that these two parameters are not independent. A positive correlation
can be easily recognized. Data analysis showed that for different types of substrates
the correlation coefficients between e; and e, range from 0 to 0.8. To illustrate this
phenomenon properly, we replace assumptions (A1) and (A2) with (A4) and (A5):

(A4) The noise is additive. Write e(z) = (e1(z) ez(x))’,
e(z) = ea(z) + er(2) (8)

where eq(z) and e(z) are its deterministic and random components, respec-
tively.

(A5) The random component e,(z) is normally distributed and

0, if Az#0

E{e,(a:)} =0, E{er(.'b)e;(l‘ + Ax)} = { ¥, if Az =0
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Fig. 5. A typical set of e;-e2 data.

From assumptions (A4) and (A5), the random vector e(z) = (e;1(x) ez(z)) follows
a bivariate normal distribution with probability density function

£&) = @07 exp [ - S(e - wyS e - )] ©)
having mean

= M1 _ €1,d
H2 €2,d

and the covariance matrix

2

Jg11 012 2 0102012

2
021 022 0102012 g5

3=

Being a measure of the association between e; and ea, the correlation coefficient p;,
is defined as

012
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Consequently, egns. (3) and (4) should be replaced by

1 > el (10)
n o

o
i

s* =

S

i (¢l —&) (el — &) (11)

where & is a vector having density A(u,%/n) and S? is a matrix. Since ran-
dom vector e follows N(u,X), e’ te is distributed according to a non-central
x?-distribution with two degrees of freedom and noncentrality parameter u'X~!p.
Equivalently, n(é — u)'S71(¢ — ) has a central y2-distribution with two degrees
of freedom. On the basis of this fundamental fact, we can establish confidence re-
gions for . Let 0 < a < 1, e.g., o = 0.05, and x3(a) be the number such that
P{x3 > x3(a)} = . Hence

Iﬁn@—uyz*@—u)>xaw}=a

To test the hypothesis of the mean being po = (p1,0 #2,0)', we may use the critical
region defined by

n(e — o) Z1E ~ o) > x3(a) | (12)

In the R? space, inequality (12) defines the contour and the exterior of an ellipse
centered at po. The shape of the ellipse depends on $7!. Its major axis makes an
angle 6 = 1/2[tan"'[2p0102/(0? — 02)] with the ej-axis. Its size is determined by
X3(a) for a given 1. If the true mean of e, u, is very much different from pyg, the
point € in the two dimensional e;-e; space w111 be far from the point of pp and will
fall near the edge or even outside the ellipse. Therefore if (12) is satisfied we conclude
that the mean of the signal is not po. Equivalently, the type of the bottom coverage
is not as initially suggested.

To decide whether the signal came from a particular type of surficial substrate
requires a test of the population mean. From the data collected for each category,
we calculated the estimates of the parameters i = ¢g, ¥ = S2. For designated
significance levels (10% and 5%), confidence ellipses are constructed from (12) with
the parameters replaced by their estimates. Figure 6 presents the RoxAnn confidence
ellipses obtained from the survey data at a 90% confidence level, which, similary to
the RoxAnn confidence squares, can be used as a substrate type classifier.

3.4. Comparison of Two Approaches

To compare the two classifiers discussed above, the data collected from known types
of lake beds were spotted on the ej-ep plane. The percentages of their correct
coverages by both confidence ellipses and confidence squares were computed. Table 2
and 3 are comparisons between these coverages under significance levels 0.1 and 0.05,
respectively. They show clearly that the elliptical-region approach is superior to the
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Fig. 6. Confidence ellipses from survey data, confidence level: 90%.

Table 2. Percentages of correct coverage of the training data.

Significance Level: 0.1

Category | v | 2 | 3 [ 4« ] 5 [ 6 [ 7] 8]
RoxAnn squares | 87.00% | 89.45% | 86.00% | 91.95% | 79.25% | 82.52% | 80.00% | 80.16%
Ellipses 90.77% | 94.58% | 92.20% | 91.95% | 99.74% | 89.92% | 89.28% | 90.42%

Table 3. Percentages of correct coverage of the training data.

Significance Level: 0.05

Category | 1+ [ 2 | 3 | 4 [ 5 |6 | 7 ] 8]
RoxAnn squares | 92.60% | 94.58% | 93.09% | 94.46% | 99.04% | 87.33% | 88.41% | 91.72%
Ellipses 94.79% | 96.43% | 96.54% | 94.46% | 100.00% | 92.69% | 94.49% | 95.49%

squared-region one. The former provides a higher percentage (up to 20.49%) of correct
coverage. An ‘amplified’ comparison is given in Fig. 7, where the advantage of using
ellipse can be recognized.
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Fig. 7. Comparison of two approaches: confidence RoxAnn
squares and confidence ellipses, confidence level: 90%.

This method relies on the assumption that the signals e, and e, have bivariate
normal distribution. It is necessary to ensure that such an assumption is valid and
to detect those cases where the assumption is seriously violated, such as the cases
where the probability distribution is multimodal, and to develop methods to separate
the offending classes into approximately normal subclasses. The areas to be analyzed
are large and heterogeneous, which makes it very difficult to collect sufficient training
samples for all types of lake surficial substrates. Moreover, it is almost impossible
to locate large homogeneous areas with single coverage for collecting ‘pure’ samples.
Therefore, a purely supervised analysis is not sufficient, and hence the adoption of
a hybrid approach by incorporating the unsupervised method into supervised ones.
Specifically, by displaying and analyzing the signals collected, we applied a clustering
method to separate the data into unimodal classes.

4. The Classification Problem

The confidence regions, squares or ellipses alike, are centered at the means of the e
and ey signals, & = (&, &)'. Their shapes are determined by X!, and their sizes
are decided by the prescribed significance level for a given £~!. For lake floor having
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m possible types of surficial substrates, the design of the pattern classifier requires
circumscribing the regions of R2,R%,...,R2  in the entire two-dimensional e;-e;
space. In a future classification, the location of the observed signals (or their mean)
is checked. If it falls onto IR?, it is classified as coming from type j. Such underwater
pattern classification using remote sensing data remains to be a challenging problem
partly because the physics of the interaction of acoustic waves with the lake bed is not
completely understood; it has been observed that different substrates can have similar
acoustic signatures. Furthermore, due to the inherent randomness of the data and
the various shapes and/or angles of the confidence regions, it is not uncommon that
there are areas overlapped by territories belonging to different floor coverages (see
Figs. 4(a)-(b) and 6). Consequently, decisions are frequently required to categorize
an individual measurement falling onto the overlapping area into one of the two or
more types—a classification (isolation) problem.

4.1. The Cost, the Loss and the Risk in Classification

In developing a procedure for isolation, it is desired to minimize the loss from mis-
classification. Consider the simplest case—an area overlapped by only two types of
surficial substrates, e.g., sand and cobble, hence there are only two kinds of errors
involved, i.e., a signal actually from sand (category 1) being classified as from cob-
ble (category 2) or wvice versa. We want to minimize the probability of these errors
weighted with their ‘undesirability.” This undesirability is usually characterized by
the average or expected loss being involved in this procedure.

Let f;j(e) be the probability density of measurements resulting from type j
coverage; the region R? is specified on the basis of f;(e). In the two-category case the
probability of correct classification of a measurement actually coming from type 1 is

P(1]1,d) = /n;z file)de (13)

and an incorrect decision which classifies an observation actually resulting from type 1
as from type 2 has the probability

P@&@=AJ@M@ (14)

where d is the decision rule for isolation. If the cost of this misclassification is C(2|1),
then the loss associated with the above misclassification L(1,d) is

L(1,d) = C(2]1)P(2|1,d) (15)

Assume the probabilities (proportion) of the coverages by these two types are known
a priori as g1 and gz, respectively. Then the expected loss from misclassification of
a signal which actually belongs to type 1 as from type 2 will be

L(1,d) = q1C(2]1)P(2]1,d)
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Hence the total expected loss (the risk) from costs of misclassification in the two-
category case is

L(d) = ¢1C(2|11)P(2|1,d) + ¢2C (1]2) P(1/2,d) | (16)

It is this expected loss that we wish to minimize. The above procedure can be easily
generalized to multi-type cases. For an area overlapped by m possible coverages, the
total probability of incorrect classifications of measurements from type ¢ as from other
types is

S P(jlid= /zfi(e)de (17)
j=L.j#i j=1,5#i ' R;

The loss associated with these misclassifications can be computed from

L(i,d)= Y C(jli)P(jli,d) (18)

J=1,j#i

Then the total ezpected loss we wish to minimize is

ﬁ(d>=zqiL(i,d>=Zqi{ 3 O(ﬂz‘)P(jw;d)} 19)
=1

N

where ¢; is the a priori probability of the proportion of the coverage by category i.
A function d(-) which minimizes the risk (19) is the decision rule selected for classi-
fication.

4.2. Decision Rules for Classification

Given ¢; and fi(e), we need to choose decision functions to minimize the expected loss
(16) or (19). This can be accomplished under the framework designed in (Anderson,
1984). In the two-category case, the regions of classification, R? and RZ, should be
chosen according to the following two inequalities:

, A0 . CURe
K e = oeDa o
g hO) 002 -

fa(e) ~ C2Da
Whenever the first inequality is true, we conclude that the lake bed is covered by
category 1; otherwise, category 2.

The above procedure can be generalized to the multi-category cases, in which
the total expected loss is given in (19). The signal e comes from type k coverage if
the following inequality holds:

m m

Zqic(klz‘>fi(e)<2_qz-C(jli)fi(eL i=1...,m, j#k (21)

i=1,i#k i=1,i#]
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This can be further simplified if the costs C(jj¢) (i=1,...,m; j=1,...,m; i # j)
are all the same. Then
g 29,
fie) T a
If the inequality (22) is satisfied, it is concluded that the lake floor should be catego-
rized as type k.

ji=l...,m, j#k (22)

4.3. Classification with Known A Priori Probabilities

In an area having two possible types of coverage, classification requires to designate
the measurements as from one of the two distributions N (p1,%1) and N(ug, Z2).
The classification can be accomplished by testing the hypothesis Hy: type 1 coverage,
against H): type 2 coverage, based on the available observation e. This is equivalent
to testing:

Ho : feim,(e) = Wexp [— %(6 —m)' T (e - m)]
vs.
1 1 e —1
Hy : feom,(e) = Wexp [— 5(6 —p2)' B2 (e ‘-[1,2)]

The ratio of densities in (20) is

2&3 = {:%i’—:}lﬂexp{—%[(e—ul)'21_1(6*111)—(6—#2)’22_1(e—/JZ)]} (23)

with 412 defined as

_cPR)e
"= Cene

Let

- {M}I/Z
12 = 712 |22|

The first inequality in (20), the region for R? or the classification into type one, is
obtained as the signal e satisfying

file) _ .
() > M2

or

—ple—mymiie—m) - - m S e - )] 2lume (29
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The same arguments can be made for the classification into category two. Therefore
with known e priori probability, let ¢ = —2In~;5. The decision rule is

RE: (e—m)' S (e—pm)—(e—p2) Sy e—pa) <c
(25)
R : (e—m)Tite—m)—(e—pa) Ty (e—pm) > c

The decision procedure (25) minimizes the expected loss from misclassification. To
carry out this procedure, the required population means p; and variances £; need
to be replaced by their estimates, e.g., their maximum likelihood estimates & and 52
can be used.

For a lake floor with m substrate types, assuming that the costs of misclassifica-
tion C(j|i) are the same for all ¢ and j and that the a priori probabilities g; are
known, define %;; as

-
"

for j =1,2,...,m and j # k, the region Rf is defined by those e satisfying

fi(e)
fr(e)

e T B e B e=m)] b 2 7

k=1,...,m, k#j (26)

4.4. Classification with Unknown A Priori Probabilities—the Minimax
Procedure '

For a given decision rule d(-), the risk function £(-) is a function of the parameter
g=1(91,92,---,9m)". In the above discussion, ¢ has been taken as a constant vector.
If the parameter ¢ € @ is a random variable distributed according to the a priori
probability density function (or mass function in the discrete case) m(q), then the
average loss from the use of d(-) is

B(n(q),d) = E.L(q, d) = ExE,L(q,d)

The risk B(n(g),d) is the so-called Bayes risk and the decision function d*(-) that
minimize this risk is the Bayes procedure (rule), namely,

B(r(q), d*) = i%fB(ﬂ(q), d)

We are interested in the Bayes procedure because it is admissible in the sense that
there are no other procedures better (incurring less risk) than this. In addition, the
Bayes procedure can be used to facilitate the determination of the minimax method
which will be used for classification in the later sections.

An ideal solution for making decisions would be the choice of d(-) such that the
risk function £(g,d) attains a minimum for all ¢ € Q. Unfortunately this is usually
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impossible, i.e., we cannot find a decision rule that minimizes £(q,d) uniformly in Q.
Since it is not clear a priori which ¢ is the best choice, to balance between optimality
and robustness, a minimax procedure

mdin max L(g,d)

is often employed. This procedure is designed to choose d*(-) € D so that the
maximum expected loss is a minimum, i.e.,

max L(g,d* (") < max L(g,d("))

The idea here is to consider the worst case scenario and to minimize the largest
expected loss, i.e., the largest risk.

In lake bed classification, the a priori probability ¢; (j = 1,...,m) is corre-
sponding to 7(g) in the above discussion. Considering the fact that in general Bayes
procedures are admissible and admissible procedures are Bayes or limit of Bayes pro-
cedures and further assuming the costs C(jli) = 1 (j # i), Anderson (1984) has
given the minimax solutions for classification of random variables into two and multi-
ple populations. He showed that in the bivariate case, the minimax procedure is the
Bayes procedure for a priori ¢i (and ¢3) such that

P(2|1,q:) = P(1|27q:) (7' = 1a2)

and in the multivariate case, the minimax procedure is the Bayes procedure for a priori
g7 such that

Pl ) = P(li,g), (G=1,...,m,j #4)
If C(j]¢) are the same for all 3,

Li,d)= > CG)P(ili,d) = > P(jli,d)
J=1,j#1 j=1,5#1

In general, therefore, the minimax procedure is the Bayes procedure for which the
risks L(i,d*) are equal.

According to the above discussion, classification of 'signals having normal dis-
tribution with unknown a priori probability can be carried out. Define a random
variable y as

y=(e—m)T17 (e —p1) — (e — p2)'To ™ (e — o) (27)

Comparing (25) and (27), it can be seen that when y < ¢ or y € (=o0,¢), € € R2;
ie., the substrate is type one; while when y > ¢ or y € [¢,+c), € € RZ; ie., the
substrate belongs to type two. If ¢; and ¢, are unknown, ¢ = —2ln-~, is unknown.
To find the value of ¢ becomes the key issue in isolation. We resort to the minimax
procedure for solution. Since the minimax procedure is the Bayes procedure d*(z)
for ¢f such that it makes C(2[1)P(2[1,¢7) = C(1|2)P(1|2,¢}), if the signals have
normal distribution, and further assume that £; = %5 = ¥, the minimax solution
can be obtained by using essentially the same derivation as in (Anderson, 1984).
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Write

n? = (p1 — p2)' S (1 — p2)

It can be seen that the random variable y distributes according to A(3n%,7%) or
N( - %n*n?) if the signals e have distribution N'(u1,%) or N (uz,X). Therefore,
the misclassification of e from type one as from type two is equivalent to the mis-
classification of y into A(—3n?,7?). Introducing a new variable y here serves to
simplify the calculation. Observe that

¢ 1 1 1

- - -Ly—§n")?/m*
P(|) /R%fl(rv)dw /_wmne b gy

Use this change of variables to the calculation of P(1]2) again. With given
C(1)2) and C(2]1), seeking a minimax procedure which makes C(2|1)P(2|1,¢}) =
C(1|2) P(1]2,q7) is equivalent to finding the value of ¢ which satisfies the following
equation:

o0 1 L2 (e=3n*)/n 1 L2
cal) / L4 4= cn) / 3 4 (28)
(

c+3m2)/n V2 —c0 v2m

To solve (28) for ¢, a trial and error procedure is often needed. For the cases where
¥ # Xg, let

7 = 2u5 8o — pi Sopn — pySapy
M = =2 T + S — Ty

The normal random variable y has mean n? or n? if the mean of the signals e is
p1 or po. A procedure similar to the above derivation gives the covariance of y.
However it has a much more complicated format than the equal covariances case.

In summary, if the a priori distribution is known, then ¢ = —2Iln~;2 can be cal-
culated, and use (25) for classification. In the case of unknown a priori probabilities,
using a minimax approach leads to (28). The solution of (28) provides the required
value of ¢. With ¢ available, (25) can be used for isolation. It should be mentioned
that the cost from misclassification, C(i|j), is determined from the importance of
the category concerned. For instance, it is known that the floor covered by mixed
cobbles is most favorable to lake trout spawning. Therefore it is reasonable to put
more weight on the cost of misclassification of this category. The above method can
be generalized to a higher dimension case easily.
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4.5. The Likelihood Ratio Tests

Hypothesis testing can also be constructed based on the likelihood ratios. Let ©
be the set of all possible parameters. For the two subsets ©; and ©2, ©,.C O,
QO C © and O, N Oy = §, an empty set. In our case § = (1, %), 1 = (u1,%1)
and 05 = (pp,32). Given a sample of size n, e = (e!,€2,...,e")’, to test Hy:
e~ fp,0 € O against Hy: e # fg,0 € O, the likelihood ratio test is one having the
form: For certain constant c;, reject Hy if and only if the likelihood ratio A;(e) < ¢,
where

Al (6) - SUPgco, f9(617 62: R ,en) (29)

SUPgeco fB(el, 62, RS en)

The numerator is the best explanation of e in the sense of maximum likelihood
that the null hypothesis Hy can provide, and the denominator is the best possible
explanation of e. Owing to the fact that ©; C ©, 0 < A; < 1. For a predefined level
0 < a <1, the constant c¢; is determined from

sup Py{e: Ai(e) <1} =«
9O,

For a normal distribution with known X, let ©; = {1 }. It is easy to show that to
test A1(e) < ¢1 is equivalent to testing

)= Ve e )

>c (30)

Under Hy and large n, the statistic z(€) has a normal distribution with zero mean.
By choosing ¢z = 2z4/2, the hypothesis testing can be carried out.

In the classification into one of two categories, we can use the likelihood ratio test
described above for categories 1 and 2, respectively, then compare their respective X
values. As an alternative, we may define the likelihood ratio as Aj(e)

supyece, fo(e,e%,...,e")
SUpgeo, fo(el,€2,...,en)

PR

exp {3 2 [(emmy BiHemim) = (= emm)] | (1)

n

Xy (e) =

and the decision is made by comparing Aj(e) with a constant c3. Again, the nu-
merator is the best explanation of e in the sense of maximum likelihood that the
null hypothesis Hy (# € 61) can provide, and the denominator is the best possible
explanation H; (@ € ;) can provide. The null hypothesis (type 1 coverage) is re-
jected when a better explanation of e is provided by H; (type 2 coverage); or when
X, (e) < ch. Note that different from A;(e), Aj(e) can take any nonnegative value.
For a predefined level 0 < a < 1, the constant ¢ is determined from

sup Pp{e: \y(e) < b} =«
€O,
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Let
n/2 n/2
_ L (1EN VNG
c3 = C3 (m and Az(e) = Ay(e) 5|

The decision is made by comparing ln As(e) with the threshold value c3, i.e.,

InAz(e) = "glz' D (e — ) S He — ) — (e — p2) B2 (e — pa2)] > e

It can be seen that the result is essentially the same as the one presented in (25). The
classification problem now comes down to the choice of c3.

To carry out hypothesis testing using any statistics requires its probability dis-
tribution. In this case, the probability density function of ln As(e) is needed. Ob-
serve that a function of the likelihood ratio, —2In\y(e), is the same as the statis-
tic y defined in (27). As analyzed above, y ~ N (3n%,7%) if e ~ N(u1,X), and
y ~N(=1n%n%) if e ~ N(us,X). With the probability density function of y
available, a decision can be made upon choosing an appropriate threshold value c;.

Using the regular confidence region approach, designate a confidence level «, the
constant cg, i.e., the critical region is determined from

1
sup Pp{z :InXa(z) < c3} = sup Pply: sy < s} =«
9€6, 6€6, 2

As an alternative, ¢z can be chosen according to the minimax criterion. Following
the same derivation presented in the previous section, the same result as given in (28)
is obtained with ¢ replaced by es.

In short, the classical procedure for constructing tests based on likelihood ratios
can also be used for classification. These tests have some intuitive appeal and fre-
quently lead to uniformly most powerful procedure. The likelihood ratio (29) can be
used as the test statistic. It has normal distribution when n is large. If the test
statistic as defined in (31) is chosen, either a test resulting from the traditional confi-
dence approach, or a test derived from the minimax procedure can be applied, which
provides the same result as the one obtained in the previous sections.

4.6. Classifier Capable of Direct Classification

Figure 6 circumscribes el-e2 ranges for various categories on the basis of the
90% confidence level. For signals falling onto those overlapped areas, inequal-
ities (25) and (26) can be used for real-time classification. It is conceivable
that a higher confidence level will result in a confidence ellipse diagram with
much larger overlapped areas, which will certainly increase the work load in
classification. In addition, it is desirable to have more efficient tools capable of
bypassing the computation and comparison steps required by (25) or (26) and
providing the result directly. To facilitate future classification, by choosing the
a priori probabilities ¢;,qo,...,¢m according to past experience and by apply-
ing (26) to each point on the el-e2 space (0 < e; < 4.1, 0 < ey < 4.1), we
have constructed Fig. 8, where the eight delineated regions serve as classifiers of
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Fig. 8. Classifiers of lake bed surficial substrates.

the corresponding eight different lake floor categories. These categories occupy most
of the lake bed of Lake Superior and include those which are most favorable to lake
trout spawning.

5. Summary and Discussion

This work is concerned with the design of pattern classifiers for the lake bed terrain
using the multivariate statistical method. Although the methods utilized belong to
off-line procedures, the classifiers obtained are applicable to on-line isolation. Terrain
characterization can be carried out with the confidence RoxAnn ellipses provided,
or conducted using the categorization figure (Fig. 8) if a further isolation is neces-
sary. Embedding these figures into the existing RoxAnnty; technique will enable an
automated classification of lake bottom surficial substrates.

Although the devices are specifically developed for RoxAnnry, a relatively new
system, the methodology and rationale are applicable in other systems. For remote
sensing systems which use the backscatter of the acoustic signal directly, other ap-
proaches are needed to provide meaningful interpretation of the reverberation. It
has been found that characterization is more difficult for those small-scale features
in otherwise homogeneous regions. Due to the complicity of the underlying problem,
simple interpolation and/or extrapolation are usually not sufficient. There have been
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numerous reports of different approaches (e.g., Jhung and Swain, 1996; Masson and
Pieczynski, 1993; Paola and Schowengerdt, 1995) such as developing a model for fu-
sion of optical images, radar images and Geographic Information Systems data using
Bayesian estimation techniques, designing backpropagation neutral network as classi-
fiers, and employing a random field model for Bayesian image segmentation of satellite
remote sensing problems. In order to design more universal classifiers and to achieve
more accurate results, our effort has been directed to developing new classification
algorithms using stochastic approximation methods (Yin and Yin, 1993; 1994; 1996),
as well as designing a new procedure based on a discrete Markov Random Field.
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