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MULTISINE APPROXIMATION OF MULTIVARIATE
ORTHOGONAL RANDOM PROCESSES

Jarostaw FIGWER*

An approach to the synthesis and simulation of wide-sense stationary multivari-
ate orthogonal random processes defined by their power spectral density matri-
ces is presented. The approach is based on approximating the non-parametric
power spectral density representation by the periodogram matrix of a multivari-
ate orthogonal multisine random time-series. This periodogram matrix is used
to comstruct the corresponding spectrum of the multivariate orthogonal mul-
tisine random time-series (synthesis). Application of the inverse finite discrete
Fourier transform to this spectrum results in a multivariate orthogonal multisine
random time-series with the predefined periodogram matrix (simulation). The
properties of multivariate orthogonal multisine random process approximations
obtained in this way are discussed. Attention is paid to asymptotic gaussianess.

Keywords: simulation random processes, multivariate orthogonal random pro-
cesses, simulated identification, multisine random time-series, fast Fourier trans-
form.

1. Introduction

Multisine time-series have been known for a long time. They are sums of many
discrete-time sines with amplitudes and phase shifts determined by a variety of me-
thods, depending upon the purpose for which the multisine time-series are to serve.
Recently, their popularity has increased thanks to the possibility of generating them
by numerically efficient Fast Fourier Transform (FFT) algorithms.

Multisine time-series may be used as basic building blocks for synthesising and
simulating various deterministic and random processes with predetermined spectral
or correlation properties. It seems that a theoretical foundation for such a synthesis
is given by the famous Gauss sum (Schroeder, 1990). Its individual complex terms
with the period length equal to any prime number exhibit the interesting property
of whiteness. Their correlation function is equal to zero for some non-zero shifts.
This idea has attracted no attention for a long time and the interesting potential of
multisine time-series seems to be largely unexplored. Some short discussion of multi-
sine time-series can be found in the books of Kay (1986), Marple (1987) and Godfrey
(1993). Recently they have been applied to synthesise white noise of scalar (Figwer
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and Niederliriski, 1992), bivariate (Niederliniski and Figwer, 1995) and multivariate
(Figwer and Niederliniski, 1995) type, as well as random processes given by their power
spectral densities (Figwer, 1997; Schinozuka and Deodatis, 1991).

The paper presents an application of multisine time-series to the synthesis and
simulation of wide-sense stationary multivariate orthogonal random processes defined
by their power spectral density matrices, where:

e The synthesis means the determination of the spectrum (the finite discrete
Fourier transform) of a multivariate orthogonal multisine random time-series
on the basis of the power spectral density matrix of the wide-sense stationary
multivariate orthogonal random process to be simulated.

e Simulation means the generation of the corresponding multivariate orthogo-
nal multisine random process approximation by performing the inverse discrete
Fourier transform of the synthesised spectrum.

The problem of synthesising and simulating random processes defined by their
power spectral densities given in an analytic form has been solved satisfactorily for
rational power spectral densities (Astrém, 1970). This approach is applied as an
approximation for non-rational cases (Pillai and Shim, 1993). The resulting time-
series ‘are both synthesised and simulated as outputs of a discrete-time linear filter
excited by white noise. Spectral and correlation properties of the obtained time-series
highly depend on:

o The quality of white noise used as a driving input. A recent comparison of some
Gaussian white noise generators can be found in L’Ecuyer (1990) and Bosq and
Smili (1991). The generators currently used for simulation purposes belong as
a rule to the class of linear congruential recursive generators. This scheme has
been generalised to non-linear generators and generators by inversion. There
also exist congruential linear and non-linear generators producing sequences of
multivariate random white noise (Niederreiter, 1992) but they do not posses
a mechanism providing, important in the multivariate case, orthogonality of its
elements; no systematic approach to deal with this problem for congruential
generators has been known so far.

e The filter parameters’ accuracy obtainable for any given rational power spectral
density by using spectral factorisation. In the non-rational case, the correspond-
ing rational approximation can be calculated using the minimax or least-squares
error criteria (DeFatta et al., 1992), applied to the power spectral density.

e The rounding errors accumulating in recursive calculations.

However, the power spectral density parametric representation is hardly ever available.
Very often the power spectral density of the random process to be simulated is given
only by a non-parametric representation, e.g. as a diagram.

It follows from Doob’s Spectral Representations Theorem (Christensen, 1991;
Priestley, 1981) that any wide-sense stationary random process can be approximated



Multisine approximation of multivariate orthogonal random processes 403

arbitrarily close by a sum of sines and cosines with amplitudes being zero mean,
independent random variables and deterministic phase shifts equal to zero.

In the presented approach the power spectral density matrix of a wide-sense sta-
tionary multivariate orthogonal random process is approximated by the periodogram
matrix of a multivariate orthogonal multisine random time-series with deterministic
amplitudes chosen so that for a given number of equally spaced frequencies from the
range [0, 27), the periodogram matrix is equal to the original power spectral density
matrix. The periodogram matrix may be used in turn to construct the corresponding
finite discrete Fourier transform vector (the spectrum) provided that the phase shifts
for each sine component are chosen. It is well-known that any periodogram matrix
corresponds to infinitely many different time-series which differ by the choices of the
phase shifts. It is demonstrated in the paper that in order to get ergodic random pro-
cesses, the phase shifts should be chosen with some well-defined random properties.
The spectrum with the chosen phase shifts is transformed into the time-domain by
the inverse finite discrete Fourier transform. Using this approach, a broad range of
multivariate orthogonal random processes can be synthesised and simulated provided
that their power spectral density matrices are available.

Multisine approximations of wide-sense stationary multivariate orthogonal ran-
dom processes obtained by this approach have discrete spectra. However, the original
processes have continuous power spectral densities. It turns out that by fulfilling cer-
tain conditions on sampling in the frequency domain, the approximation of continuous
power spectral densities by discrete spectra is not creating any loss of information.

Additionally, original random processes have autocorrelation functions converg-
ing to zero for large lags. This property holds for multisine time-series provided that
the number of sines is sufficiently large. For practical random process simulation, it
is usually possible to choose the necessary number of the sine components.

The attractiveness of the proposed multisine approach to the synthesis and sim-
ulation of wide-sense stationary multivariate orthogonal random processes is due to
many factors:

e There is no need to solve the spectral factorisation problem for a given
power spectral density to calculate the corresponding parametric approxima-
tion needed for simulation.

o Time-series can be precisely defined in the frequency-domain, which is of impor-
tance for a number of applications, e.g. optimal input design for identification
(Godfrey, 1993; Yuan and Ljung, 1985) and data encryption (Niederlifiski and
Figwer, 1998).

e Frequency-domain definitions are directly used to generate, by means of the
inverse finite discrete Fourier transform, the simulated random processes which
satisfy the ergodic hypothesis and are asymptotically Gaussian.

e Particular realisations of the simulated random processes can be obtained by
transforming the realisations of the synthesised spectrum back into the time-
domain by the inverse finite discrete Fourier transform implemented on the basis
of FFT algorithms.
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e The approach can be used for non-parametrically defined wide-sense stationary
random, rational and non-rational, scalar and multivariate random processes,
for which only the power spectral densities are available.

e It can be used to generate various types of scalar and multivariate white noise
(Figwer and Niederliriski, 1992; 1995; Niederlinski and Figwer, 1995), which turn
out to have interesting properties when compared with standard approaches, e.g.
congruential generators.

e It gives an opportunity to reduce radically the simulation effort by a simulation
time-scale contraction, which is a new technique in the simulation of Gaussian
random processes.

2. Multivariate Orthogonal Multisine Random Time-Series

The basic N-sample multivariate orthogonal multisine random time-series (MOMRS)
(Figwer and Niederlinski, 1995) is defined in the time-domain by the p-dimensional
multivariate time-series:

ul (i) = [ul @), ud (@), ..., ul ()] 1)

where the r-th (r = 1,2,...,p) MOMRS element uX (i) is a sum of some discrete-
time sine components with the constraint that the same frequency may not appear in
more than one MOMRS element. The r-th element is given by

uN(@) = Y Ansin(Qni+ ¢n) (2)

Q’ILENr

N, is the set of all frequencies n present in the r-th MOMRS element u’ (i), and

NiUNU---UN, ={0,0,...,7} (3)
These sets are pairwise disjoint:

Ns N Nt = 0 (4)
for s #t, s,t =1,2,...,p.  =2n/N denotes the fundamental relative frequency,
n = 0,1,...,N/2 denotes the consecutive harmonics of this frequency in the range
[0,7], ¢ = 0,1,...,N — 1 denotes the consecutive discrete time instants, A, are

deterministic amplitudes of the sine components (A, € R), ¢, are phase shifts, of
which ¢¢ is deterministic and the remaining phase shifts are random, independent
and: '

¢ uniformly distributed on [0,27) for n=1,2,...,N/2 -1,
o Bernoulli distributed B (1/2,{a,7 + a}) for n = N/2, i.e.

P{¢%=a}=P{¢%:W+a}:% (5)

where P {X} denotes the probability of an event X.
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When the time range is changed from ¢ =0,1,...,N—1upto i =0,1,...,00,an
extended MOMRS u(i) is obtained. It follows from the above choice of random phase
shifts that the extended MOMRS u(7) is an ergodic multivariate time-series (Figwer
and Niederliniski, 1995) because it is a stationary random process for which time-
averaged results obtained for any time-series realisation are equal to the corresponding
ensemble averaged results over a collection of the time-series.

The fact that elements of the MOMRS have no common frequencies under the
Parseval theorem implies the orthogonality of its elements for the ensemble averaging:

E{ur(i)us(3)} =0 (6)
as well as for the time-domain averaging:

gN -1

qN Z ur(Pus(i) =0 (7

i=0
where r # s, r,s=1,2,...,pand ¢=1,2,...,00
The elements of the extended MOMRS expected value vector (or the mean-value

Eector) E{u(@)} = [E{u(d )},8{uz(i)},...,8{up(i)}]T are given for r = 1,2,...,p
y

£ () = { Agsinge if 0€ N, )

0 otherwise

The corresponding ensemble averaged (£{u(iu’(i—7)}) or time-domain averaged
(Ruu(7); Ruu(r) = E{u(@uT(i—7)}) correlation function matrix is given by

E{u(i)uT(i -7}
= dlag{f){ul Dur(i — 1)}, E{ue(@Duai = 1)}, ..., E{up(@)up(i — T)}} (9)
where £{u,(i)u,(i—7)} is the autocorrelation function of the r-th MOMRS element:

2
E{u(Du(i—1)} = Z %—"— cos(nt) + E{uo,x(Duo (i —7)}  (10)
QneN,\{0,r}

and
A2 sin” ¢o + (—I)TA sin?a if (0 € N,) A (7 € N,)
A2 sin? 0eN, N,
£ fuon(iion(i-r)} =4 1 sin® ¢o f (0eN:)A(mgNy)
(—1)TA32! sin? ¢y if (0&N,)A(m€N,)
0 £ (0gN)A(rgNy)
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Any change in the assumption about the distributions of the random phase shifts
¢n in the MOMRS definition results in an extended MOMRS for which the expected
value vector and autocorrelation function matrix are time-dependent. For instance,
the choice of all random phase shifts ¢, as Bernoulli distributed B (1/2, {a, 7 + a})
leads to non-stationary extended MOMRS’s which exhibit the following symmetries:

e for a =0 and additionally Ag = 0 or ¢p = 0, the resulting extended MOMRS’s
are odd sequences:

u(i + gN) = —u(gN — 1) (12)
e for a = m/2, the resulting extended MOMRS’s are even sequences:
u(i +gN) = u(gN —1) (13)

where 1=1,2,...,N—1 and ¢=1,2,...,00.

The spectrum of the basic N-sample MOMRS is given in the frequency-domain
for the (relative) frequency range [0, 27) by its p-dimensional vector of finite discrete
Fourier transforms UN(jQm) = [UN(jQm), Uy (jOm),. .., U;V(ij)]T with the
r-th element:

N—1
UY(iQm) = Y ur(@)e O™
=0
=N Z A [ej¢"5(m —n) —e i §(m — (N - n))] (14)
=% n
QneN,
where m = 0,1,..., N—1 indicates consecutive harmonics of the fundamental relative
frequency 2 in the range [0,27).

This frequency-domain representation allows us to efficiently generate particular
realisations of the basic N-sample MOMRS u® (i) by transforming realisations of the
spectrum UM (jdm) back into the time-domain by the inverse finite discrete Fourier
transform implemented on the basis of FFT algorithms.

By finite Fourier transform techniques (Bendat and Piersol, 1986), the peri-
odogram matrix of the basic N-sample MOMRS is given by

. T . . T
L (i0m) = LUN(jQm) (UN(-j0m))
= diag{®} (Om) + j0, ®3,(Qm) + j0,..., B (Om) + j0} (15)

where m = 0,1,...,N — 1, T is the sampling interval, ®~.(Qm) (r = 1,2,...,p) is
the periodogram of the r-th MOMRS element:

N (Om) = %JX > A4 [a(m —n)+8(m— (N - n))] + &, (Qm) (16)

QreN\{0,7}
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and
rTN (A% sin? ¢06(m)+A2% sin? ad (m—%)) if (0eN,)A(meN,)
TN A2 sin? ¢o6(m) if (0e N)A(m¢gN,)

B (m) =4 (17
TNA%sin2¢%6(m—%) if (0¢ N)A(reN,)
0 if (0¢ N A (r & Ny)

It should be noticed that in spite of random phase shifts, the periodogram matrix
of the MOMRS is a real-valued matrix with deterministic elements which are uniquely
defined by the set of amplitudes {Ao, A1,...,An/2} and two phase shifts {¢o,a}.
This implies that the shapes of MOMRS periodogram matrix elements can be fitted to
any given power spectral density function matrix elements of a wide-sense stationary
multivariate orthogonal random process. This is the main idea behind the proposed
synthesis and simulation method of multivariate orthogonal random processes.

3. Power Spectral Density Defined Time-Series
3.1. Synthesis

The power spectral density matrix of a causal, wide-sense stationary multivariate or-
thogonal random process with finite powers of its elements may be approximated by
the periodogram matrix of an MOMRS with the amplitudes of the sine components
chosen so as to make the values of the MOMRS element periodograms equal to the
power spectral densities of the original random process for some equally spaced fre-
- quencies from the range [0,27). This equal spacing between the frequency lines can
be achieved by ordering the consecutive frequencies circularly to consecutive elements
of the MOMRS. Such an ordering will be called the consecutively circular ordering
and denoted by the upper index ¢ in the symbols N¢ (r =1,2,...,p) describing the
sets of frequencies. The frequency Qn is a member of Nf when ‘

r=nmodp+1 (18)

If N/(2p) is an integer number, then the zero- and Nyquist-frequencies are el-
ements of the set N{. This set consists of n; = N/(2p) + 1 elements. Other sets
N¢ (r =2,3,...,p) have n, = N/(2p) elements. When N/(2p) is not an integer
number, the MOMRS elements u,(i) (r =1,2,...,p) have different numbers of sine
components n,. For alarge N (N > p) the number n, for all MOMRS elements
can be approximated by N/(2p).

Let v(i) be a wide-sense stationary, real-valued multivariate orthogonal random
process with the power spectral density matrix

Pyy (jwT) = diag{ o, v, (M) + 5O, Byy0, (W) + 50, ... ., By, v, (M) + 5O} (19)
which satisfies, for wT € [0,2), the following conditions:

- By (JwT) = Byy (i (27 — wT)) : (20)
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and
[|@vv (GwT)]|| < o0 (21)

where

P P

[y (GwT)| = J S5 |@0,w, (0m)|? (22)

7=1 s=1

It is assumed that the autocorrelation function matrix Ryy(7) of v(3) for lags || >
N/(2p) — 1 satisfies

Ryv(r) = 0 (23)

This implies that v(7) is a random process with the finite correlation time N/(2p)—1.

The power spectral density @, ., (wT) (r = 1,2,...,p) is sampled in the fre-
quency-domain by choosing the n, sample points (approximation nodes) along the
wT axis at relative, equidistant frequencies from the set IN¢. It does not produce
aliasing if the spacing A, between the samples along the frequency axis is such that

2
A<= (24)
Ny
where r = 1,2,...,p. When the maximum spacing
27
= max A =pr=pl (25)
is chosen, the original power spectral densities @, , (wT) (r = 1,2,...,p) can be

recovered from its sampled values (periodograms of approximating multisine random
time-series) by using the sinc interpolation (Jerri, 1977).

The approximation criterion
Q’vr'l)r (CUT) |wT€N:_: = Qx‘(nm) IQmENﬁ (26)

for r =1,2,...,p allows us to synthesise the r-th element U,(j2dm) of the MOMRS
discrete Fourier transform UM (jQm) as follows:

e for m =0 and Qm € N

: N .
UN(j0) = 4/ 7 a0, (0) + 30 (27)

o for m=1,2,...,N/2—-1 Qm € Nf:

N

Re {U;"(jm)} = 1/ 5 ®uo, (Am) sin ém (28)
Im {UN (jQm)} = —\/%%U,(nm) COS P, (29)

where ¢, are random, independent and uniformly distributed on [0, 27);
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o for m=N/2 and Qm € N&:

U (1) = 1| 3B (r) sin g + 50 (30)

where the quantity qS% is random, independent and Bernoulli distributed
B(1/2,{a,m + a});

e for m=0,1,...,N/2 and Qm ¢ N
U (jim) = 0+ j0 (31)
e for N—-m=N-1,N-2,...,.N—(N/2-1):
U (jQN —m)) = Re {UY (jQm)} — jIm {U} (j¥m) } (32)
The inverse discrete Fourier transform of the spectrum
UM (jQm) = [UN (jQm), UY (jOm), ..., UN (i9m)]” (33)

gives a real-valued MOMRS u® ().

The assumption (23) can be interpreted as a lower bound on the number N of
samples for multivariate orthogonal random time-series to be simulated. When it is
satisfied, the original power spectral density matrix may be reconstructed uniquely
without producing aliasing.

For asymptotically uncorrelated random processes (lim; o Ryv(7) = '0) the
assumption (23) can be satisfied only asymptotically for n, — oo (r = 1,2,...,p).
In this case, a finite number of approximation nodes implies aliasing in the shift-
domain of the corresponding autocorrelation function. This aliasing can be made
insignificant by selecting a sufficiently large N such that for all 7 > N/(2p) ~ 1 it is
reasonably to assume that Ryy(7) is a zero matrix.

3.2. Asymptotic Properties

The extended MOMRS obtained from application of the approximation criterion (26)
to the power spectral density matrix ®v(wT') (wT € [0,27)) of a wide-sense station-
ary multivariate orthogonal random process v(i) turns asymptotically for N — oo
into a Gaussian multivariate multisine orthogonal random time-series:

Lemmma 1. Assuming that:

1. @yy(jwT) (Y|®vww(jwT)|] < oo for wT € [0,2m)) is the power spectral density
matriz

By (jwT) = diag { B, v, (M) + jO, D4y, (W) + 50, ..., By, (M) + jO} (34)
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of a wide-sense stationary real-velued multivariate orthogonal random time-series
with zero mean vector and the variance matriz:

o2 = diag {02,,,0%,,,..., 0%, } (35)
where for r =1,2,...,p we have
) 1 2w
%= gor || B WT)AET) (36)

2. ¢n, n=1,2,...,N/2~—1 are independent random variables uniformly distributed
on [0,2);
3. A, converges to 0 as N — co in such a way that for r =1,2,...,p:

NTA?
) L= Py, (I0) (37)

where n=1,2,...,N/2—1 and Qn € N¢;
4. A0=A%=0 or ¢o=a=0;

then the extended MOMRS u(i) with the consecutively circularly ordered frequencies
converges in distribution as N — oo to a Gaussian multivariate orthogonal multi-
sine random time-series (GMOMRS) g(i) = [g1(%), g2(3), . .. ,gp(i)]T with zero mean
vector and the variance matriz (1/p)o?:

g(i) € AsN (o, %a’%) (38)

Additionally
1. The elements of the GMOMRS periodogram matriz are given by:

@, .. (m) if Qme N:\{0,n}

(39)
0 if (Qm=0)A(Qm=m)A (Qm & Nf)

By,4.(0m) = {

where r =1,2,...,p.
2. The correlation function matriz of the GMOMRS converges to:

] . 1
5{8(@)871(@ - 7')} = Rgg(r)= 27pT
where 7 =0,1,...,00.

/ 2ﬁfbw(wT) cos(wTTd(WwT) = %va (7)(40)
0

Proof. The uniform distribution of independent, random phase shifts ¢,, on [0, 27)
for each frequency Qn (n=1,2,...,N/2—1) implies that for any time instant 4 the
random vector

1,(3) = [ln (@), ban(@), - s bpn(i)] (41)

where

. YNTAn sin(ni + ¢,) if On € Nf
lr,n('l') = 2 (42)

0 if Qng NS
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for r =1,2,...,p, is characterised by

E{l()} =0 (43)
Its variance matrix is
E{L(D17 ()} = diag {E{ n (D}, E{B n (D}, -, {2 (D)} } (44)
where
2
E{Zf’n(i)} _ NI;A” if Qne Nf (45)

0 if OngN¢

for r =1,2,...,p. From (41) it follows that

N/2—1
Sw= 3 L6 =2 Luv) (46)

and for each time instant ¢ we have
E{u(@)} =0 (47)
The corresponding variance matrix is

N/2-1 NT
E?\’ = Z g{ln(i)lg(i)} = Tdiag {‘7%1,N’ 0'32,N1 s ’Oﬁp,N} (48)
n=1 .

where
2 2 &
2 — = —
N =g 2 B (@M= 5o D Bu (Qpnt(r-1)2)0p  (49)
QneNe\{0,r} n=0

As N - oo, the product (r —1)Q tends to 0 and (n, —1)Q2p tends to «. This
implies under Riemann’s definition of the integral that
1
. 2 —
]\}E)noo IrnN = 271'Tp

2

27 o.v”‘
/0 B0, (o) d(WT) = T2 (50)

Let

@), = (51)

denote the Euclidean norm of the vector 1,(¢). It follows from the properties of
the sine function that for each time instant 7 the sequence of random vectors 1,(7)
(n=1,2,...,N/2—1) is a uniformly bounded sequence (Karr, 1993), i.e. there exists
a constant c¢ such that

P (L@, <c} =1 (52
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for n=1,2,...,N/2~1. This implies that for every € > 0, the extended Lindeberg

condition
N/2—1
in = > e{ ol {olzof 1} f=0 @

n=1

is satisfied by the sequence of 1,(i) (n = 1,2,...,N/2 — 1) for each time instant
i. It follows from an extension of the Lindeberg-Feller central limit theorem to the
multivariate case (Serfling, 1980) that for each time instant ¢ the random variable

——Sy=u"(i) (54)

converges in distribution as N — oo to a Gaussian multivariate orthogonal random
variable g(i) with zero mean vector and the variance matrix (1/p)o?.

Property 1 follows directly from the approximation criterion (26). The proof of
Property 2 follows from Riemann’s definition of the integral applied for N — oo to
the correlation function matrix elements (10) of the power spectral density defined
MOMRS. ]

The results of this lemma do not change when the zero-frequency phase shift
¢o and Nyquist-frequency distribution parameter a are equal to = /2, and the cor-
responding sine component amplitudes are assumed to be chosen for 0 € N; and
m € Nf as

NTA: = &,,,,(0) (55)
NTAZ% = &y, () (56)

because the amplitudes Ay and A 19 tend to zero as N — oo.

It should be emphasised that for a given power spectral density matrix of a wide
sense orthogonal random process the corresponding multivariate orthogonal multisine
random time-series exhibits an interesting property: asymptotically for N — oo its
periodogram matriz is a consistent estimator of the true power spectral density matriz.

4. White Noise Approximation

When the power spectral density matrix of a multivariate white noise is approximated
by the periodogram matrix of an MOMRS, the corresponding multisine time-series
is an extended white MOMRS. For p = 1,2 constant frequency bin spacings can
be kept throughout the entire frequency range [0,27) and whiteness holds for finite
N-sample time-series, e.g. its autocorrelation function (or correlation matrices) be-
haves for a number of lags exactly as a pure white noise autocorrelation function (or
correlation matrices) (Figwer and Niederliniski, 1992; Niederliniski and Figwer, 1995):

Example 1. When the power spectral density ®,,(wT) = A* of a scalar white
noise is approximated by the periodogram of a scalar multisine random time-series,



Moultisine approximation of multivariate orthogonal random processes 413

the corresponding extended MOMRS (p = 1) can be turned into an extended white
multisine random time-series (WMRS) with the mean 1/A2/(T'N) and variance o2 =
(A2/T)(N —1)/N. Its autocorrelation function behaves for lags 0,1,...,N —1 as
a pure white noise autocorrelation function:

2
X if =0,N,...
Ru(r)={ T (57)

O otherwise

As N — oo, the variance of WMRS converges to A?/T, and its mean value tends to
ZEero. ¢

Example 2. When the power spectral density matrix ®,v(wT) = A2I of a bivari-
ate orthogonal white noise (p = 2) is approximated by the periodogram matrix of
an extended MOMRS with consecutively circularly ordered frequencies, a bivariate
orthogonal white multisine random time-series (BOWMRS) is obtained. It is charac-

T
terised by the mean value vector [ A2/(TN), 0] and the variance matrix

) N-2 0
A=t | N (59)
0 1
The elements of the correlation function matrix Ryuy(7) for 7 =0,1,...,00 are given
by
2
— if 7=0,N/2,...
Rll(T) = 2T / (59)
0 otherwise
}\2
— if r=0,N,...
o if =0,N,
. 2
Rao(1) = N if 7=N/2,3N/2,... (60)
2T
0 otherwise
Rlz(T) = R21(T) =0 (61)
As N — oo, the variance matrix of the BOWMRS converges to A\%?/(27)I, and its
mean value vector tends to a zero vector. ¢

It is worth noticing that the whiteness of the WMRS and BOWMRS holds for
finite N-sample time-series. Unfortunately, this property cannot be extended to
MOMRS having dimensions larger than 2. Correlation matrices of a white MOMRS
(MOWMRS) with the number of elements p > 2 coincide only asymptotically for
N — oo with the correlation matrices of a p-variate white noise. Asymptotically the
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MOWMRS is a Gaussian multivariate random time-series (Figwer and Niederliriski,
1995).

Example 3. Assuming that ®,(wT) (wT € [0,27)) is the power spectral density
matrix of a real-valued multivariate white noise (p > 2):

®ov(WT) = A1 (62)

the approximating extended MOMRS u(z) with consecutively circularly ordered fre-
quencies converges in distribution as N — oo to a Gaussian multivariate white mul-
tisine random time-series (GMOWMRS) g(i) = [g1(4), 92(9),. .., gp(i)]T with zero
mean vector and the variance matrix (A\?/p)1:

g(i) € AsN (0, -’—\1—)2-1> (63)

The elements R,s(7) of the correlation function matrix Rgg(r) for 7=0,1,...,00
are given by

R..(r) if r=3s

Rys(1) = (64)
0 if r#s
where r,s = 1,2,...,p. The autocorrelation function R,-(r) of the r-th
GMOWMRS element converges to
2
/\— if r=0
R (1) = p (65)

0 otherwise

¢

All white noises synthesised on the basis of multisine random time-series, even short
ones, have very good correlation properties — their correlation matrices approximate
very accurately the original ones. It is worth noticing the following exception: for
N — co the periodogram of WMRS and the periodogram matrices of BOWMRS and
MOWMRS are consistent estimators of power spectral densities of the corresponding
white noises (see Lemma 1).

5. Gaussian Time-Series Simulation

It follows from the previous sections that statistical properties of multivariate or-
thogonal multisine random time-series synthesised based on the given power spec-
tral density matrix of a random process to be simulated behave, asymptotically for
N — oo, exactly as those for the corresponding true Gaussian random process. In
computer simulation experiments there is no possibility to perform simulations for
an infinite N. In order to simulate a Gaussian random process, a finite value of N
must be chosen. This choice influences statistical properties of the synthesised mul-
tisine time-series. However, the original power spectral densities and autocorrelation
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functions are approximated very accurately by the corresponding properties of the
synthesised multisine approximations, even for small values of N. The influence of
a finite N can be seen while variances of the estimated parameters for power spectral
density defined MOMRS are compared with the corresponding theoretically calculated
Cramer-Rao bounds for true Gaussian random processes.

Example 4. The following bivariate orthogonal AR time-series:
Az Hv(i) = e(i) (66)
with
1.00 0.00 —0.80 0.00 1 0.00 0.00 9
Az™H = + 27t + 272 (67)
0.00 1.00 0.00 —1.50 0.00 0.70
and a unity variance matrix of the white noise e(i) was simulated by using;:

e its time-domain representation as a discrete-time filter excited by the Gaussian
white noise e(i) generated on the base of a standard linear congruential random
number generator (SGRNG);

e its frequency-domain representation as the power spectral density matrix

1.00 + 50
1.64—1.60coswT

0+ j0

1.00 + 50
3.74—5.10coswT'+1.40cos 2wT

&y (juwT) = (68)

0+ 350

which was approximated by the periodogram matrix of a multivariate (bivariate)
orthogonal multisine random time-series.

Each simulated N-sample AR time-series realisation (N = 128 and N = 256) was
identified using the least-squares identification method (Box and Jenkins, 1976). The
mean values and standard deviations (in parentheses) of the parameters estimated
in 100 simulation experiments for the AR model with the structure of the matrix
A(z71) chosen as

. [ 100 0.00 aly 000 _ [0000007]
Az H) = + 27+ z7%  (69)
0.00 1.00 0.00 al, 0.00 a2,

and the corresponding Cramer-Rao bounds (CRB) are presented in Tab. 1.

The mean values of the estimated parameters do not differ from the true val-
ues but the standard deviations of the estimated parameters for the autoregressive
multivariate orthogonal time-series simulated with multivariate orthogonal multisine
random time-series are smaller than those obtained for the time-series simulated us-
ing the standard Gaussian white noise generator. These standard deviations are also
much smaller than those which follow from the Cramer-Rao bound for the original
Gaussian random process. $
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Table 1. Mean values and standard deviations (in parentheses) of the orthogonal AR model
parameter estimates obtained for 100 simulation experiments using the least-
squares identification method.

Parameter Estimates

Parameter (CRB) SGRNG MOMRS N
a}, (0.053) —0.791 (0.050) | —0.801 (0.006)
ai, (0.063) —1.476 (0.065) | —1.500 (0.009) | 128
a3, (0.063) 0.680 (0.063) 0.700 (0.008)
a}, (0.037) —0.801 (0.036) | —0.800 (0.002)
as, (0.044) —1.496 (0.043) | —1.500 (0.004) | 256
a?, (0.044) 0.695 (0.042) 0.700 (0.003)

It follows from the spectral factorisation theorem (Pillai and Shim, 1993) that
the results of the parameter estimation for a time-series simulated directly from the
given power spectral density diagram and from the corresponding discrete-time filter
excited by a multivariate orthogonal white multisine random time-series are compara-
ble (Figwer, 1997; Figwer and Niederlinski, 1995). This implies that the discussion of
Cramer-Rao bounds for the results of parameter estimation of power spectral density
defined MOMRS may be done by analysing only the results for the corresponding
multivariate orthogonal white multisine random time-series.

Let ! be the number of the simulated scalar white noise time-series samples taken
from a synthesised WMRS with the period N (I < N). It is well-known (Box and
Jenkins, 1976) that, for a real-valued Gaussian white noise time-series of the length I,
the estimates of its normalised autocorrelation function for all lags are asymptotically
normally distributed with zero mean and the variance 1/l. For the WMRS, the
variance of the normalised unbiased autocorrelation estimator

Ru(r) _ 1 Yisguli)u(—7) (70)
Ru(0) -7 Yi,u2()

is lag dependent. The smallest value of this variance is for the lag 7 = 1. The variance
£ { (Euu(l) / fiuu(O))z} may be approximated by the following formula:

Ruu(1) : N 1
(m) Er ™

N—-i+1
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Similarly, the variance & {(Ruu(l)/Ruu(O))Z} of the normalised autocorrelation
function estimator (70) for all elements of MOWMRS is

. 2
Ruu(l)) 1
= > 72)
1—1)2 (
(Ruu(o) I+ TV_(/—F%-I_—T
The analysis of the above expressions leads to the conclusion that, when using

multivariate orthogonal multisine random time-series to simulate Gaussian random
processes, the following two simulation schemes can be distinguished:

e Case | € N/p in which the variances of the autocorrelation function estimator
for the elements of the power spectral density defined multivariate orthogonal
multisine random time-series are comparable with the corresponding values of
the Cramer-Rao bounds for the true Gaussian random process.

e Case [ ® N (I < N) in which the variances of the autocorrelation function
estimator for the elements of the power spectral density defined multivariate
orthogonal multisine random time-series are always much smaller than the cor-
responding Cramer-Rao bounds for the true Gaussian random process. The
results of autocorrelation estimation behave as for the true Gaussian random
process with the number of samples

(=1 (73)

e { (fetty’)

This means that to simulate an l'—sample time-series representation by using
a classical Gaussian white noise random number generator you can simulate the
corresponding [-sample (! < I') multisine random time-series with the same sta-
tistical properties. This is an interesting property of the power spectral density
defined multisine random time-series which may be called a simulation time-
scale contraction. The simulation time-scale contraction allows us to reduce
radically simulation efforts. This is especially important in real-world experi-
ments in which test times are limited by the properties of the systems under
tests (Figwer, 1996).

6. Conclusions

A synthesis and simulation method of wide-sense stationary multivariate orthogonal
random processes characterised by their power spectral densities has been presented.
It is based on approximating the power spectral densities by periodograms of orthogo-
nal multisine time-series with deterministic amplitudes and random phase shifts, and
transforming the frequency representations into the time-domain by using the inverse
finite discrete Fourier transform. Multisine approximations of wide-sense station-
ary scalar and multivariate orthogonal random processes thus obtained are ergodic.
Asymptotically, they turn into Gaussian time-series.
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The proposed approach can be used when only a power spectral density diagram
of the random process to be simulated is available. There is no necessity to find
any parametric representation of the random process. This is especially important
for random processes which have non-rational power spectral densities, because the
accuracy of the parametric approximation is crucial in reconstructing the properties
of original random processes (Pillai and Shim, 1993).

It was shown that power spectral density defined multivariate orthogonal multi-
sine random time-series approximate very precisely the correlation properties of the
original random processes. This method, when applied to the power spectral den-
sity of white noises, allows us to synthesise different types of interesting scalar and
multivariate orthogonal, white or asymptotically white, ergodic random time-series.

A new technique-of Gaussian random process simulation based on a time-scale
contraction was proposed. It offers an opportunity to reduce radically the simulation
time.

Theoretical arguments were presented for multivariate orthogonal multisine ran-
dom time-series with an even length N of their period. For an odd N, the set of all
relative frequencies does not include the Nyquist frequency 7 and there is no need to
take into account terms involved by this frequency (the subscript N/2 for even N).
Conveniently, it turned out that the results for the case of N odd are very similar
to those for N even. The corresponding definitions and theorems can be obtained
by eliminating terms implied by the sine component of the Nyquist frequency. De-
spite these simplifications, the choice of N even was more useful for the white noise
synthesis. It allowed us to synthesise scalar and bivariate white multisine time-series
for which whiteness holds for finite /N, while for. N odd it can be done only for the
scalar case (Figwer and Niederliniski, 1995).
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