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LIMIT DISTRIBUTIONS OF THE CAPACITY
OF LARGE REGULAR CHANNEL GRAPHS

WoiciecH KORDECKI*

The paper is devoted to the investigation of reliability of large channel graphs
having links with low reliabilities. Under some regularity assumptions regarding
such graphs, we derive bounds and limit distributions of their capacities. The
main goal of the paper is to prove a Poisson convergence of the capacity.
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1. Introduction

Consider a network to be a system involving the movement of some commodity such
as information, products, or people. Computer networks, electronic circuits, commu-
nications networks are a few common examples. Colbourn (1987) gives a wide review
of the definitions of such networks and their reliabilities from a combinatorial point of
view. Assume that components of the network are failed or occupied independently
and with a prescribed probability. We can consider this network as a stochastic one.
The most common model of such a network is a probabilistic graph.

Lee (1955) introduces a simple model for interconnection networks with switches
or intermediate node partitions into stages, in which links are failed whenever they
are unavailable, either due to a component failure or to the occupancy with other
traffic. As a suitable model, Lee proposes the channel {probabilistic) graphs defined
in Section 2.

A fundamental problem that arises in stochastic networks is determiniation of
appriopriate measures of the network performance. In general, network reliability
problems are at least as difficult as NP-complete problems. Ball (1980) shows that for
channel graphs this problem is #P-complete. Thus, there is little hope of efficiently
calculating the exact reliability of channel graphs. Instead, one can try to obtain
bounds or limit results for the reliability.

In the paper, we concentrate on the second problem, i.e. limit results, when the
probabilities that the links are not occupied are small, i.e. the reliabilities of compo-
nents are low. Moreover, we assume that all the components operate independently.
The above assumptions can be fulfilled when a large network is shared with many
users operating independently, each of them using the network with high intensity.
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Thus from the point of view of a particular user, all links are occupied with a high
probability, so they are idle with a low probability.

QOur paper is organized as follows. In the next section we introduce basic defini-
tions of channel graphs. In Section 3 we consider results regarding known estimations
and bounds for the reliability of general systems and their applications to channel
graphs. Section 4 is devoted to algorithms based on the well-known Ford-Fulkerson
theorem (Ford and Fulkerson, 1962) of a maximum flow applied to a channel graph.
In Section 5 a limit distribution of the capacity of channel graphs is investigated, and
in Section 6 some numerical results, exact and simulated, are analyzed.

2. Preliminaries

Let V=VUWVU---UV,UV,41 be a disjoint union of n + 2 sets, each set being
a stage of nodes, |V;| = m;, Vo = {s} the source, Vo411 = {t} the terminal. For
0 <i<n, E; is a set of directed links; each link goes from a node of V; to a node
of Viyr1,and E=E,UEU---UE,. G=(V,E) is a directed graph, called the
channel graph with n stages. A channel graph is regular if s is connected with all
nodes from V3, all nodes from V;, are connected with ¢ and all nodes from V; have
the same in-degree k; and out-degree kj for 2 < j < n — 1, see Fig. 1. A channel
graph is completely regular if m; =m and k; = kj = k for all j.
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Fig. 1. Channel graph.

For bistate links, each link of a channel graph is either occupied (state 0) or idle
(state 1). The probability of the occupancy of a link e is known and equal to p,.
Assume that the occupancy probabilities are independent. In regular channel graphs
we assume that p. are the same for links going from V; to V;;1 — such a probability
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will be denoted by p; and py = ps, pn = pt. In completely regular channel graphs
we {requently assume that p; = p for j # 0 and j # n. The blocking probability of
a channel graph is the probability that every path joining s and ¢ contains at least
one occupied link. A well-known problem is to calculate or estimate the blocking
probability. In this paper, we state a more general question: How many disjoint
paths with all idle links do exist in a channel graph? Our main goal is to find a limit
distribution of the capacity C, i.e. the number of such paths as m — oo, p — 0 and
possibly n — oo.

The first part of the book of Harms et al. (1995) is devoted to problems of
channel graphs. Most definitions and properties of such graphs are adopted from this
book.

3. Estimation and Bounds for the Reliability of Channel Graphs

The following definitions are mainly from Fu and Koutras (1995), Koutras et al. (1995;
1996). In those papers, the authors give several new bounds for the reliability of a
coherent system in a case of independent but not necessarily identical components.
In this section, we apply those results to a system determined by channel graphs. It
is obvious that the system described by a channel graph functions if and only if its
capacity C is positive.

Write R = Pr(C > 0). Let P be the set of all paths from the source s to the
terminal ¢. The set P is also the set of all minimal paths in the sense of reliability
theory {Barlow and Proshan, 1975).

Koutras and Papastavridis (1993) and Koutras et al. (1995) present the following
definitions and theorems. Let

p(P) =min {|P;|, 1<j <M}
and

v(P) {P; € P:P;N P # 0}

= max |
1<i<M
where |P;| denotes the cardinality of P;. Let p=maxp; and pa = [[;c 4 pi-

Theorem 1. If

M
A= ZPP,-
j=1
then
|Pr(C =0) - e“A] <(1-e?) (v(’P)p“(P) + (v(P) - 1)p) )

For some ordering P = (Py,...,Py) Fu and Koutras (1995) define sets KJ* in the
following way:

Ky=0, Ki={i: NP #0,1<i<j}, j=23,...M (2
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For every nonempty K7, let K; C E be an index set such that
K;NP,#0 forevery i € Kj, K;nNP;j=0
and set K; =0 if K7 = 0.

Consider a sequence of systems (E,,P,) with reliabilities R, and Pj(r), KJ(.T),

pgr), M), respectively. Koutras et al. (1995) proved the following limit theorem.

Theorem 2. If the sequence of (E,P,) is not a parallel-series and

M

Jim > I #0) =201+ 0() 3)
PR
M

lim > I 27 JT o2 =27 (1+0(1) (4)
7=l eeP("  eeK{

then R, = (1—e *)(1+o0(1)) as r = co.
Immediately from Theorem 2 one can obtain the following easy observation.

‘Proposition 1. If the conditions (3) and (4) are both fulfilled, then a.s. (i.e. with
probability tending to 1), idle elements form parallel paths, i.e. paths without common
elements.

Remark 1. Fu and Koutras (1995) assume that A" — X\ = const, but it is easy to
see that their proof remains true in the case stated in Theorem 2.

Now, we apply the above theorems to channel graphs. At first we determine the
quantities needed in Theorem 1. It is obvious that p(P)=n+1, p= Jnax p; and
Sisn

n
pp; = Hpi
=0

for every path P;. Then write ps = pp,.

The exact computation of v(P) is more complicated, but in fact, an upper bound
on this quantity is sufficient. Denoting by n;; the number of paths which match the
path P; on the link e; going from V; to Vi1, we have the inequality

v(P) < Z oy (5)

By induction it is easy to check that the number of all paths from s to t is equal to

M=mikiky- -k, = kbky - krmy (6)
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In the case of completely regular channel graphs we have that the number of all such
paths is equal to mk™ L.

Let e; be a source link (a link from s to a node in V;). Then using (6) there
are kj---kj,_; paths matched on the link e;. Similarly, if e; is a terminal link (a
link from a node in V,, to ¢), then there are k% --- k]! such paths. For any other link
ej joining stage V; with Vji,, there are ki ---kj'kj ;- k,_, such paths. Hence,
from (5) we obtain

n—2
(P) K+ kpoy kg ok Y kg KKy ok = 0(P)  (7)
j=2
and for a completely regular channel graph
v(P) < 2k" 1 + (n — 3)k" 2 < nk™!
From Theorem 1 and (7) we immediately obtain

Corollary 1. If M is given by (6), p = max p;,,

0<i<n
n
Pst = Hpi
i=0
and A = Mpg;, then
|Pr(C =0)—e™?|

. n—2
<2(1-¢) (k1-~-k:,_1+k;'---k;:+zk;'--- / ;+1~--k;:-1)p
j=2

If a channel graph is completely regular, then from Corollary 1 we have
Corollary 2. If A = mk™ 1p"t1, then
|Pr(C =0)—e™*| <2 (1~ e™*) npk™! (8)

In the sequel we need an estimation of the size of K;. Note, however, (Koutras
et al., 1995) that it is possible to choose K so that

|Kj|<|[{i: 1<i<j—1 and P,NP; # 0} <v(P) 9)
Comparing Theorem 2, Corollary 2 and (9), we obtain

Corollary 3. For completely reqular channel graphs, if np(™ (k(r))n—1 — 0, then

Pr(C = 0) = e " (1 4 o(1))

as r — 00.



426 W. Kordecki

4. Maximal Capacity in Regular Channel Graphs

In this section we investigate an algorithm finding a lower bound on the capacity
in a channel graph being some subgraph of a regular channel graph, and next, the
capacity of such a subgraph. This algorithm is a specialization of the well-known one
based on the max-flow, min-cut theorem, originally stated by Ford and Fulkerson (see
e.g. Gibbons, 1985, Ch.4). The capacity of a channel graph is a maximal flow in a
network on a channel graph with the capacity of idle links equal to 1. In our case
the considered subgraph of the regular channel graph is the subgraph G = (V, Er)
formed by idle links.

Algorithm:

Input: channel graph Gy,
Output: flow f, lower bound C* on capacity C and capacity C.

1. Init. Set f(e) =0 for all e € Er. Set C* = 0.

2. Find. Find a path from s to ¢ which does not contain links e such that
f(e) =1, set f(e) =1 for all links in this path and increase C* by 1. If such
a path does not exist, go to procedure Enlarge else repeat the procedure.

3. Enlarge. Set C = C*. Find a chain from s to ¢ such that for a forward e
in the chain, f(e) =0 and f(e) =1 for a reverse e. Exchange 0 with 1 in the
chain. Increment C by 1. If such a chain does not exist, return C' and f else
repeat the procedure.

The quantity C* obtained as a result of the procedure Find is a lower bound
on the capacity C.

The procedures of finding a path in the step Find and a chain in the step Enlarge
are based on the well-known DFS algorithm (Gibbons, 1985, p.20). In both these
procedures we assume that a new node is always chosen equally likely from possible
ones.

Let f(P) =1 if and only if f(e) = 1 for all e € P, where P € P. Define
Ip = f(P), where f is determined by Step 2. Obviously,

C* = Z Ip
PeP

Hence C* < C.

Let A;; be an event such that the path P; was chosen as the j-th one in Step 2.
Then we have the following simple observation:

Lemma 1. For regular channel graphs Pr(A;;) = Pr(A;) for every i and all pairs
(i, k).
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5. Limit Distribution of Capacity

The method used in the section is widely presented in the book of Barbour et al.
(1992). Denote by L£(X) the distribution of a random variable X (a random vec-
tor X or afamily of random variables X'). Let Po(A) denote the Poisson distribution
with the expectation A. Write

drv (L(X),Po(N)) = Ac{sgl? } |Pr(X € A) = Pr(Y € A)| (10)

where L£(Y) = Po(A). If dry(L(X),Po(N)) — 0, we say that X is Poisson conver-
gent.

Barbour et al. (1992) give as Theorem 2.A the following result:

Theorem 3. Suppose that
wW=> I,
a€el’

where I,’s are indicator random variables with expectations w,, and suppose that,
for each a € T, random wvariables U, and V, can be constructed on a common
probability space, in such a way that

LU) = LOW), L0 +Va) = L(W|Ia =1) (1)
Then
dry (£09),Po(Y) < “=2 S B - Val (12

a€cl

where A=} 1 Ta.

We apply the above theorem to show that C has approximately the Poisson
distribution.

Theorem 4. The capacity C of a channel graph is Poisson convergent if 11<11§g m; —
<ikn

oo in such a way that

M@ = A" (1 +0(1)) (13)
. o(P)

MOp (1=pM) " = A (14 0(1)) (14)

P A =0 (15)

where p(*) = ax p; and 9(P) is given by the right-hand side of (7).
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Proof. In the case of regular channel graphs, let P be a set of indices. Then
c =Y Ip
PeP

is the number of disjoint paths, i.e. a capacity. Set f(e) = 1 for each e in a fixed
path P and suppose that the next paths are chosen by Step 2 in the Algorithm. Let
Vp be the number of such paths (without path P). Therefore (11) is fulfilled and
the formula (12) has the form

1—e?

Z mpE|C* — Vp| (16)

drv (L(C*),Po(N)) <
. PeP

So we have to approximate the quantities A = EC*, E|C* — Vp| and 7p = 3. p,.
ecP
Since Vp > C* and Vp — C* < 1, it follows that E|C* — Vp| = 7p = pg.
From (16) we have

. 1—e? , l—e™ , l—e™
drv (L(C*),Po(X)) < ;) Y nb= — Mrp~ ———paA = 0
PeP

Furthermore, from Proposition 1 we have C = C*, a.s. which completes the proof.
|

6. Numerical Results

In this section we give some exact and simulated results. We restrict ourselves to
complete regular channel graphs and n = 2. Simulations were performed using the
algorithm of Section 4. All computer programs were written in Turbo Pascal.!

The exact results are obtained from the formula given in (Harms et al., 1995,
p.10). We give this formula in a slightly different form. Let S denote any state in
the stage of edges £ containing |5| idle links. If we denote by z,(S) the number of
the nodes in V; connected to the j-th node in V3, and connected to the source by
idle links in S, then we have

R=Y plfl(1 - p,)MI-18l I—H(l— (1—p)zj(s))pt
S J
where p = p;.

In Tables 1 and 2 the reliabilities R for some triples (ps,p,p;), successive k;,
m =8 and m = 16 are given. For comparison, the values of probabilities p(\) =
1— e are added to the tables, for small p,, p and p;, A = mkp,pp:.

In Tables 3 and 4 we give results for a channel graph with a random structure,
i.e. every channel graph with fixed sizes of stages m =20 and m =50 and fixed

1Source codes of the programs may be obtained via e-mail.
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Table 1. Values of R and p()) for m = 8.

Ds pl| Dt k=2 k=3 k=4

R| » R| p() R| p(
0.1 | 0.1 0.1} 0.0157 | 0.0159 || 0.0233 | 0.0237 || 0.0307 | 0.0315
0.1 |{ 0.1 | 0.2 | 0.0311 | 0.0315 || 0.0457 | 0.0469 |l 0.0598 | 0.0620
0.1 { 0.1 {1 0.3 | 0.0462 | 0.0469 || 0.0673 | 0.0695 || 0.0874 | 0.0915
0.1 |0.2]0.11 0.0310 | 0.0315 || 0.0453 | 0.0469 || 0.0590 | 0.0620
0.1]0.21} 0.2 0.0606 | 0.0620 || 0.0874 | 0.0915 0.1122 0.1201
0.1]0.21{03] 0.0889 | 0.0915 || 0.1263 | 0.1341 || 0.1601 | 0.1747
0.1 |03 {01} 0.0457 | 0.0469 | 0.0661 0.0695 0.0852 | 0.0915
0.1 03021 0.0885 | 0.0915 | 0.1253 | 0.1341 || 0.1583 | 0.1747
01103 031.0.1284 | 0.1341 || 0.1782 | 0.1943 | 0.2211 | 0.2502
0.210.1{0.1 | 0.0311 | 0.0315 || 0.0457 | 0.0469 || 0.0598 | 0.0620
0.2 { 0.1 | 0.2 || 0.0612 | 0.0620 || 0.0890 | 0.0915 || 0.1152 | 0.1201
0.2 1 0.1 03] 0.0902 | 0.0915 || 0.1299 | 0.1341 || 0.1665 | 0.1747
0.2 (0.2 0.1 0.0606 | 0.0620 || 0.0874 | 0.0915 || 0.1122 | 0.1201
0.2 02|02/ 01170 | 0.1201 || 0.1657 | 0.1747 || 0.2091 | 0.2259
0.2 1021|031} 01697 | 0.1747 {| 0.2359 | 0.2502 | 0.2928 | 0.3189
0.2 1031 0.11( 0.0885 | 0.0915 {| 0.1253 | 0.1341 || 0.1583 | 0.1747
0.2103] 021 0.1682 | 0.1747 |} 0.2322 | 0.2502 || 0.2866 | 0.3189
0.2 1 03] 0.3} 0.2400 | 0.2502 || 0.3232 | 0.3508 || 0.3906 | 0.4379
0.3 0.1 ] 0.1} 0.0462 | 0.0469 || 0.0673 | 0.0695 || 0.0874 | 0.0915
0.3]10.11]0.2] 0.0902 | 0.0915 || 0.1299 | 0.1341 || 0.1665 | 0.1747
0.3]0110.3] 0.1321 | 0.1341 || 0.1879 | 0.1943 || 0.2382 | 0.2502
0.3 10.2]|0.11] 0.0889 | 0.0915 || 0.1263 0.1:341 0.1601 | 0.1747
0.3 ]10.2]0.2] 0.1697 | 0.1747 || 0.2359 | 0.2502 || 0.2928 | 0.3189
03102 03] 0.2432 | 0.2502 || 0.3307 0.3508 0.4028 | 0.4379
0.3 ]03|0.1] 01284 | 0.1341 || 0.1782 | 0.1943 || 0.2211 | 0.2502
0.3 1.0.3 (0.2 ] 0.2400 | 0.2502 || 0.3232 | 0.3508 || 0.3906 | 0.4379
031031 03] 03370 | 0.3508 |} 0.4410 | 0.4769 || 0.5203 | 0.5785
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Table 2. Values of R and p(A) for m = 16.

Ds pl pt k=2 k=3 k=4

R| p(y R| p R| p\
0.1]0.1]0.1] 0.0312 | 0.0315 || 0.0461 | 0.0469 || 0.0605 | 0.0620
0.1 ]0.1]0.2] 0.0613 | 0.0620 || 0.0894 | 0.0915 || 0.1160 | 0.1201
0.1 0.1 03] 0.0902 | 0.0915 || 0.1301 | 0.1341 || 0.1671 | 0.1747
0.1 10.2] 0.1 0.0610 | 0.0620 || 0.0886 | 0.0915 || 0.1145 | 0.1201
0.1]0.2]0.21{ 01175 | 0.1201 || 0.1671 | 0.1747 || 0.2117 | 0.2259
0.1 10.2}03] 0.1698 | 0.1747 || 0.2367 | 0.2502 || 0.2945 | 0.3189
0.1 103 0.1} 0.0894 | 0.0915 || 0.1279 | 0.1341 || 0.1631 | 0.1747
0.1]037]0.2] 01691 | 0.1747 || 0.2349 | 0.2502 || 0.2915 | 0.3189
0.1 03|03 0.2403 | 0.2502 || 0.3247 | 0.3508 || 0.3933 | 0.4379
0.2 (0.1 0.11f 0.0613 { 0.0620 || 0.0894 | 0.0915 {| 0.1160 | 0.1201
0.2 ]10.1|0.2] 0.1186 | 0.1201 || 0.1701 | 0.1747 || 0.2171 | 0.2259
0.2 10.1|03] 0.1722 | 0.1747 || 0.2429 | 0.2502 || 0.3053 | 0.3189
0.2 10.20.1] 01175 | 0.1201 || 0.1671 | 0.1747 | 0.2117 | 0.2259
0.2 0.2 0.2] 0.2204 | 0.2259 || 0.3039 | 0.3189 || 0.3744 | 0.4007
0.2 10.203} 03106 | 0.3189 || 0.4161 | 0.4379 || 0.4999 | 0.5361
02103 0.1 0.1691 | 0.1747 || 0.2349 | 0.2502 || 0.2915 | 0.3189
0.2 103]0.2| 03081 | 0.3189 || 0.4104 | 0.4379 || 0.4911 | 0.5361
0.2 031031 04225 | 0.4379 || 0.5420 | 0.5785 || 0.6287 | 0.6840
0.3 ]0.1]0.1} 0.0902 | 0.0915 |} 0.1301 | 0.1341 || 0.1671 | 0.1747
0.3 101021 01722 | 0.1747 || 0.2429 | 0.2502 || 0.3053 | 0.3189
03017031 0.2467 | 0.2502 || 0.3405 | 0.3508 || 0.4197 | 0.4379
03 (02101 | 0.1698 | 0.1747 || 0:2367 | 0.2502 || 0.2945 | 0.3189
031021/ 0.2]| 03106 | 0.3189 || 0.4161 | 0.4379 || 0.4999 | 0.5361
03702} 03] 04272 | 0.4379 || 0.5521 | 0.5785 || 0.6434 | 0.6840
031031 0.1 0.2403 | 0.2502 || 0.3247 | 0.3508 || 0.3933 | 0.4379
0.3 (03] 0.2]| 04225 | 0.4379 || 0.5420 | 0.5785 || 0.6287 | 0.6840
0.3 103|031} 0.5605 | 0.5785 || 0.6875 | 0.7264 || 0.7698 | 0.8224
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Table 3. Values of C*, C and N for m =20, k=4 and 8.

Ps| P| bt k=4 k=38

c| C| N Al C| C| N A
0.1 01|01 0.09|0.09|0.00]|008]| 015 | 0.15 | 0.00 | 0.16
0.1]01]0.2] 018 |0.18 | 0.00 | 0.16 || 0.28 | 0.29 | 0.01 | 0.32
0.1]01|03] 021|021 |000]|024] 041 0.42|0.01 | 0.48
0.1{02|0.11 016 |0.16 | 0.01|0.16 | 0.33 | 0.35 | 0.02 | 0.32
0.1]02|0.2] 028 |0.28 000|032 ]| 061|067 |0.06 | 0.64
0110203/ 041|043 |0.02]|048 | 0.77 | 0.87 | 0.10 | 0.96
0.1]03]011021|022|002|024] 044 |0.48 | 0.04|0.48
0103|021 044|048 | 004|048 | 0.80 | 0.93 | 0.13 | 0.96
0103|031 064|068 005|072 1.14 | 1.29 | 0.15 | 1.44
0201011 016 |0.16 | 0.00 | 0.16 || 0.29 | 0.30 | 0.01 | 0.32
0.2 01021 031031000032 0.58]|060|0.02] 0.64
021]01]031] 048|049 |001|048 | 0.81|0.84|0.03]0.96
0.2]02}0.11 030|030 | 000|032 | 060|065 | 0.05| 0.64
02]02}021{ 063|066 003|064 1.13|1.230.10 | 1.28
02]02|031 089095005096 | 1.59 | 1.75 | 0.17 | 1.92
0.2]03|0.1] 046|048 | 0.02 | 0.48 || 0.90 | 0.99 | 0.09 | 0.96
020302} 093|1.01|007|096]| 1.48| 1.74 | 0.26 | 1.92
020303 1.37 | 1.51 | 0.14 | 1.44 | 2.10 | 2.41 | 0.30 | 2.88
0.3]010.1} 025|0.25]0.00| 024 | 047 | 0.48 | 0.01 | 0.48
030102 042|042 |0.01|0.48 | 0.88|0.92 | 0.04 | 0.96
030103 068 0.69|0.01]0.721 1.33| i.38|0.04 | 1.44
0.3 0201 048 |0.49 | 0.01 | 0.48 || 0.86 | 0.94 | 0.08 | 0.96
030202087 |0.90 | 0.03|0.96 || 1.62 | 1.78 | 0.16 | 1.92
030203 126 |1.32|0.06|1.44 | 2.41 | 2.59 | 0.18 | 2.88
0303101 072|0.75]0.03]0.721] 1.23|1.32{0.09 | 1.44
03]03[0.2] 124 |1.36|0.12 | 1.44 || 2.33 | 2.55 | 0.22 | 2.88
03]03(03] 1.87 |2.03]0.17 | 2.16 || 3.13 | 3.50 | 0.37 | 4.32
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Table 4. Values of C*, C and N for m =50, k=4 and 8.

Ps | P| Pt k=4 k=38

c| C| N Al Cx| C| N A
010101 019]}0.19|0.00 | 0.20 || 0.37 | 0.39 | 0.02 | 0.40
0.1]01.]02] 042|043 |0.01|040 | 079|086 | 007 | 0.8
0.101]03]|0.60]062]002]|060] 1.07 115 |0.08 | 120
0102011 040|0.43]|0.03]040 ] 0.78 090 | 0.12| 0.80
010202 0.79]0.85|0.07 {080 1.36 | 1.67 | 0.31 | 1.60
0.102]03 | 1.15| 1.24 { 0.09 | 1.20 || 1.91 | 2.34 | 0.43 | 2.40
0103|011 058067 |0.09]060] 1.11 | 1.38 | 0.27 | 1.20
01]03]02] 1.07|132]025|1.20| 191|252 | 061 | 2.40
010303/ 155|189 |0.34|1.80 | 2.64|337|0.73| 3.60
0.2 10101 0.37]0.38]|0.01]040]| 081|086 |0.05| 080
02101]02|0.74]0.75 002|080 1.44 | 1.57 | 0.13 | 1.60
02]01]031119]|1220.03|1.201 216 |2.34|0.17 | 240
020201 078]|085]|0.07|080]| 145 | 171|026 | 160
0.2]102]02| 155|169 | 0.14 | 1.60 || 2.92 | 3.43 | 0.51 | 3.20
020203 225|244 |0.19 | 2.40 || 4.06 | 4.79 | 0.72 | 4.80
02]03]01( 110} 1.25|0.14 | 1.20 || 2.06 | 2.51 | 0.44 | 2.40
0210302 209|247 | 0.38 | 2.40 || 3.92 | 477 | 0.85 | 4.80
021031031 316 3.720.56 | 3.60 || 5.38 | 6.40 | 1.02 | 7.20
03101011 054057 |0.03]|060] 1.06 112|007 | 1.20
0.301(021 117|121 |0.04|1.20 | 2.24|2.40|0.16 | 2.40
0.3101]03]| 164|168 004 |1.80| 3.14|3.38|0.23 | 3.60
0.3[02]011120]126]0.06|1.20] 226258032 240
0.3 02021 226|245 |0.19 | 2.40 || 4.07 | 4.65 | 0.58 | 4.80
0.302]03]| 329]|355|027|3.60] 590 |6.62|0.71| 7.20
0.3|03]01] 165|190 |025]|1.801| 3.15|3.57 | 0.42| 3.60
0.3]03]02] 337|380 |044 |3.60| 574 |6.53|0.79| 7.20
0.3]03]0.3] 486|543 |0.57 | 540 || 8.05 | 9.07 | 1.02 | 10.80
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degrees k = 4 and k = 8 are chosen with the same probability. Next, in such a
channel graph we set the links as idle independently, with probabilities ps, p and Pt

For every triple (ps,p,p;) we obtain empirical expectations of C*, C, average N
and A of the number of steps in Procedure 3, A = mkpspp;.

Table 5 contains the frequencies fi of the capacity C' obtained from computer
simulations and the respective probabilities

in the Poisson distribution.

Table 5. Empirical distribution of C and probabilities in Poisson distribution with A = 1.

k=25, ps=0.2, k=20, ps =0.1, k=20,ps =0.2,

k|l p=01,p=02 | p=0.1,p;,=0.1 || p=0.025, p, = 0.2
Jo oK) [ fe [pOWR) [ [ p(VK)

0|l 0.37 0.37 0.42 0.37 0.38 0.37

1] 0.36 0.37 0.37 0.37 0.17 0.18

-2 4 0.19 0.18 0.15 0.18 0.02 0.02

3 | 0.05 0.06 0.05 0.06 0.00 0.00

4 || 0.02 0.02 0.02 0.02 0.00 0.00

5 1| 0.00 0.00 0.00 0.00 0.00 0.00

We choose the parameters of channel graphs such that A =1 for m = 50. If
k=5 p;,=02, p=01 p =02

then the conformity between the simulated and theoretical probabilities is good. Note
that in this case the relation (14) is almost fulfilled. If

k=20, ps=02, p=0.025 p;, =02

then the conformity between the simulated and theoretical probabilities is significantly
worse. In this case the relation (14) is far to be fulfilled. Finally, note that if

k=20, ps=01, p=0.1, p,=0.1
then the conformity is again very good. However, this conformity does not follow
from Theorem 4.

In all the simulations we have used a random number generator based on the
method given in (Marsaglia et al., 1990). Our implementation is based on the program
originally written in the C language (Wieczorkowski and Zieliriski, 1997).
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