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CONSTRAINED CONTROLLABILITY
OF DYNAMIC SYSTEMS

JERZY KLAMKA*

The present paper is devoted to a study of constrained controllability and con-
trollability for linear dynamic systems if the controls are taken to be non-
negative. By analogy to the usual definition of controllability it is possible
to introduce the concept of positive controllability. We shall concentrate on
approximate positive controllability for linear infinite-dimensional dynamic sys-
tems when the values of controls are taken from a positive closed convex cone
and the operator of the system is normal and has pure discrete point spectrum.
Special attention is paid to positive infinite-dimensional linear dynamic sys-
tems. General approximate constrained controllability results are then applied
to distributed-parameter dynamic systems described by linear partial-differential
equations of parabolic type with various kinds of boundary conditions. Several
remarks and comments on the relationships between different concepts of con-
trollability are given. Finally, a simple illustrative example is also presented.
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distributed-parameter systems, positive dynamic systems.

1. Introduction

Controllability is one of the fundamental concepts in mathematical control theory
(Bensoussan et al., 1993; Klamka, 1982; 1991; 1992; 1993a; 1993b). Roughly speaking,
controllability generally means that it is possible to steer a dynamic system from an
arbitrary initial state to an arbitrary final state using a set of admissible controls. In
the literature there are many different definitions of controllability which depend on a
given class of dynamic systems (Bensoussan et al., 1993; Klamka, 1991; 1993a; 1993b;
Schanbacher, 1989; Triggiani, 1975a; 1976; 1978).

Controllability problems for linear control systems defined in infinite-dimensional
Banach spaces have attracted an intense interest over the past twenty years. For
infinite-dimensional dynamic systems it is necessary to distinguish between the no-
tions of approximate and exact controllability (Bensoussan et al., 1993; Klamka, 1991;
1992; 1993b; McGlothin, 1978; Triggiani, 1975a; 1975b; 1976; 1977, 1978). This
results directly from the fact that in infinite-dimensional spaces there exist linear
subspaces which are not closed.
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So far, most of the literature in this area has been concerned, however, with
unconstrained controllability, and little is known as for the case when the control is
restricted to take on values in a given subset of the control space. Until now, scarce
attention has been paid to the important case where the control of a system are non-
negative. In this case controllability is possible only if the system is oscillating in
some sense. Therefore, the most difficult case for constrained controllability is for
dynamic systems with real eigenvalues (Son, 1990).

The present paper is devoted to a study of constrained approximate controllabil-
ity (Peichl and Schappacher, 1986; Son, 1990) for linear normal infinite-dimensional
dynamic systems if the controls are to be non-negative. By analogy to the usual defi-
nition of controllability it is possible to introduce the concept of approximate positive
controllability (Schanbacher, 1989). For such dynamic systems a direct verification
of constrained approximate controllability is rather difficult and complicated (Peichl
and Schappacher, 1986). Therefore, we generally assume that the values of controls
are taken from a positive closed convex cone (Son, 1990) and the operator of the
system is normal and has pure discrete point spectrum (Triggiani, 1975a; 1976). Spe-
cial attention is paid to positive infinite-dimensional linear dynamic systems, i.e. to
dynamic systems preserving positivity (Schanbacher, 1989).

General constrained approximate controllability results are then applied to gen-
eral distributed parameter dynamic systems described by linear partial-differential
equations of parabolic type with various kinds of boundary conditions. Finally,
as a simple illustrative example, the constrained approximate controllability of a
one-dimensional heat equation with homogeneous Dirichlet boundary conditions and
scalar non-negative control is also considered.

2. Notation and System Description

Throughout this paper we use X to denote an infinite-dimensional separable real
Hilbert space. By L?([0,t],R™), 1 < p < oo we denote the space of all p-integrable
functions on [0,t] with values in R™ and by L2 ([0, 00),R™) the space of all locally
p-integrable functions on [0,00) with values in R™.

Following (Schanbacher, 1989; Smith, 1995) we define an order < in the space X
such that (X, <) is a lattice and the ordering is compatible with the structure of X,
i.e. X is an ordered vector space. This implies that the set X+ = {z € X : © > 0} is
a convex positive cone with vertex at zero. Moreover, it follows that z; < zy if and
only if z3 —z; € X*. An element = € X is called positive and we write > 0 if z
is positive and different from zero. Moreover, an element z* € X is called strictly
positive, and we write z* > 0, if (z*,z)x > 0 forall z > 0. An ordered vector space
X is called a vector lattice if any two elements z;, z2 in X have a supremum and
an infimum denoted by sup{zi,z2} and inf{z1,z,} respectively. For an element z
of the vector lattice we write |z| = sup{z, -z} and call it the absolute value of =.
We call two elements z;,z, of the vector lattice X orthogonal if inf{|z1], |z2|} = 0.
A linear form w € X is called positive (w > 0) if (w,z)x > 0 for all z > 0
and strictly positive (w > 0) if (w,z)x > 0 for all z > 0. Relevant examples of
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vector lattices with a strictly positive linear form are given by the following spaces
of practical interest: R® and L*(Q,R), where Q is a measurable subset of R™, with
standard order relations (Smith, 1995).

A bounded linear operator F' from a vector lattice X into a vector lattice V
is called positive, i.e. F' >0, if Fz > 0 for z > 0. Therefore, a positive operator F
maps the positive cone X+ into the positive cone V*. Let S(t): X = X, t >0 be
a strongly continuous semigroup of bounded linear operators. We call the semigroup
positive i.e. § > 0, if X is a vector lattice and S(t) is a positive linear operator for
every t > 0.

For a set M C X, we define the polar cone by M° = {w € X, (w,z)x <0 for
all z € M}. The closure, convex hull and interior are denoted by cd M, coM and
int M, respectively.

Let us consider linear a infinite-dimensional time-invariant control system of the
following form:

z'(t) = Az(t) + Bu(t) (1)
Here z(t) € X, the latter being an infinite-dimensional separable Hilbert space which

constitutes a vector lattice with a strictly positive linear form.

Let B be a bounded linear operator from R™ into X. Therefore B =
[bl,bz,...,bj,...,bm] and

Bu(t) = i bju;(t)
j=1

where b; € X, j=1,2,...,m and u(t) = [ur(t),ua(t),...,u;(t), -, um(t)]".

We would like to emphasize that the assumption that the linear operator B
is bounded, rules out the application of our theory to boundary control problems,
because in this situation B is typically unbounded.

Let A: X D D(A) -+ X be a normal, generally unbounded, linear operator with
compact resolvent R(s, A) for all s in the resolvent set p(A). Then we have the
following properties (Bensoussan et al., 1993; Klamka, 1991; Triggiani, 1976; 1978):

1) A has only a pure discrete point spectrum p,(A) consisting entirely of isolated

eigenvalues s;, i = 1,2,... . Moreover, each eigenvalue s; has a finite multi-
plicity n; < oo, @ = 1,2,... equal to the dimensionality of the corresponding
eigenmanifold.

2) The eigenvectors z; € D(4), i = 1,2,..., k = 1,2,...,n; form a complete

orthonormal set in the separable Hilbert space X.

3) A generates an analytic semigroup of bounded linear operators S(t) : X — X,
for t > 0.

Let Ut Cc R™ be a positive cone in R™, ie. Ut = {u € R™ : u; > 0 for
i =1,2,...,m}. We define the set of admissible non-negative controls Uaq as follows:

Una = {u € L ([0,00),R™); u(t) € Ut ae. on [0,00)}

loc
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It is well-known (Bensoussan et al., 1993; Klamka, 1991; Triggiani, 1976) that
for each u € U,q and z(0) € X there exists a unique so-called mild solution
z(t,z(0),u) € D(A), t >0 of eqn. (1) given by

z(t,2(0),u) = S(t)z(0) + /Ot S(t — s)Bu(s) ds

We say that the dynamic system (1) is positive if the semigroup S(¢) and op-
erator B are positive (Schanbacher, 1989). In this case the solution z(¢,2(0),u) for
an initial condition z(0) € X* and an admissible control u € Upq remains in X+
for all ¢ > 0.

We define the attainable or reachable set in time 7' (from the origin) by
T
Kr(U*) = {/ S(T — s)Bu(s)ds, u€ Uad}
0

The set Koo(Ut) = Upso KT(UT) is called the attainable or reachable set in finite
time.

Using the concept of the attainable set, we may define various kinds of con-
trollability for the dynamic system (1). For infinite-dimensional dynamic systems it
is necessary to introduce two fundamental notions of controllability, namely exact
(strong) controllability and approximate (weak) controllability. However, since our
dynamic system has an infinite-dimensional state space X and a finite-dimensional
control space R™, then it is never exactly controllable in any sense (Triggiani, 1975b;
1977). Therefore, in the sequel we shall concentrate only on the approximate control-
lability with positive controls for (1).

Definition 1. (Bensoussan et al, 1993; Klamka, 1991; 1993b). The dynamic
system (1) is said to be approximately controllable with non-negative controls if
AdKoUt)=X.

In the unconstrained case, i.e. when the control values are taken from the whole
space R™, we simply say about the approximate controllability of the dynamic sys-
tem (1).

The above notion of approximate controllability is defined in the sense that we
want to reach a dense subspace of the entire state space. However, in many in-
stances for positive systems with non-negative controls, it is known that all states are
contained in a closed positive cone X T of the state space. In this case approximate
controllability in the sense of the above definition is impossible, but it is interesting to
know conditions under which the reachable states are dense in X*. This observation
leads to the concept of the so-called positive approximate controllability.

Definition 2. (Schanbacher, 1989) The dynamic system (1) is said to be approxi-
mately positive controllable if ¢l Koo (UT) = X,

Remark 1. From the above two definitions it follows directly that the approxi-
mate controllability with non-negative controls always implies approximate positive
controllability. However, in general, the converse statement is not true.
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Finally, we shall recall some fundamental theorems concerning the unconstrained
and constrained approximate controllability of the dynamic system (1).

Using eigenvectors z;x, ¢ = 1,2,..., k =1,2,...,n; we introduce for the oper-
ator B the following notation (Klamka, 1993b; Triggiani, 1976):

(b1,ﬂ7i1>X <b‘27-'17i1)X (bj,Zﬂ)X (bmku)x
(br,zi2)x  (b2,zTi2)x -+ (bj,maa)y 0 (bm,Ti2) x
7 T R
(bla-'L'zk)X <b2;mzk>x <b]azzk>x (bm’wzk>x
<b1;mzn >X (b27mm1>x <bj7-'L'1,nt)X (bm:-rfml)x
B;, i =1,2,... are n; x m-dimensional constant matrices which play an important

role in controllability investigations (Klamka, 1991; 1993b; Son, 1990; Triggiani, 1976;
1978). For the case when the eigenvalues s; are simple, i.e. n; =1, i=1,2,..., b¥’s
are m-dimensional row vectors of the following simple form:

bi= [<b1,$i>X,<b2,$i>x,...,(b_j,.’ri>x,...,(bm,l'i)X] for 7::1,2,...

For simplicity, let us write by; = (bj,zi)x for i =1,2,..., k=1,2,...,n;
and j7 = 1,2,...,m. Therefore we may express matrices B; and vectors b* in a more
convenient form:

bii1 b2 -0 by o bam
bizi bz bizj o biom
Blz .................................... for i=1’2’...
b’LI\,]. bik2 e b’LkJ bzkm
bzn. 1 bzm 2 bin,] b’mI ™m

bi:[bil,blg,...,bij,...,bim] for i=1,2,...

Since the operator A is normal, then using the above notation it is possible to
express the solution z(t,z(0),u) as follows:

m(t,x(G) Z Z vzk(t Tik + Z Z v (8) ik (2)
i=1 k=1 i=1 k=1

where

vie (t) = exp(sit) (2(0), zae) x

¢
vz, (F) /Oexp si(t — 7)) Zb,k]uj(f dr
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for i=1,2,... and k£ =1,2,...,n;. We start with the well-known (see e.g. Klamka,
1991; 1993b; Triggiani, 1976 or 1978) for details) necessary and sufficient conditions
for the approximate controllability with unconstrained controls.

Theorem 1. (Triggiani, 1976) The dynamic system (1) is approzimately controllable
if and only if rank B; =n; for every i =1,2,....

Corollary 1. (Triggiani, 1976) Let m = 1. Then the dynamic system (1) is approz-
imately controllable if and only if every vector b* € R™, i =1,2,... contains at least
one non-zero element.

Now we recall a known (see (Son, 1990) for details) necessary and sufficient con-
dition for the approximate controllability with non-negative controls for the dynamic
system (1).

Theorem 2. (Son, 1990) The dynamic system (1) is approzimately controllable with
non-negative controls if and only if rank B; = n; for every i = 1,2,... and the
columns of these matrices By, i = 1,2,... which correspond to the real eigenvalues,
form positive bases in the space R™.

Remark 2. The above result implies, in particular, that the number of positive con-
trols required for the approximate controllability with non-negative controls is at least
that of the highest multiplicity of the eigenvalues plus one. Therefore, the dynamic
system (1) with one scalar non-negative control is never approximately controllable
(Son, 1990). Moreover, it should be stressed that in a general case of multiple eigen-
values it is not so easy to verify the hypothesis that the set of given vectors forms a
positive basis in the Euclidean space.

Remark 3. Using the concept of the polar cone C°, the results stated in the above
theorems can be extended to constrained controls which take their values in a given
closed compact cone C' with non-empty interior int C' € U,q (Son, 1990).

3. Constrained Controllability

In this section we shall present results concerning the constrained approximate con-
trollability for the dynamic system (1). We start with the following result on approx-
imate positive controllability:

Theorem 3. If there exist p and q such that the eigenvalue s, € R and coefficients
bpg; have the same sign for every j =1,2,...,m, then the dynamic system (1) is not
approzimately positive controllable.

Proof. In order to prove this theorem, it is sufficient to indicate a final state z; € X+
which cannot be reached approximately from a given initial state zo € X*. We shall
prove this in two steps.
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First, let us assume that z,, ¢ XT. Let us take z(0) = 0. Therefore, by (2) w
have 19, (t) =0 for t >0 andevery i=1,2,..., k=1,2,.. . Let us choose the
final state

[o.0] T, (o] T,
Ty = Z Z (Z‘f,:l,‘ik>X Tik = Z Z v{kmik € Xt
i=1 k=1 i=1 k=1
as follows:

T =sup{—=pg,0} € Xt if byy; >0 for j=1,2,...,m
z; =sup{zp., 0} € XT  if by <0 for j=1,2,...,m
Therefore,
vl = (@5, %pq) x = (SUP{—Tpg, 0}, Zpg) 5 < O When bpg; >0 for j=1,2,...,m
v], = (@1, Tpqg) x = (SuD{Tpg,0},Tpg)x >0 when byy; <0 for j=1,2,...,m
Following (2), let us observe that for given p, ¢ and z(0) =0 we have
t
Upg (t) =/0 exp (sp(t — ) Zlbpq]u] (r) | dr (3)
j

Therefore, since the admissible controls are non-negative, i.e. u;(t) > 0 for j =
1,2,...,m and ¢t > 0, from (3) it follows that

Upg(t) >0 for ¢t >0 if bpg; >0 for j=1,2,...,m
Upg(t) <0 for ¢ >0 if bpg; <0 for j=1,2,...,m
Taking into account the form of the solution z(¢,0,u) given by (2), we have

0o ni 1/2
Hm(t,O,u) - mf“X = (ZZ Uik(t) _ vsz, 2>

i=1 k=1

> l“pq(t) - U}:ql >const >0 for t >0 (4)

Therefore, by (4) the final state z; € Xt cannot be reached approximately from
zero in any time using non-negative controls.

Now, let us consider the case when an eigenfunction z,, € X* and z(0) # 0.
Hence, just as in the first part of the proof, following (2) for given p and g, we have

Vpq(t) = exp(spt) (2(0), Tpg) x + ./0 €xp Sp (t— T) Z bpgjus(T) | dr (5)

Since zp, is an orthonormal eigenvector, taking z(0) = 2,y € X we have

<z(0)7mPQ>X = <zpq;-'13pq>X =1
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Therefore, since the admissible controls are non-negative, i.e. u;(t) > 0 for j =
1,2,...,m and t > 0, from (5) it follows that

vpg(t) > 1 for s, >0 and bpy; >0 for j=1,2,...,m
vpg(t) <1 for s, >0 and bpg; <0 for j=1,2,...,m

Since we investigate the approximate positive controllability of the dynamic sys-
tem (1), let us choose a final state z; € Xt such that

v{;q>1for sp>0 and by >0 for y=1,2,...,m
v, <1 for s, >0 and byy <0 for j=1,2,...,m

Taking into account the form of the solution z(t,0,u) given by (2), we have

o ng 1/2
l|w(t,0,u) - xf“X = (ZZ vik(t) - v{k 2)

> |qu(t) - qu] >const >0 for ¢t >0 (6)

Therefore, by (6) the final state £y € Xt cannot be reached approximately from
zero in any time using non-negative controls.

Now, let us consider the cases when s, > 0, bpg; <0 and s, <0, bpg; > 0. We
choose the initial state z(0) € X+ and final state z; € X such that v), =0 and
vgq > 1, for s, >0 and byg; <Ofor j =1,2,...,m. In that case we have Upg(t) <0
for ¢t > 0, and the final state vgq > 1 cannot be reached by non-negative controls.

Finally, when s, < 0 and bp,; > 0 for j = 1,2,...,m, we choose vy, = 0,

U}J:q =0, vif,c >1 fori,k=1,2,..., i # p, k # q and the uniformly stable dynamic
system (1),-and v, =0, v/, =0, vf <1 for i,k =1,2,..., i #p, k#q and
non-uniformly stable dynamic system (1).

In both the cases the final state zf € Xt cannot be reached by non-negative
controls.

Hence the dynamic system (1) is not approximately positive controllable and our
theorem follows. ]

From Theorem 3 and Remark 1 we obtain directly the next result concerning the
approximate controllability of the dynamic system (1) with non-negative controls:

Corollary 2. If the assumptions of Theorem 3 are satisfied, then the dynamic sys-
tem (1) is not approzimately controllable with non-negative controls.
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4. Positive Stationary Pairs

In Section 3 we obtained some negative results concerning the approximate positive
controllability for the dynamic system (1). However, it is often not so important to
reach the entire positive cone of the state space. It suffices to steer approximately
the dynamic system to particular positive states and held constant by a non-negative
contro] for all times. This observation directly leads to the concept of the so-called
positive stationary pairs (Schanbacher, 1989). In this section, we generally assume
that the dynamic system (1) is positive in the sense stated in Section 2.

Definition 3. (Schanbacher, 1989) We call a pair {z,,us} € (X*\{0}) x Ut a
positive stationary pair if Az, 4+ Bu, = 0. In this case z(¢,zs,us) =z, € X1 is a
non-zero constant solution of eqn. (1) for ¢ > 0, u(t) = us and z; = z(0).

Theorem 4. (Schanbacher, 1989) Let the dynamic system (1) be positive and S(t)
be a uniformly exponentially stable positive semigroup. Then for each us € Ut\ker B
there exists ezactly one s = —A~'Bu, such that {zs,us} is a positive stationary
pair. Moreover, if {zs,us} is a positive stationary pair, and we choose z(0) € X+
and u(t) = us, t >0, then the solution of eqn. (1) tends to z, as t — co.

Corollary 3. Let Re(s;) < Re(s1) < 0 fori = 1,2,.... Then for each us €
Ut\ker B there exists exactly one

i

Ts = Zsi—l Z <$ik,zbjusj> Zik (7)
ji=1

i=1 k=1 X
such that {xs,us} is a positive stationary pasr.

Proof. Since the spectrum ¢(A) of the linear operator A4 is a pure discrete-point one,
we conclude that the inequality Re(s;) < 0 is a necessary and sufficient condition
for the so-called uniform stability of the linear dynamic system (see Bensoussan et
al., 1993; Schanbacher, 1989, for an exact definition of uniform stability). Therefore,
using general spectral formula for the linear inverse operator A~! and Theorem 4
stated above we obtain immediately (7). &

Remark 4. Many valuable remarks and comments on the relationships between
different kinds of stability (the definitions of uniform exponential, strong and weak
stabilities) of the linear abstract differential equation (1) and the conditions for the
existence of positive stationary pairs for positive dynamic systems can be found in
the paper (Schanbacher, 1989).

5. Constrained Controllability of Parabolic Dynamic Systems

In this section, we shall illustrate the general theorems and corollaries stated in
Sections 3 and 4 for the case of linear distributed-parameter systems of parabolic
type. We begin by describing the mathematical model of the considered distributed-
parameter system. Let {1 be a bounded, open and connected subset of RY with a
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smooth boundary 89 and clQ = Q|JOQ. Let A be the Laplacian operator on
and V be the gradient operator on 2. Let us consider a linear distributed-parameter
dynamic system described by the following partial differential equation of parabolic

type:
wi(z,t) = Aw(z,t) + ibj(z)uj(t), t>0, z€N (®)

=1

where b; € L*(Q), for j =1,2,...,m, and the admissible controls are non-negative,
ie. u; € L ([0,00),R"), j =1,2,...,m. The boundary conditions are assumed to
be of the following form:

a(z)w(z,t) + ﬂ(z)%—qg(z,t) =0, t>0, z€090 (9)

Suppose that a(z) and ((z) are twice continuously differentiable on cl2, and
are not identically zero simultaneously. The vector field v(z) is the outer unit normal
to 00 at z € 9 and 9(-)/Ov = vV denotes differentiation in the direction of the
outward normal to . Specifying a(z) and B(z), we obtain Dirichlet, Neumann or
Robin (mixed) boundary conditions.

The initial condition for eqn. (8) is given by
w(z,0) = wo(2) z€N

The second-order uniformly elliptic differential operator has the following form:

N N
A= Z akj(z)Dij + Z ak(z)Dk + ao(z)I (10)

k,j=1 k=1
where z € RN, ay;(2) = aj(2), for j,k = 1,2,...,N, Dy = 9/0z, for k =
1,2,...,N.
The domain D(A) of the operator A is characterized explicitly by

D(4) = {w € L2(Q) : Aw € L*(Q)
and a(z)w(z,t) + ﬁ(z)%%(z,t) =0, t>0, z€ an}

The coefficients ag;(z), ar(z) and ao(z) are assumed to be twice continuously
differentiable on Q and ag(z) > 0 for z € Q. Moreover, since the operator A4 is
uniformly elliptic, there exists a positive constant p such that for all vectors £ € RN
we have

N

Z akj (2)Ek&; > plé)?* for z€Q

k,j=1
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Various special cases of eqn. (8) can be considered. For example, the reaction-
diffusion dynamic system

m
wi(z,t) = dAw(z,t) + aw(z,t) + Z bj(2)ui(t), t>0, zeQ (11)
j=1
where a and d are real constants, can be expressed in the form of the general
differential equation (8).

It is well-known (see e.g. (Smith, 1995) for details) that the operator A gener-
ates an analytic positive semigroup of bounded compact operators S(t) : X — X for
¢ >0 (Smith, 1995). Moreover, since the set { is bounded, the operator A has pure

discrete-point spectrum ¢(A) = op(A) = {s1,52,53,.--,8i,..- }, consisting entirely
of isolated eigenvalues with finite multiplicities n; < oo, i = 1,2,.... Moreover, the
corresponding eigenfunctions {z, i = 1,2,..., ¥ =1,2,...,n;} form an orhonor-

mal basis in the space L*(f2). An additional property of the operator A that will be
important later is stated in the following lemma, which is proved in (Smith, 1995).

Lemma 1. (Smith, 1995) There ezists a real eigenvalue s, of the operator A and
the corresponding eigenvector z1(z) is a strictly positive element in the space X, i.e.
it satisfies z1(z) > 0 for all z € I in the case of Neumann or Robin (mized)
boundary conditions and for all z € 0 in the case of Dirichlet boundary conditions.
In the latter case, we also have

(9.'121 2

Ov
Moreover, if s; is any other eigenvalue of the operator A, then the real part of s,
Re(s;), satisfies Re(s;) < s1 for all 1 =2,3,....

)< 0 for z€ 00

Lemma 1 says that there exists a real eigenvalue of the operator A which is
larger than the real parts of all other eigenvalues of the operator A. We call it the
principal eigenvalue of the operator A. Moreover, Lemma 1 says that the associated
eigenvector is positive and is called the principal eigenvector of the operator A.

We may express the dynamic system (8) with boundary conditions (9) as an
abstract ordinary differential equation in the separable Hilbert space X = L*(Q).
Since A given by (10) satisfies all the assumptions stated in the previous sections, it
sufficies to substitute z(t) = w(-,t) € L*(Q) = X.

Let us write

bi; = (bj,zl)Lz(Q) = /ij(z):cl(z)dz for 5=1,2,...,m (12)

Now, using the general results stated in Section 3 we may formulate a theorem and
corollaries on the positive approximate controllability for the distributed-parameter
dynamic system (8) with normal operator A.

Theorem 5. Let the linear operator A given by (10) be normal. Moreover, let us
assume that the elements by; have the same sign for every j =1,2,...,m. Then the



242 J. Klamka

linear distributed-parameter dynamic system (8) is not approzrimately positive control-
lable.

Proof. Let us observe that the distributed-parameter dynamic system (8) satisfies
all the assumptions required in Theorem 3. Therefore, by Theorem 3 our dynamic
system (8) is not approximately positive controllable. | |

Corollary 4. If s; < 0, then for each us; € UT\ker B there exmists ezactly one =z
such that {zs,us} is a positive stationary pair.

6. Example

Let us consider the one-dimensional heat equation on a rod of unit length with
non-insulated ends described by the following linear partial-differential equation of
parabolic type:

we(z,t) = wyy(2,t) +b(2)u(t), 0<z<1, t>0 (13)

with initial condition w(z,0) = we(z) and Dirichlet-type homogeneous boundary
conditions w(0,t) = w(1,t) = 0.

We wish to control the distributed-parameter system (13) by a non-negative
scalar input u € L2 ([0,00),R*). We can interpret this control as an electrical
heating input that for all times is proportional to a given heat distribution b(z) €

L*([0,1], ®)

We state this control problem as an abstract control problem on the separable
Hilbert space X = L%([0,1],R). Write w(z,t) = z(t) € X. Let A = d?/dz? be
the linear unbounded self-adjoint differential operator on X with domain D(A) =
{w(2)X : w,(2) € X, w(0) = w(l) = 0}. It is known (Klamka, 1991) that the

operator A has simple eigenvalues s; = —i®7? and the corresponding eigenfunctions
z;(z) = +/2sin(inz), i = 1,2,... form an orthonormal basis in the space X =
L*([0, 1], R).

Since all the eigenvalues are real, then by Theorem 5 the dynamic system (13) is
not approximately positive controllable for any b € X. The same result was proved
in (Schanbacher, 1989) but using quite different methods.

Moreover, let us observe that the operator A generates an analytic positive
semigroup S(¢), t >0 on X given by

St)z = Z exp(—i°m2t)(z, T;) oz

i=1

Now, let us assume that b € X = L%([0,1], R"). Therefore the distributed-
parameter system (13) is positive. Following (Schanbacher, 1989) it should be stressed
that the positive dynamic system (13) is not approximately positive controllable ei-
ther.
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However, since Re (s;) = —n? < 0, by Corollary 4 for each u, € R* there exists
exactly one element ; = —A~1bu, € X+ given by

Ty = i (—i27r2>71 /01 V2sin(inz)b(z) dz v2sin(irz)u,

=1

such that {zs,us} is a positive stationary pair. Using the results stated in (Schan-
bacher, 1989), the element z; can also be expressed as follows:

2o(2) = <z/01/05b(c>dcd§—/OZ/OEb(OdCde) "

Summarizing, the distributed-parameter dynamic system (13) is not approxi-
mately positive controllable and of course it is not approximately controllable with
non-negative controls either. However, for the dynamic system (13) there exist sta-
tionary pairs.

7. Conclusions

The present paper contains several results on the constrained controllability for linear
infinite-dimensional self-adjoint dynamic systems. Using spectral properties of normal
generally unbounded linear operators with pure discrete-point spectra, conditions
for various kinds of constrained controllability have been formulated and proved.
General results have also been applied for constrained controllability considerations for
linear distributed-parameter dynamic systems described by linear partial-differential
equations of parabolic type with various kinds of boundary conditions. Finally, a
simple illustrative example of a one-dimensional heat equation with homogeneous
Dirichlet boundary conditions has been presented.

Some kinds of the presented results can be extended to cover the case of infinite-
dimensional normal dynamic systems with discrete and continuous spectra. It is also
possible to extend the results to second-order infinite-dimensional dynamic systems.
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