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ARCHITECTURES OF GRANULAR INFORMATION
AND THEIR ROBUSTNESS PROPERTIES:
A SHADOWED SETS APPROACH

WriroLp PEDRYCZ*

This paper addresses an important issue of information of granulation and re-
lationships between the size of information granules and the ensuing robustness
aspects. The use of shadowed sets helps identify and quantify absorption proper-
ties of set-based information granules. Discussed is also a problem of determin-
ing an optimal level of information granulation arising in the presence of noisy
data. The study proposes a new architecture of granular computing involving
continuous and granulated variables. Numerical examples are also included.

Keywords: information granulation and information granules, fuzzy sets, shad-
owed sets, noisy data, uncertainty, generalized multiplexer, switching mecha-
nisms.

1. Introduction

The processes of information granulation and the resulting information granules be-
come a cornerstone of most human pursuits. We encapsulate a lot (sometimes an infi-
nite number) of elements into a single entity, label it, attach a well-defined and useful
meaning and start using it in the representation of the problem at hand. Information
granules are also building blocks of any algorithms. The specificity (granularity) of
such granules helps combat or reduce complexity of the overall problem through its
suitable modularization. There are several main avenues supporting the development
of information granules

o Set theory, especially interval analysis, cf. (Milanese et al., 1996; Moore, 1966;
1979; 1988). Interval analysis comes as one of the earliest manifestation of in-
formation granulation that hinges on intervals (sets in the space of reals R).
With its roots originating from numerical and tolerance analysis, interval anal-
ysis regards intervals as crucial information granules involved in any computer
computations. An important stream of investigation in this realm concerns con-
trol problems where intervals and interval analysis emerge as a consequence of
set-theoretic view at system’s disturbances (giving rise to a model of so-called
bounded and unknown disturbances) and limited accuracy of model estimation
(identification) procedures.
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o Fuzzy sets (Kandel, 1986; Pedrycz, 1996; 1997; 1998; Pedrycz and Gomide,
1998; Zadeh, 1979) admit continuos boundaries between the notion of exclusion
and inclusion of elements and arise as a plausible model of describing linguistic
concepts of ill-defined boundaries where the fundamental set-based dichotomy
becomes irrelevant and highly artificial. The concept of continuous and gradual
changes in membership values becomes an attractive alternative in coping with
an array of situations involving human experts and formalizing their qualitative
domain knowledge. Fuzzy sets come also with their interesting generalizations:
fuzzy sets of higher order and higher types, interval-valued fuzzy sets (Sambuc,
1975), L-fuzzy sets, etc.

e Rough sets developed in (Pawlak, 1982; 1991), see also (Skowron, 1990; Slowin-
ski, 1992) exhibit another position as to the construction of information granules
by assuming an existence of some indiscernability relation that becomes a cor-
nerstone of any resulting entities.

The selection of one of the formal frameworks implies a full commitment to all
their features as well as a strong confinement to their eventual limitations being inher-
ently associated with the formalism of operations on information granules available
therein.

There is a strong motivation to granulate information, no matter which way one
decides to proceed:

o Information granules help organize and perceive the problem at hand in a more
organized and clear fashion. Rather than viewing the problem in terms of a vast
array of numeric data, we perceive it in the framework of far more meaningful
information granules such as intervals or linguistic terms (fuzzy sets). The
paradigm of rule-based architectures is an excellent example of an extensive use
of information granules. Information granules occur in each rule. Each rule
comes as a piece of ‘local’ operational domain knowledge.

e Information granules allow us to make problems computationally manageable.
As the resulting computing architectures are highly modular (see e.g., rule-based
systems), this facet promotes a partition of the original problem and reduce an
overall computing effort.

While information granules, information granulation, and granular computing, in
general, constitute a useful concept and powerful computing paradigm, there are still
a number of open questions and essential research pursuits to be prudently investi-
gated. What becomes a particularly burning issue is a determination of the size of the
information granules arising in a particular problem at hand. Information granules
interact with an external world. The granularity and character of such entities are
predominantly affected by the environment of the problem. One needs to be cognizant
as to the consequences of the size of the information granules and their distribution
in the individual spaces.

This study is geared toward this important problem. In order to make the dis-
cussion more focused, we concentrate on the following environment. We consider
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information granules being modeled as sets. The computing environment formed by
them interacts with data that are noisy. The objective is to study the form of the
resulting interaction, analyze a way in which it can cope with randomness of the data,
and reveal and quantify crucial relationships between the granularity of the computing
environment and probabilistic characteristics of the data.

The material is organized as follows: First, we discuss shadowed sets to be viewed
in this study as a useful vehicle conveying the aspects of robustness of set-based in-
formation granules. Afterwards, in Section 2, we define the notion of robustness itself
and revisit the issue of noisy data in the set-theoretic setting. This leads us to its
further quantification of uncertainty stemming from noisy data in the form of shad-
owed sets of the original set-based information granules. A detailed description of the
absorption regions is discussed in Sections 4 and 5; in the first case we elaborate on
the use of the shadowed sets; in the latter concentrate on the induced fuzzy sets. Sec-
tion 6 is devoted to the problem modularization with the use of granular information
and its links with the underlying absorption mechanism. A generalized architecture
of a multiplexer along with detailed examples is discussed in Section 7. Concluding
remarks are covered in Section 8.

2. Shadowed Sets: Their Rationale.and Main Properties

The idea of shadowed sets was originally introduced in (Pedrycz, 1998) with an intent
of breaking out of a long-lasting and quite restrictive tradition of describing infor-
mation granules via precise, purely numeric membership values. Let us begin with a
formal definition of this structure. A shadowed set A defined in X is characterized
by a three-valued membership function

A: X - {0,[0,1],1}

Note that all elements of X being mapped by A to 0 are those completely
excluded from the shadowed set. All elements of X that A maps to 1 fully belong
to the shadowed set. Finally, there are some elements of X with no specific numeric
grade of membership assigned. We associate with them the entire unit interval. This
character of membership assignment underlines a fact that eny membership value
is equally possible or preferred. This multivalued (relational) assignment makes the
shadow completely unspecified without necessarily forcing us to confine ourselves to
any particular numeric membership value. The introduced construct of shadowed sets
moves beyond the boundaries of purely numeric membership values. An example of
A is visualized in Fig. 1. Observe the shadowed regions of the membership values
that apparently led to the name of this concept. On the other hand, if these regions
are reduced to zero, then we end up with the generic form of a set.

Let us establish the following notation: the core (elements of X) fully belonging
to the shadowed set A will be denoted by Core(A). The left- and right-hand shadow
of A will be denoted by Shad_(A) and Shad(A), respectively.
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Shad.(A) Core(A) Shad4(A)

Fig. 1. An example of a shadowed set.

Shadowed sets, as introduced and studied in (Pedrycz, 1998), were conceived
from the standpoint of fuzzy sets. As a matter of fact, they are essentially induced
by fuzzy sets. The motivation behind such construction was to ‘localize’ uncertainty
and the concept of partial membership conveyed by any fuzzy set and provide with
a simplified vehicle for computing with fuzzy sets. As will become apparent in this
study, the development of the shadowed sets here is motivated by the existing fac-
tor of uncertainty conveyed by data themselves. Additionally, shadowed sets deliver
an evident computational advantage over very detailed and quite computationally
demanding fuzzy sets. :

For the sake of completeness, let us recall the main operations (union, intersec-
tion, and complement) defined for the shadowed sets. They are summarized below in
the tabular format; here the term shadow corresponds to the unit interval:

A\B 0 shadow | 1

0
shadow
1

A\B shadow 1

0
shadow
1

0 0

ANB

A complement
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It is worth underlining that during the operations on shadowed sets, there is
a primordial effect of degradation of quality of information meaning that the result
becomes a shadow rather than retains an original single numeric membership value.
These cases of shadows arising through the logic aggregation of the entries of the
shadowed sets are clearly visualized in the above tables.

Shadowed sets are one-dimensional constructs. In other words, they deal with a
single variable that is quantified and captured by shadowed sets. There is a straightfor-
ward generalization arising in the form of the shadowed relations. Formally speaking,
a shadowed relation R defined in a Cartesian product of p universes of discourse
(coordinates), say X = X%_, X; is defined by the following set-valued mapping:

R: X Xi—{0,[0,1],1}
i=1

The findings of the following discussion (even though we confine ourselves to
shadowed sets) naturally extend to the multidimensional (viz. relation-driven) sce-
narios.

It is advantageous to underline the main conceptual difference between shadowed
sets and rough sets. Making this distinction evident helps us also gain a better insight
into the very nature of the ensuing methodological frameworks.

Rough sets (Lin and Wildberger, 1994; Lin and Cercone, 1997) are geared into the
analysis of information systems whose attributes (variables) assume a finite number
of values. Not moving into details, let us concentrate on a simple example shown in
Fig. 2 that exemplifies the essence of rough sets. The universe of discourse (attribute)
X has a number of values denoted here by z:,z2,...,z,. Now let X be a set. We
express it in terms of the values of the attributes. Evidently, this process is not unique.
We express X through the lower and upper approximation of X, that is values of
X that are fully included in X (lower approximation) and those whose intersection
with X is nonempty (upper approximation). The boundary region is defined as a
difference (in set-theoretic sense) between the upper and lower approximation.

X1 X2 X3 x4 X5 X6
attribute
X
B
attribute

Fig. 2. A set expressed in terms of the values of the attribute:
a formation of its lower and upper approximation.
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In the situation displayed in Fig. 2, the lower bound of X, denoted by X., is equal
to X, = {z3,74}. The upper approximation, X*, reads as X* = {22,23,%4,s5}.
Finally, the boundary region §X is equal to {z2,25}.

3. Robustness Aspects of Set-Based Information Granules

Sets promote robustness. This phenomenon is invoked owing to the ‘absorption’

aspects of sets. To clarify the term, let us consider the situation portrayed in Fig. 3.

A

y belongs to A
y’ is excluded from A

OfONE )

X X’ =X+n
y'=y+n vy

Fig. 3. An absorption effect realized by sets; a noisy input is still
encoded without error by ‘activating’ the right informa-
tion granule (set) (still being localized within this set).

An original numeric input datum z invokes one of the information granules
forming a partition of the space. In other words, we obtain a mapping from numeric
values to the set of indexes of the sets. The absorption helps ignore noisy inputs. One
may have the original input datum (z) corrupted by noise and resulting as another
numeric entry, say z-+n. This new entity, when confronted with the same information
granule (set), gives rise to the proper encoding (viz. it invokes the same set). This
is not surprising as the absorption effect and an ability to ignore noisy data is the
key rationale behind the introduction of sets and their further usage. Obviously, the
main drawback is that sets are of far lower information specificity (lower granularity)
in comparison with the original numeric data.

As shown in Fig. 3, there are some limits to the absorption effect conveyed by
sets. When a datum (and subsequently, its noisy version) is located quite close to
the boundaries of the set, the noise can lead to completely improper encoding. The
chances of running into this lack of absorption depend on the level of noise and the
position of the data point with respect to the set under consideration (or, indirectly,
the granularity of A itself). Our intent is to quantify this effect and propose some
protection or awareness mechanisms to be activated in such borderline cases. We
reveal that shadowed sets are just an ideal vehicle supporting this development. Let
us start with a closer look at the noisy data and propose their set-based interpretation.
Subsequently, we use these sets in the induction of the shadowed sets.
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4. Noisy Data and Their Set-Based Representation

The basic model of noisy data usually arises in an additive form. Let z denote an
original datum whereas its noisy version z’' reads as

=z+n

where n is a noise component modeled as a random variable. As usual, we assume
that the noise is described by some probability density function (pdf) with zero mean
and some standard deviation. Because of the randomness coming into the picture, =’
is also a random variable with the same pdf as the original noise and the mean value
equal to z. As the already discussed information granules are represented as sets,
we would like to maintain the same set-based terminology and algorithmic setting
with regard to the noisy data. To accomplish this, it is worthwhile to place z’ in the
same set-oriented framework. The most appealing way of doing that is through the
confidence intervals implied by the pdf. Denote by X a set distributed symmetrically
around z whose bounds result from the relationship

z—D

Here 8, 8 € [0,1] plays the role of the confidence level. The confidence interval
exhibits a straightforward probabilistic interpretation: with probability 1 — 8 we
have the datum embraced by this interval. Evidently, lower values of # produce
broader sets, that are information granules of lower specificity (lower granularity).
The width of X equal to 2D depends on the pdf itself as well as the values of their
parameters (in particular, its variance).

X

/ ~

pdf

x-D x+D

X

Fig. 4. Computing a confidence set based on the
numeric datum and its associated pdf.

Let us provide some illustrative examples for several selected forms of the
probabilistic characteristics of the noise coming with the datum. The one commonly
encountered in practice is a Gaussian type of noise. In this case, the relationship
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between the length of the confidence interval (D) and the standard deviation of the
Gaussian noise for several values of its standard deviation is shown in Fig. 5.

D
8
6
4
624‘0

2 \\Fz.o

T o=1.0
0 ] I 1 l i l T ‘ T

0.0 0.1 02 0.3 04 0.5

Fig. 5. D viewed as a function of the confidence level 8 for selected
values of the standard deviation of the Gaussian noise.

Similarly as before, we derive the relationships for the confidence interval arising
in the presence of the exponential noise with the pdf equal to

p(z) = - exp(~a/a)

Let us now consider a uniform pdf defined in [—a,a], namely p(z) = 1/2a over
this interval and zero otherwise. The calculations of the confidence interval result
from the obvious relationship

z+D
[ swyav=a-py2
0
that gives rise to the linear relationship between b and D,

D =a(l-5)
The highest confidence, 1 — 3 = 1, yields the entire support of the pdf, D = a.

Thus, once agreeing on the value of confidence level 3, we construct the set-based
representation of the noisy datum. This follows the scheme

X'—ﬁ—>[x_,a:+]

This model enters the next step of the design during which we characterize absorption
regions of set-based information granules.
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Fig. 6. D viewed as a function of confidence 3 for selected levels
of standard deviation of the exponential noise; a = 0.5.

5. Description of Absorption Regions

In what follows, we establish a way in which X' interacts with the sets of the partition
A of the universe of discourse X and identify regions where we start loosing the
absorption property of the set-based information granules.

Referring to Fig. 7, it becomes apparent that when X' moves toward the bound-
aries of a certain set (A;), then we reach a situation where A; cannot longer absorb
X'; this occurs in the case shown in Figure 7(b). This implies that some regions (of
width D) situated at the boundaries of A; should be viewed differently as the rest
of the set. At the location identified there, we regard them as ‘uncertain’ implying
that we cannot view them with confidence as to the absorption abilities. If so, this
gives rise to the notion of the shadowed sets: the noisy inputs imply that the original
information granule A; becomes interpreted as the shadow set with the size of the
shadow determined by the noise intensity (or, equivalently, the granularity of X').
The same description applies to the remaining sets of the partition, leaving us with "
the collection of the shadowed sets, cf. Fig. 7(c).

Interestingly enough, the obtained shadowed sets are completely induced by the
characteristics of the noise and its intensity. The higher the intensity (standard de-
viation) of the noise, the more extensive the shadows of the ensuing shadowed sets.
In this way, we have arrived at a complete algorithm implying the structure of the
shadowed sets. Note that in (Sambuc, 1975) another alternative was discussed using
which shadowed sets were induced by the already available fuzzy sets.

There are some straightforward, yet useful insights into the issue of mformatlon
granularity and the set-oriented characteristics of the noisy data:

e The higher the intensity of noise, the broader the shadows of the induced infor-
mation granules. The detailed relationship depends on the type of noise.
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Ai Ai+1

Aj+1

(©

Fig. 7. A set-based absorption effect: X’ confined to A; (a), X' too
close to the bounds of A; and not confined by this information
granule (b), conversion of A;’s into their shadow set equivalents.

e The granularity of the partition of the space depends on the intensity of noise
we are faced with. A sound design criterion predetermining the size of the in-
formation granules can be expressed as follows: for the given noise level, the
set-based information granules should be designed in such a way that the in-
duced shadowed sets resulting there do not exhibit empty cores. The underlying
point is that when faced with highly noisy information, a too fine partition of
X (that involves too specific sets) does not make sense. It is an important
design criterion to adhere to. These guidelines strongly emphasize the need of
not being overly detailed, if not necessary.

o So far we have assumed that the characteristics of noise are independent of
the position z at X. It could well be that the intensity of noise is higher at
the ends of X while assumes lower values in the middle of the range. If so,
this easily leads to the construction of a nonuniform partition of X with more
specific sets A; located in the center of X.
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6. Fuzzy-Set Based Information Granulation of X

Once we have constructed shadowed sets, they can be further used to construct fuzzy
sets. This is an interesting avenue when we start with noisy data and try to determine
fuzzy sets that are ‘consistent’ with them. The crux of this construct is to concentrate
on the obtained shadows as those are the regions with the dominant uncertainty factor.
What then is proposed is eventually the simplest model of membership transition in
the form of the linear membership function as illustrated in Fig. 8. One may think of
some other forms of the fuzzy sets, however there is no evidence of their superiority
over the simple ones.

Fig. 8. Constructing fuzzy sets (B;s) with the aid of shadowed
sets (A;’s); note that intermediate membership values be-
come associated with the shadows of the shadowed sets.

7. Problem Modularization via Information Granulation

The granulation of the discussed universe of discourse X carried out in terms of A;’s
usually done as one of the steps to modularize a problem at hand. In other words, we
may think of each A; as associated with some local algorithm T; producing a certain
outcome (control action, decision, etc.), namely Tj(z;u,w, ..., z,p) where u,w,...,z
are some other variables occurring in the problem while p denotes the associated
vector of the parameters of the algorithm. The partition of X into nonoverlapping
sets gives rise to the overall description assuming the following form:

( T1 lf.’L'GAl

Ty if ¢ € As

L Ty, if z € A,

where the switching between the algorithms is completely determined by the distri-
bution of the individual components of A. It is worth noting that when z is affected
by noise, so are the results of the algorithm (more precisely, this may result in an
invocation of the improper algorithm).
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Let us investigate essential implications stemming from the introduction of the
shadowed sets. In a nutshell, the resulting shadows produce some ‘buffer’ (or safety)
zones as the local algorithm becomes involved only if z falls in the core of the re-
spective shadowed set. In other words, we get

(T if z € core(A;)

15 if z€ COI'Q(AQ)
Y= 9

| T, if = € core(A,)

The above solution is obviously incomplete as the shadows are left out and there
are no specific values of the control action to be applied at this region. This short-
coming needs to be alleviated. Two conceptually different fixes are considered:

e An explicit expression of the uncertainty factor. In this form of completing
the switching between the algorithms, we explicitly admit that there is some
hesitation between the choice of the algorithm. Instead of going for one of them
(and committing eventually a gross error), our position is to proceed prudently
and make use of the two. This leads to the expression

,

Ty if z € core(4;)
[Ty, T3] if = € Shad, (A,) U Shad_(As)

Tn if z € core(A,)

\

Note that in the regions of the shadows, we come up with a relational effect (or-like
combination) that fully reflects the uncertainty arising therein. The activation of such
aggregation can serve as an important flagging mechanism pointing out at the issue
of nonuniqueness of the action.

® An implicit expression of the factor of uncertainty manifesting in some form of

aggregation ‘agg’ of actions of the two pertinent algorithms. This results in the
following expression:

Ty if # € core(A;)
agg(Ty,T>) if z € Shad(A;) U Shad_(4s)

T, if = € core(A,)
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In particular, the above stated aggregation can assume a form of a standard averaging
of the two actions, namely

7

T if £ € core(4;)
(Tl,TQ)/Q if z (S Shad+ (Al) U Shad_(A2)

Tn if z € core(Ay)

\

When we admit the induced fuzzy sets in place of the shadowed sets, the implicit
expression of the uncertainty factor can be realized by a weighted averaging of the
membership functions of the adjacent fuzzy sets as described below:

¢

T if x € core(A4;)
/_LlTl + (1 — p,g)TQ if z e Sh&d+ (Al) U Shad . (AQ)

Tn if z € core(Ay)

\

Here p; is a membership value describing an ‘activation’ level of A;.

One should reiterate the role of the confidence level(s) 8 used in this setting.
They are associated with the selection of the relevant algorithm (method) T;. More
precisely,

P(relevant T; selected) =1 -4

The choice of § can be thus completed as a result of an in-depth understand-
ing and weighting of the consequences of the usage of T; versus taking some other
incorrect action.

The discussed method easily extends to the multidimensional case. Figure 9
shows its two-dimensional version involving two spaces (coordinates) X; and X,
being partitioned with the use of two sets defined for each coordinate.

8. A Generalized Multiplexer

In this section, we elaborate on an interesting usage of the shadowed sets and fuzzy
sets in the construction of a generalized multiplexer. This construct arises as a cer-
tain generalization of the well-known processing module being commonly used in the
digital system design. To start with, it is instructive to discuss the essence of the
system by considering the simplest possible scenario. We are interested in the two-
variable mapping, denoted by F(z,z) where the first variable of the mapping (z)
is continuous whereas the second one (z) becomes granulated with the use of some
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sets. Without any loss in generality of the entire investigations, we may assume that

F(z,z) can read as follows:

¢1(£L’) if z€ A
¢2($) if z€ A2

y=F(z,2)=

X2

T]

T2

T3

T4

X1

(a)

(©)

Fig. 9. Partition of the Cartesian product X; x X with the
use of sets (a), shadowed sets (b), and fuzzy sets (c).
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In a nutshell, the mapping can be realized with the aid of a multiplexer. With
the only two sets used to granulate Z, one can identify them with a single Boolean
(two-valued) variable that completes switching between the two inputs, cf. Fig. 10.

01 ——Pp y

MUX  —p»
02 —P»

Z

Fig. 10. A multiplexer structure of the two-variable mapping F.

The multiplexer architecture instantaneously generalizes to the cases involving
more switching variables.

In the detailed example, we consider the relationship y = F(z,z) with its com-
ponents ¢; and ¢ defined as

¢1(z) = (z~1)* if z €[0,2]

do(z) =3 -2z if z €[2,4]

Moreover, Z = [—10,10]. The width of the interval of possible actions resulting
from 77 and T3 is determined in the form

[¢1, 2] = max |¢1(z), b2 ()|

The performance index @ used to evaluate the behavior of various granulation
mechanisms and the size of the information granules is a normalized standard sum
of squared errors between F(z,z) and F(z,z') with 2z’ being a noise-affected input.
The data of the input variables are distributed uniformly over the two input spaces.

First, it is interesting to quantify how the performance index ) depends on
the size of the shadow of the shadowed set and subsequently how this performance
contrasts with the set-based multiplexer and another version designed based on the
induced fuzzy set based counterpart. Figures 10(a), (b) and (c) visualize the values
of the performance index versus D for selected values of the standard deviation of
noise (¢ = 1,2, and 4). In spite of small oscillations in the reported values of @, the
general tendency is obvious and intuitively appealing:

e For higher values of noise, the size of the shadows starts to grow. There is an
optimal range of D’s leading to the low values of the performance index.
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o In all cases either the shadowed sets or fuzzy sets approach produces lower values
of the performance index than those for set-based granulation (this situation is
shown for D = 0).

e Fuzzy sets provide better results than shadowed sets. This is, again, not sur-
prising: in the case of shadowed sets, the regions of their shadows come with
a simple implementation of the averaging mechanism that produces constant
results over the entire shadow. In the case of fuzzy sets, we come up with a
continuous switching between the two local components (that is ¢; and ¢3).
This produces a continuous variability over the transition region.

¢ Flat regions that correspond to some ranges of D coincide with the optimal
sizes of the shadows for a broad range of the confidence values.

It is also of interest to look at the behavior of the different versions of the mul-
tiplexer in terms of error and its overall distribution. The details are included in
Fig. 12. To gain a better insight into the error distribution, the pertinent histograms
of the error are included in Fig. 13. The performance of the multiplexer is succinctly
summarized in the form of the normalized performance index regarded as a sum of the
squared differences between F(z,z) and F(z,z') and averaged over all experimental
data:

(a) (b) (©)
3.6233 | 2.3328 | 2.2625

The set-based granulation leads to the weakest performance while both shadowed and
fuzzy set counterparts perform better; in the two latter cases the differences are less
visible.

9. Conclusions

The paper has concentrated on some selected aspects of information granulation,
its various ways of realization, and the ensuing properties resulting therein. It has
been shown that the level of information granulation (namely, the size of information
granules) and its further usage in modular algorithm is directly linked with the quality
of input data to be used. The quantitative aspects of this dependency has been
determined; we have found that an optimal level of information granulation is in
a direct relationship with the intensity of random noise affecting the data. The
paper includes a number of detailed relationships exemplifying these dependencies for
some selected probabilistic characteristics of noisy data. By focusing on robustness
(absorption) features of set-based information granulation, we have shown that this
aspect can be easily described and further quantified in terms of the induced shadowed
sets. The shadows of these constructs become instrumental in the delivery of some
explicit expressions dealing with the uncertainty regions. Interestingly, one was able
to derive direct dependencies between the size of the shadows of the shadowed sets
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Fig. 11. The values of the performance index @ versus D

for several selected levels of noise of the input data.
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Fig. 12. Noise-free outputs of the mapping (y) versus results of the mul-
tiplexer (y'); the results concern 300 data points for Gaussian
noise with ¢ = 2 and the confidence level of the confidence in-
tervals equal to 0.15: (a) set based granulation, (b) shadowed
set-oriented granulation, and (c) fuzzy set-oriented granulation.
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Fig. 13. Histograms of the error for the discussed versions of the
multiplexers: (a) set based granulation, (b) shadowed set-
oriented granulation, and (c) fuzzy set-oriented granulation.
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and the variance of the noise affecting the input variable(s). We have also proposed
another style of modeling that involves continuous as well as granulated variables.
This bridges the classic ideas of continuous variable models and rule-based models that
are predominant in the area of fuzzy models and other rule-oriented architectures. The
concept of the generalized multiplexers gives another insight into the functioning of
such models. Furthermore, we have investigated the use of shadowed sets as a crucial
means of generating awareness about eventual relational behavior of the model in some
regions of the data space. This mechanism is also essential to the better understanding
of the data and the performance of the model. The relational effect has not been
extensively studied yet, but its emergence becomes profound when we start analyzing
experimental data that are not necessarily generated by well-known physical laws
but rather originate from economical, social, and human-centered environments. As
being a visibly focal point of various data mining pursuits, the role of relational and
relational-functional modeling in such environments will be growing in importance
in the near future. For the sake of completeness, one may indicate that the similar
multimodel effect studied in (Pedrycz, 1996) exhibits a direct association with the
relational phenomenon discussed here.
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