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NEURAL NETWORK SIGNAL INTERPRETATION
FOR OPTIMIZATION OF CHROMATOGRAPHIC
PROTEIN PURIFICATIONS

Eric J. KLEIN*, SHEYLA L. RIVERA**

Mobile phase pH and salt gradient steepness are optimized for the separation
of protein mixtures using gradient elution ion-exchange chromatography. The
optimization method utilizes a factorial experimental design to generate an ex-
perimental matrix. The resulting chromatographic peaks are classified into six
distinct classes based on peak geometry by a vector quantizing neural network
(VQN). A modified chromatographic optimization function (COF), which ac-
counts for the neural net classification as well as peak separation and total
analysis time, is used to rank chromatograms in order of desirability. Results of
the COF analysis are fit to a second order polynomial model, which is optimized
in the experimental parameters using an advanced simplex algorithm.

1. Introduction

High performance liquid chromatography (HPLC) is extensively used as one of the
steps in the purification of biomolecules. HPLC is becoming an increasingly popu-
lar process industrially, especially in the pharmaceutical industry where separating
relatively small concentrations of bioproducts from process solvents with repeatable
accuracy is required. In the ion-exchange mode of HPLC, the concentration profile
in the stationary phase, and thus the elution times and profiles of the solutes, is
dependent on ionic strength and pH of the mobile phase. Elution is performed by
introducing a linear gradient of increasing ionic strength to the column using a salt
such as NaCl (Yamamoto et al., 1983).

The selection of optimum operating conditions is difficult and complex for multi-
component protein mixtures. This is due to the lack of a robust process model as well
as to the high degree of interaction between process variables. Optimum operating
conditions would allow for an adequate separation of the feed slug in the shortest
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amount of time possible, thereby maximizing productivity and product purity while
minimizing downstream processing costs.

Several process parameters must be investigated in this optimization problem.
Some of these parameters such as mobile phase composition, flow rate, temperature
and pH can be optimized on-line while others such as chromatographic mode, column
packing and column size must be selected a priori based on the experience of the
chromatographer. Our goal is to optimize process parameters that can be manipulated
on-line, such as mobile phase composition and pH. It is assumed that the optimum
mode of chromatography, as well as the optimum column for the separation, has been
previously chosen from vendor product information or from previous chromatographic
experiences.

In this study, the pH and slope of the salt gradient (ionic strength) are optimized
simultaneously to achieve adequate separation of ternary and quaternary protein mix-
tures in an acceptable analysis time. This is a challenging optimization due to the
complex interactions between these two process variables. Both of these variables
have a strong effect on the elution times of the components, and therefore on the de-
gree of separation between neighboring peaks and on the total analysis time. Changes
in pH affect the proteins’ affinity for the ionically charged column packing since the
formal charge of the proteins is a function of pH. Changes in gradient slope also affect
the elution times of the proteins due to the competitive binding between salt ions and
proteins within the column.

HPLC methods development is traditionally accomplished through an exhaustive
grid search experimental method. Though this method results in acceptable product
separation, it is an extremely inefficient trial-and-error process. It is overly expensive
due to both the time involved and the potential product wasted in the extensive
experimentation.

A success has been reported in predicting chromatograms with theoretical models
(Gallant et al., 1995a; 1995b; Gu, 1995). These models are, however, generally system
specific in that they include thermodynamic properties of the components in the feed
mixture. While these models can be used to predict elution times of a known sample,
they cannot be used in predicting chromatograms for unknown samples, which are
frequently encountered. Furthermore, it is required that the kinetic properties of
the system be measured or predicted in order to use these models. Experiments
must be performed to estimate constants in the adsorption isotherm (usually the
Langmuir isotherm) being used to model the nonlinear adsorption occurring in the
column. These constants can be shown to be functions of the retention times of
the eluents, which are known to be dependent on mobile phase composition and pH.
Therefore these models cannot be used to predict chromatograms and optimize the
separation without performing several experiments at each mobile phase composition
investigated. This extensive experimentation causes the use of these models in process
optimization to be prohibitive.

Several researchers have found that the use of a statistical factorial design test
matrix and a criterion function coupled with an optimization strategy can reduce
the number of experiments necessary in the optimization process. The optimiza-
tion strategies employed previously include computerized grid searches (Lundell and
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Markides, 1993; Cotton and Down, 1983), response surface mapping (Felinger and
Guiochon, 1992; Palasota et al., 1992; Wang et al., 1991), and the sequential simplex
algorithm (Berridge, 1985; Walters et al., 1991).

The method presented in this paper consists of a factorial design, a neural network
to provide automatic peak classification and the use of a response function to quantify
experimental results. These response values are regressed to a quadratic model, which
is subsequently optimized using a sequential simplex algorithm. This method proves
to be extremely efficient, requiring only seven experiments to optimize the two factors
investigated, namely pH and linear salt gradient steepness. Though this method is
illustrated here for known protein mixtures, the methodology is based on the fact that
no a priori knowledge of the mixture is necessary, allowing this optimization scheme
to be valid for unknown as well as known feed mixtures.

2. Optimization Methodology

It is assumed that all fixed parameters are previously chosen based on the chromatog-
rapher’s past experiences with similar sample mixtures. These fixed parameters in-
clude chromatographic mode, column size, packing type and size, etc. The Doehlert
shell design, known for its high efficiency, is used to generate a test matrix which uni-
formly samples the experimental domain defined for the remaining variables such as
temperature, flow rate, and mobile phase composition. The chromatographic peaks
resulting from these experiments are classified based on peak geometry using a vector
quantizing neural network (VQN).

A chromatographic optimization function (COF) is used to quantify each exper-
imental separation based on VQN classification, peak separation, and total analysis
time. COF values are fit to a quadratic response model using the singular value de-
composition (SVD) algorithm. This response model is maximized in the experimental
variables using a constrained, variable sized, sequential simplex algorithm. An addi-
tional experiment is performed at these “optimal” conditions, and the resulting COF
is used to replace the worst COF in the matrix. Optimization can continue in this
iterative manner until the chromatographer is satisfied with the results (Fig. 1).

2.1. Doehlert Shell Design

The Doehlert design has been previously used in the optimization of liquid chromatog-
raphy (Hu and Massart, 1989; Bourguignon et al., 1993). The Doehlert matrix is a
hybrid factorial design which generates d? + d + 1 points which are equally spaced
from each other in d-factor space (Doehlert, 1970). This factorial design, while still
providing an adequate sampling of the entire experimental region, results in a sig-
nificantly lower number of points than the conventional central composite factorial
design which generates 2¢ + 2d + 1 points. This is especially true when several fac-
tors are involved in the optimization. The Doehlert matrix is the most efficient form
of factorial design, with efficiency defined as the ratio of the number of experiments
generated to the number of experimental variables.
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Fig. 1. Flow chart of optimization methodology.

Another attractive property of the Doehlert design is that it is multi-level. For
example, in two-factor space, one factor (in this case pH) is subjected to five different
values in the matrix while the other is subjected to only three (Fig. 2). This feature
allows the researcher to subject the more significant process variables to more levels
than other variables without altering the factorial design.

The Doehlert matrix is generated by first forming a simplex, one point of which
is the center of the experimental domain. A simplex is a geometric figure having d+1
sides in d space. Therefore, for two factors, the simplex is an equilateral triangle.
The remaining d?> points are found by subtracting each point in the simplex from
every other point.

In this study, the optimization variables are chosen to be the mobile phase pH and
the slope of the linear salt gradient. Constraints are set on the optimization variables
to define the experimental domain and the Doehlert matrix is generated (Table 1,
Fig. 2). Low and high limits for mobile phase pH are set at 6 and 9 respectively, due
to concerns of protein denaturation at extremely acidic or basic conditions. Limits
of the salt gradient steepness are set at five and fifty column volumes (CV), where a
column volume is a measure of time (i.e. volume of chromatographic column divided
by mobile phase flow rate) commonly used in chromatography. The low constraint
for gradient time is set at five CV since steeper gradients would approximate a step
gradient rather than a linear gradient. The upper limit is set at fifty CV due to
total analysis time considerations. The experiments are performed, and the resulting
chromatographic peaks are classified using a vector quantizing neural network (VQN).
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Fig. 2. Doehlert matrix.

Table 1. Results of Doehlert design.

[Expt. # ] 1] 2[ 3] 4] 5[ 6] 7|
pH 75] 90] 82] 60[68] 6.8]82
CV  [275 275 ] 4702758047080

2.2. Automatic Peak Classification

The task of automatic peak classification is accomplished by using a neural network
methodology. Specifically, a vector quantizing network (VQN) is employed to classify
peaks as either resolved or unresolved. A neural network is chosen for the task of
pattern recognition since neural nets can be taught to recognize correlative patterns
between input data and target values (Bhagat, 1990). VQN’s have recently been
extensively used as pattern recognition tools. Though VQN’s have not been used
previously to classify chromatographic peaks, they have been used in the fields of
speech recognition (Huo and Chan, 1995), process control (Hinde and Cooper, 1993;
1994; Cooper et al., 1992), and data compression {Gray, 1984).

The vector quantizing network (VQN) is employed to classify the chromato-
graphic peaks into six distinct classes. These classes are Gaussian peaks, fronted
peaks, tailed peaks, peaks with a leading shoulder, peaks with a trailing shoulder, and
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overlapping peaks (Fig. 3). Gaussian-shaped peaks are preferred while overlapping
peaks result from an unacceptable chromatographic separation. Tailed and fronted
peaks suggest a high concentration of solvent, and may require further downstream
processing to reach purity specifications. Shouldered peaks may indicate co-elution.
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Fig. 3. Six peak classes recognized by the VQN.

The input to the VQN is a normalized vector representation of the chromato-
graphic peak to be classified. The output of the VQN is a six element vector, con-
taining all zeros except for one element which contains a value of unity. The element
containing the value of unity corresponds to the class of the input peak as determined
by the network.

2.2.1, Preprocessing

As a rule, size and shape of chromatographic peaks vary since peak areas are pro-
portional to the concentrations of their respective components in the feed mixture.
However, it is necessary that all digitized peaks (vectors) fed to the vector quantizing
network be of identical size.

A preprocessing algorithm has been developed to map peaks to vectors of iden-
tical sizes so that they may be classified by the VQN. This preprocessing algorithm
also filters out measurement noise and normalizes peaks so that peaks of similar ge-
ometry but different magnitude can be correctly classified (Fig. 4). Data acquisition
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Fig. 4. Flow chart of preprocessing algorithm.

is facilitated by interfacing the output of the UV detector of the chromatographic
apparatus with a personal computer. A ten second moving average is employed to
filter out inherent measurement noise.

The presence of peaks in the UV signal is determined based on the percent change
in the signal slope. A threshold in slope increase is set such that a continued slope
increase above the threshold is recognized as the beginning of a peak. The ends of
peaks are determined in a similar manner. In the case of overlapping peaks, indicated
by the UV signal not returning to baseline between successive peaks, the overlapping
peaks are captured as a single vector so that they may be identified as overlapping
peaks by the VQN.

In the case of three or more successively overlapping peaks, neighboring peaks are
captured in one vector, two peaks at a time, in a moving window fashion. The start
of the first peak in the vector and the end of the second peak are artificially continued
to the baseline by using the average values of the peaks’ respective slopes. Thus the
final result is that vectors representing overlapping peaks fed to the network contain
two peaks, with the first peak starting and the second peak ending at baseline level.
Data used to train the network is preprocessed in a similar manner. This is necessary
since the extraordinary amount of data which would be needed to train the VQN to
recognize all convolutions of higher numbers of overlapping peaks is prohibitive.
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Upon identification of the beginning of a peak, the UV monitor output voltage
is saved as a function of time in a matrix at the rate of one measurement per second.
Voltage is recorded until the end of the peak is identified. The two columns of this
resulting matrix generally contain between one hundred and five hundred elements.

This long voltage vector is then normalized with respect to time. Cubic spline
interpolation is used to map the output voltage vector to a new vector containing
exactly one hundred elements. Briefly, in cubic spline interpolation a third-order
polynomial is used to interpolate between successive data points, with a unique poly-
nomial being found between each successive pair of data points (Linfield and Penny,
1995).

The resulting voltage vector is then normalized with respect to its own maximum
voltage so that peaks of varying magnitudes can be compared. This normalized,
digitized peak, represented by one hundred data points ranging in magnitude from
zero to one, is now ready to be fed to the vector quantizing network for analysis.
Figure 5 contains plots of a single peak used to train the VQN in three different
stages of this preprocessing algorithm. As can be seen, no peak geometry information
is lost as a result of preprocessing.
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Fig. 5. Example peak at several stages of preprocessing algorithm.

2.2.2. Vector Quantizing Network

Vector quantizing networks (VQN) have been previously used for pattern recognition
and classification, though not for the classification of chromatographic peaks. VQN’s
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consist of three layers of neurons: an input layer, a competitive layer, and a linear
layer (Fig. 6) (Linde et al., 1980; Demuth and Beale, 1994). The input to the VQN
contains R nodes, where R is the number of elements in each input vector. In this
study, R was set to one hundred.

Input Layer Competitive Layer Linear Layer

Fig. 6. VQN block diagram.

The input layer, I, distributes the input vector to each neuron of the competitive
layer. That is, each vector fed into the input layer is output to each neuron of
the competitive layer allowing each competitive neuron to receive the entire input
vector P, which is a column vector of size R.

The competitive layer is the site of the actual pattern recognition. During net-
work training, a unique weight vector is stored in each competitive neuron. These
vectors represent the patterns each neuron is trained to recognize and comprise the
weight matrix, W, which is of size 57 x R where S; is the number of competitive
neurons. In this study, S; is set to eighteen, with three representative peaks from
each of the six classes being used to train the VQN.

The first calculation performed by the competitive layer is a distance calculation.
That is, the distance between each competitive neuron’s stored weight vector and the
input vector P is calculated:

Ni = ~[[Wei - P, (1)

where 7 = 1,...,51, N; is the negative of the distance and W ; is the weight vector
of competitive neuron 4. The outputs N, are scalar quantities and range from slightly
negative numbers to zero, with a value of zero indicating a perfect match between the
input vector P and competitive neuron i’s weight vector. '

The second calculation performed by the competitive layer in node C is a sorting
calculation to find the maximum value of N;. The output vector Aj, of length S,
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then contains a value of unity in one position, corresponding to the neuron with the
maximum value of IV;. This is the neuron whose stored weight vector best matches
the input vector. The remaining elements of A; contain zeros.

The linear layer of the VQN, node L, combines the several competitive neurons
into a few user-specified classes. The weight matrix Wy, is of size S, x S;, where
Sy is the number of target classes. It is comprised of zeros and ones, with a one in
matrix element W, indicating that competitive neuron j is a member of class 1.
The linear layer performs the following calculation:

A2 =Wy x Ay (2)

where Ao is the linear layer output vector of size Ss.

The result of this calculation is a value of unity in the element of A, which
corresponds to the class of the competitive neuron whose weight vector best matched
the input vector. The remaining elements of A, contain zeros.

2.2.3. Network Training

The vector quantizing network (VQN) is trained with eighteen experimental chro-
matographic peaks, with each of the six classes being represented by three peaks.
These peaks are filtered and normalized with the aforementioned preprocessing algo-
rithm prior to training the network. Examples of the peaks used to represent each

class can be found in Fig. 3 while a summary of the target classes can be found in
Table 2.

Table 2. Description of VQN target classes.

l Class # | Description —’
1 Gaussian
Leading Tail
Trailing Tail
Leading Shoulder
Trailing Shoulder

DO | W

Overlapping

The training of the VQN is supervised, with the weight matrix Wi, being spec-
ified by the operator to assign each of the competitive neurons to the desired class.
As discussed above, the matrix Wy, is comprised of zeros and ones, with a one in the
element Wy, indicating that competitive neuron j is a member of class i.

The remainder of the training consists of training the competitive weight ma-
trix We. This is accomplished by feeding training data and corresponding target
values to the network in a random order, and updating the column of W¢ which cor-
responds to the competitive neuron with the highest output value accordingly. Thus,
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only the weights for the neuron best matching the given training vector are updated
with each successive iteration.

Matrix W is initialized by setting the elements of each column to the midpoint
of the highest and lowest elements found in the corresponding element of the vectors
in the training set. Training then proceeds as follows: one by one the training vectors
and their corresponding target classes are fed to the network in random order, and
the neuron whose weights closest match the input vector is updated. If that neuron’s
target value (corresponding weight in matrix Wy,) is one, the neuron’s weights move
closer to the input pattern:

WEH = WE, | +1r x Ay, x (P = WE, ) (3)

where i =1,...,51, 7=1,...,R and Ir is the learning rate, which is set to 0.05 in
this study.

If the neuron’s target value is zero, the neuron’s weights move away from the
input pattern:

WE =W, —ir x Ay, x (P - WE, ) (4)

Bias terms are added to the outputs of the competitive layer, N;, to ensure that
all neurons are fired equally during training so that “dead” neurons, or neurons which
are never updated during the training procedure, are avoided. These bias terms are
updated after each iteration, increasing in value for neurons which were not fired and
decreasing in value for neurons which were updated during that particular iteration
(Klein, 1997).

In this study, three thousand iterations were required to provide good classifica-
tion. While this may seem excessive, this requires less than five minutes of computing
time on a standard Pentium personal computer and only needs to be performed once.

2.3. Chromatographic Optimization Function

In order to optimize the chromatographic separations, it is necessary to assign a
numerical value to each separation performed so that the experiments may be ranked
in order from most to least desirable. Several chromatographic response functions
(CRFs) have been used previously. An extensive listing of these response functions
was compiled by Berridge (Berridge, 1985). The most widely used of these functions
is the resolution function:
2t; — t;)

“ Wi + Wj ( )
where R;; is the resolution between peaks i and j, t; is the elution time of peak 1,
and w; is the baseline band width of peak i (Fig. 7).

The individual peak resolutions can be summed to give an overall resolution for
the chromatogram. However, the response function of eqn. (5) does not account for
total analysis time, nor does it include a penalty for cases when more or fewer peaks
than expected are eluted. This information is extremely important when dealing



876 E.J. Klein and S.L. Rivera

-~ T T T T T T T T T T S

Fig. 7. Definition of COF parameters.

with an unknown sample, and it is desirable to incorporate this data in the response
function. That is, there must be a way to penalize responses which do not contain
as many peaks as other responses. This assures that all peaks are fully resolved and
that peaks did not co-elute, especially if the number of expected peaks is unknown.

The response function chosen for use in this study is a modification of the combi-
nation of two functions reported by Berridge (1985). The chromatographic optimiza-
tion function (COF) used has the form:

n

COF=§[1n(fi/gi)] —A(M—N)+B(tm—t)+ZKi | . (6)

i=1 i=1

where f; and g; are parameters used to describe the resolution of peak pair i (Fig. 7,
np is the number of peak pairs, M is the number of expected peaks, N is the number
of peaks eluted, ¢, is the maximum desirable total analysis time, ¢ is the elution
time of the last peak, K; is the penalty based on neural network peak classification,
n is the number of peaks, and A and B are user-adjustable weights.

The first term of the COF describes the actual separation of the chromatographic
peaks. It is desirable that f be equal to g (i.e. baseline separation). Therefore, the
first term is a negative number which approaches zero as the separation becomes
ideal. The second term accounts for cases in which some chromatograms contain
more or fewer peaks than others. This term subtracts a penalty from the COF value
for chromatograms which contain fewer than the expected number of peaks (i.e. in
chromatograms where peaks co-elute). In unknown separations, M can be set to the
maximum number of peaks found in the experiments, or it can be set to an arbitrary
value thereby penalizing all chromatograms equally. The third term accounts for total
analysis time, which is desirable to minimize in the optimization. The maximum
desired analysis time, t,,, is chosen to be 15 CV. The adjustable weights, A and B,
are set to 2 and 0.1, respectively, so that each term in the chromatogram will be of
the same order of magnitude, namely that of unity.



Neural network signal interpretation for optimization of ... 877

The final term in the COF assesses a penalty based on the neural network classi-
fication of the peaks (Table 3). Classes 2 and 3, tailed peaks, are assigned a penalty
of —0.1 while classes 3 and 4, peaks with shoulders, are assigned a penalty of —0.25.
Tailed peaks are undesirable since they contain a high concentration of solvent and
may require further processing. Shouldered peaks are less desirable than tailed peaks
since a shoulder could indicate a hidden, or unresolved, peak. Classes 1 and 6 are
not penalized since class 1 is desirable and overlapping peaks (class 6) are already
accounted for in the first term of the COF. The COF is maximized during the opti-
mization process.

The magnitude of the penalties assessed based on network classification are de-
termined as follows. It is desirable that tailed peaks be penalized less than shouldered
peaks, yet extensively overlapping peaks should still be assessed the highest penalty
by the first term in the COF (eqn. (6)). It is decided that tailed peaks are as unde-
sirable as slightly overlapping peaks with an f/g value of approximately 0.9 while
shouldered peaks are comparable to overlapping peaks with f/g values of approxi-
mately 0.75. The penalties of —0.1 for tailed peaks and —0.25 for shouldered peaks
are found by taking the natural logarithms of these f/g values, analogous to the first
term in eqn. (6).

Table 3. K; values based on VQN classification.

| Class I Description [ K; I
1 Gaussian 0.00
2 Leading Tail —-0.10
3 Trailing Tail —-0.10
4 Leading Shoulder | —0.25
5 Trailing Shoulder | —0.25
6 Overlapping 0.00

2.4. Response Model

The resulting values of the chromatographic optimization function (COF') are fit to a
quadratic model which is dependent on both pH and gradient column volumes (CV).
The model is of the form:

¥ = a1 + asT1 + a3Ts + a;;:nf + a5:c§ + agT1 T2 (7

where vy = COF, z; = pH, and z, = CV.

Models of this type have been frequently reported in the literature as being
useful for modeling chromatographic responses. It has been found that higher-order
variable interactions are small (Lindberg et al., 1981), and are therefore omitted
here. Omitting higher-order interactions also significantly decreases the number of
coefficients which must be calculated. In this study, there are six coefficients and
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seven experiments. Thus, enough data points still exist to perform a least-squares
regression. Though more data points would provide for a more accurate fit of the
model, the goal in this study is to optimize the system with a minimal amount of
experimentation.

2.5. Simplex Optimization

The constrained, variable sized, sequential simplex algorithm known as the Nelder
and Mead algorithm is employed to numerically optimize the above model within the
experimental domain. A simplex is comprised of d + 1 points in d factor space.
An initial simplex is formed, and the objective function (in this case eqn. (7)) is
evaluated at each of these d + 1 experimental points. The responses are ranked in
order of desirability. The lowest-ranking point is discarded from the optimization and
a new point is calculated to replace it. This new point is obtained through a series
of logical calculations with the simplex being able to reflect (R), contract (C), or
expand (E) from the original point, and change direction accordingly (Fig. 8). In this
way, the simplex “climbs” through the factor space seeking higher (or lower) values of
the objective function until an optimum is reached (Fig. 9) (Walters et al., 1991).

A

CV Low E

High

pH

Fig. 8. Possible simplex movements.

It should be noted, however, that this algorithm very often returns local rather
than global maxima. This problem is alleviated by starting the simplex algorithm at
several different points which represent a broad range of the experimental domain.
If all of these searches end at the same maximum, it is likely that this is a global
rather than a local maximum for the region of interest. In this study, the simplex
algorithm is started with five different starting simplexes to adequately explore the
entire experimental domain.

The simplex method has been previously used in chromatographic optimizations.
However, in some of these cases the values of the vertices have been evaluated through
direct experimentation (Felinger and Guiochon, 1992; Palasota et al., 1992). This is
not recommended, as this can lead to excessive experimentation. Wang has proven
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that it is more efficient to perform a small number of experiments and optimize a
response model of the system as we have done here (Wang et al., 1986; 1991).

3. Experimental Method

Equipment: The chromatographic setup consists of two Waters 510 HPLC pumps
(Milford, MA), a Waters 590 programmable HPLC pump, a Waters automatic gradi-
ent controller, a Waters 440 UV detector operating at 280 nm, and a Waters 746 data
module. The signal from the UV detector is also logged to a data file on a Gateway
2000 486 PC using PC-Lab Card’s PCL-812PG data acquisition card and VisSim
software (Visual Solutions; Westford, MA). The column is a weak anion exchanger
PEEK fractogel column with DMAE chemistry (EM Separations; Gibbstown, NJ).

Mobile Phase Preparation: The mobile phase consists of 2 buffers (Sigma, LTD;
St. Louis, MO), which are mixed to the desired mobile phase composition by con-
trolling the flow rates of their respective pumps. Buffer A contains 10 mM Tris-
[hydroxymethyl]amino-methane (TRIS) and 10 mM 1,3-bistris (hydroxy-methyl)-
methyl-amino|propane (BIS). Buffer B contains 10mM TRIS, 10mM BIS, and 1M
NaCl. Buffer pH is adjusted off-line to the desired pH of each run using 1M HCI and
NaOH. The initial and final concentrations of the salt gradients in all experiments
are 0.0M and 0.5M, respectively. All buffers are dissolved in deionized water, filtered
through a 40 pm Millipore filter, and degassed with helium prior to use. The mobile
phase flow rate is 1 ml/min in all experiments.

Sample Preparation: The proteins included in the sample are bovine serum albu-
min (BSA), lysozyme (L), conalbumin (C), and a-chymotrypsinogen A (A) (Sigma,;
St. Louis, MO). All proteins are dissolved in deionized water to concentrations of 6
mg/ml. Equal volumes of each standard protein solution are combined to give the
final sample mixture. The sample size in all experiments is 25 uL.

4. Results
4.1. Case Study # 1

The protein mixture investigated in the first case study was a ternary mixture contain-
ing equal amounts of lysozyme (L), conalbumin (C) and bovine serum albumin (BSA).
The Doehlert matrix experiments were performed and the resulting chromatographic
peaks were classified by the vector quantizing network (VQN). A few representative
examples of the peaks which were classified can be found in Fig. 10. Values of the °
chromatographic optimization function (COF, eqn. (6)), were determined for each
experiment, (Table 4). Tt should be mentioned that Experiment #1 of the Doehlert
matrix (the central point in Fig. 2) was repeated after Experiment #7 to check for
system degradation. The results of this second experiment were identical to those of
Experiment #1.
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Fig. 10. Results of VQN classification.

The results of the data analysis were regressed to the quadratic model, eqn. (7).
Statistical results of the regression are reported in Table 4 and model coefficients
are reported in Table 5. In Table 4, SSE is the sum of the squared errors. The
goodness-of-fit was evaluated using the incomplete gamma function, and is a measure
of whether or not discrepancies between model results and experimental results are
the result of chance fluctuations. Goodness-of-fit values greater than 0.1 suggest a
believable model (Press et al., 1986). Only 7 data points were used to determine the
6 coefficients of the model. Though more experiments will provide for a better fit of
the data, this will also lead to a longer optimization time.

The quadratic model was optimized with the simplex algorithm. The optimum
pH was found to be 8.8 and the optimum gradient steepness was found to be 48.6
column volumes (CV). These values correspond well with a visual inspection of the
response surface of the model (Fig. 11).

A final experiment was performed at the optimum conditions. This confirmed
that both baseline separation of all solutes and a short total analysis time occur at
the conditions found by the simplex algorithm to be the optimum (Fig. 12).

4.2. Case Study # 2

The protein mixture investigated in the second case study was a quaternary mixture
containing equal amounts of lysozyme (L), conalbumin (C), bovine serum albumin
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Table 4. Case study #1: Experimental vs. model results.

| Expt. # [ pH I Ccv | COF I COF I Error (%) ]
Actual | Model
1 7.5 27.50 | —4.57 | -6.09 33.18
2 9.0 2750 | —-1.02 | -0.76 25.05
3 8.2 4700 | -3.83 | -3.25 15.15
4 6.0 27.50 | —12.46 | —11.25 9.68
) 6.8 800 | —-2.04| -2.13 4.44
6 6.8 47.00 | —10.54 | —11.10 5.35
7 8.2 800 —-038 | -—-0.19 48.71
mean error = 20.22% | SSE = 4.52 | goodness-of-fit = 0.48

Table 5. Case study #1: Model parameters.

Coefficient | Value
a, —5.79E-03
ao 1.57E-03
az —1.24E+00
ay 3.43E-02
as 5.00E-03
ag 1.08E-01

(BSA) and a—chymotrypsinogen A (A). This separation was significantly more chal-
lenging than the first case study due to the extra protein in the mixture and the
similarity among the retention times of C, A, and BSA. The optimization algorithm
successfully optimized this difficult separation.

Statistical results and model parameters are again reported (Tables 6 and 7).
The optimum experimental conditions were found to exist at pH 9.0 and 22.2 CV.
Figure 13 contains the chromatogram produced at these optimum conditions. It
should be noted that the rise in baseline at the end of the experiment was caused by
the increasing salt concentration of the mobile phase.

5. Conclusions

A novel approach to optimal HPLC methods development is proposed for the ion-
exchange separation of protein mixtures. The pH and ionic strength of the mobile
phase are simultaneously optimized to maximize protein separation while decreasing
total analysis time.
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Fig. 11. COF response surface for case study #1.
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Fig. 12. Chromatogram at maximum COF, case study #1, pH = 8.8, CV = 48.6.
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Fig. 13. Chromatogram at maximum COF, case study #2, pH = 9.0, CV = 22.2.

Table 6. Case study #2: Experimental vs. model results.

[Expt. #] pH | CV [ COF | COF | Error (%) |
Actual | Model

1 7.5 27.50 | —2.83 | —3.47 22.42

2 9.0 27.50 | —0.65 | —0.76 17.76

3 8.2 47.00 | —2.03 | —1.55 23.68

4 6.0 27.50 | —6.37 | —5.64 11.40

5 6.8 8.00 | —2.46 | —2.73 11.19

6 6.8 47.00 | —4.18 | —4.66 11.32

7 8.2 8.00 | —-1.61 | —1.29 19.60
mean error = 16.76% | SSE = 1.59 | goodness-of-fit = 0.90

Table 7. Case study #2: Model parameters.

Coefficient I Value

a1 —2.56E-01
as —9.86E—-01
as —3.80E-01
a4 1.18E-01
as 2.24E-03
as 3.05E-02
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A neural network peak classification procedure is developed and used to automat-
ically categorize chromatograms. Specifically, a vector quantizing network (VQN) is
used in conjunction with a preprocessing algorithm to classify chromatographic peaks
into six distinct classes based on geometry. The diagnostic network algorithm is com-
bined with the optimization methodology by accounting for peak classification in the
chromatographic optimization function (COF). The COF is found to be useful in
representing the quality of the protein separations.

A Nelder and Mead simplex algorithm is utilized in conjunction with a quadratic
response model to determine the optimal operating conditions. Results are promising,
and the optimization methodology will be tested on more challenging separations in
the future. It should be emphasized that since this optimization scheme requires no
a priori knowledge of the components in the feed, it can be applied to both known
and unknown feed mixtures.
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