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ITERATIVE MODEL REDUCTION
OF LARGE STATE-SPACE SYSTEMS

MARKO HUHTANEN*

There exist criteria for reducing the order of a large state-space model based
on the accuracy of the approximate solutions to the Lyapunov matrix equations
and the Hankel operator. Iterative solution techniques for the Lyapunov equa-
tions with the Arnoldi method have been proposed in a number of papers. In
this paper we derive error bounds for approximations to the solutions to the
Lyapunov equations as well as for the Hankel operator that indicate how to
precondition while solving these equations iteratively. These bounds show that
the error depends on three terms: First, on the amount of invariance of the con-
structed subspace for A, second, on the eigenvalues of A at least in proportion
to 1/|Re )|, and third, under a certain condition on projectors P, = WiW;, on
the factor minyeqixp [|B ~ (Al — A)W,X|| for A on a path T' surrounding the
spectrum of A. Consequently, in order to compensate for those parts of the
spectrum where 1/[Re A| is not small, preconditioning or an inverse iteration is
needed to keep the sizes of the matrices used in construction of a reduced-order
model moderate.

Keywords: model reduction, iterative methods, Lyapunov matrix equations,
Hankel operator, preconditioning, Hankel singular values.

1. Introduction and Notation

We analyze the problem of generating iteratively a reduced-order model for a stable
linear time-invariant state-space model, denoted by (4, B, C, D), of the form

4(t) = Az(t) + Bu(t)

1

y(t) = Cz(t) + Du(t) @

where A € C**™ is a large, possibly sparse, matrix, B € C**P is the control ma-
trix, C' € C"*™ is the observation matrix and D € CTxP (typically, p < n and/or
r < n). Large-scale systems arise, for instance, from problems in continuum me-
chanics, where a discretization of a partial-differential operator using finite elements
or finite differences leads to a matrix A which is typically large and sparse (Balas,
1982). Well-established model reduction methods, such as the optimal Hankel norm
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by Glover (1984) and balanced truncation by Moore (1981), further extended in (Enns,
1984; Pernebo and Silverman, 1982), begin then by solving the Lyapunov equations

ALp + LpA* = —BB*, AL+ LeA=—-C*C (2)

and computing the square roots of the eigenvalues of LoLp. These are called the
Hankel singular values of G(s) = C(sI — A)"!B + D, the transfer function of the
system (1). The point of all this is that the Hankel singular values yield an easily
computable error bound if the original state-space model (1) is approximated with a
reduced-order model %(Ag, Bg, Ck, D), that is, with

2(t) = Agz(t) + Bru(t)

3

y(t) = Cr2(t) + Du(t) ®)
where Ay € C**F By € C**P and Cy € C*F are obtained by using projectors
originating from the solutions to (2). However, it may not be realistic to solve (2) by
dense matrix techniques and some approximation process is needed at that point. In
particular, since for very large systems atypical situations can arise as compared with
small dimensional systems. For instance, the matrix A need not be available. More
precisely, A (or A*) can exist as a computer code or as an implicit approximate
representation of A, so that only output information Ab (or A*b) is available with
vectors b € C*. This means that we may not have A* (or A) at our disposal.
Obviously, in this case solving the Lyapunov equations is not feasible and the criteria
for producing a reduced-order model may need to be rephrased. Another example is
that the rank of either B or C is very large, e.g. if C' = I, the identity matrix. Then
approximative techniques may fail as typically a ‘small-rank’ assumption for both
B and C is needed for solving both of the Lyapunov equations. In consequence,
effectively only A or A* is at one’s disposal in these cases. (See (Phillips, 1998;
Phillips et al., 1996) and references therein for examples of similar situations.)

Bearing these aspects in mind, in this paper we study how to construct an ac-
ceptable reduced-order model with iterative methods for large state-space systems
by using the Hankel singular values to form a criterion. In particular, we derive er-
ror bounds that explicitly show that inverse iteration or preconditioning is necessary
in iterative model reduction. For that purpose, suppose that we have an iterative
process, typically preconditioned, yielding at the k-th step an orthogonal projector
Py = W W}. Here Wy is of size n x k with orthonormal columns. Further, we
assume that the range of P, contains the range of B and/or the range of C*. By
setting Ay = WrAWy, By = WiB and Cp = CWj, the corresponding Lyapunov
equations are as follows:

ALl + LAy = —BiyBf,  ARLE + LEAy = —CiCy (4)

Here L% and L% denote the projected solutions and thus they are small, of size kx k.
Approximations to the Lyapunov equations by using non-preconditioned Krylov sub-
spaces were proposed in (Jaimoukha and Kasenally, 1994) where the analysis was
based on the residual error, see also (Hu and Reichel, 1992; Saad, 1990). Hochbruck
and Starke (1995) proposed preconditioning while solving iteratively the Lyapunov



Iterative model reduction of large state-space systems ‘ 247

equations by rewriting them as a linear system by using the Kronecker product and
then using preconditioning with the obtained large linear system. Then the approxi-
mative solution is also of size n x n. We, instead, work with small matrices L’{; and
L’é, and derive error bounds directly for the differences

Lp - Wi LEWY, Lo - Wi LEW} (5)

to control whether the constructed reduced-order model will be acceptable or not.
An advantage of this is that the error bounds in this form are more informative as
to the behaviour and the origin of the error. Under a certain technical condition
on projectors, see (10), we obtain error bounds depending, roughly, on three terms.
First, on the invariance of the subspace P;C" for A measured via ||(I — Px)AP|].
Second, on the factor —1/Re\ for A € I' surrounding the spectrum of A. And third,
on minyegxs ||B — (A — A)W;X]|| for A € I'. To make this more concrete, for Lg
we show that

L5 - Wzbwy |

= 1 — e [(AT — A)=1|| xecx» |d|/\|

Y ~oAYV-1(2
cqlBE f L WO o awx
7 Jr Re(A - @)

where @ is a positive constant. Here €, denotes ||(I — Py)APg||, i.e., the largest
singular value of an n x k matrix (I — WW)AW},. The factor —1/Re() — @)
means that eigenvalues with a large negative real-part contribute less to the error. To
compensate this close to the imaginary axis, minycgxs ||B — (AI — A)W,X]|| should
be small. This, in turn, can be achieved by preconditioning or via inverse iteration.
Namely, if the range of P, contains (A — A)~'B, then this factor is zero at \.
There are other reasons for preconditioning: First, it may be needed for keeping the
approximation scheme stable (Grimme et al., 1995; Huhtanen, 1997). In particular for
strongly non-symmetric systems preconditioning seems almost indispensable. Second,
the controllable subspace of the original system modelled by the partial-differential
operator, which is approximated by (1), can, in general, be found only via inverse
iteration.

There is an alternative way to compute an approximation to the Hankel singular
values and to control whether a reduced-order model is acceptable. This is based on
the Hankel operator. The Hankel operator of (1) is given by

(Tw)(t) = /0 ” CeAt+9) By(s) ds ()

from L?([0,00); CP) to L?([0,00); C") and the Hankel singular values equal the singu-
lar values of I'. The corresponding approximative Hankel operator is then (xu)(t) =
IS CWype ()W Bu(s) ds. Again, we obtain estimates consisting of the above
three terms: ||(I — Py)AP|| and —1/Re X as well as minyegxs ||B — (A — AW, X||
for A on the path of integration I'. Consequently, preconditioning or inverse iteration
is needed for making the last term small for' X near the imaginary axis.
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The paper is organized as follows. In Section 2, we derive estimates to holomorfic
functional calculus that are needed while approximating the Lyapunov equations and
the Hankel operator. In Section 3, we derive bounds for the Lyapunov equations and
the Hankel operator. In Section 4, we briefly explain why inverse iteration is the right
choice when distributed-parameter systems are being approximated. Then we end
the paper with two realistic numerical examples, one symmetric and another non-
symmetric. Without preconditioning the sizes of matrices used in the construction of
a reduced-order model would become unbearably large in both cases. Instead, if Py
is generated via inverse iteration, the orders remain moderate.

2. An Approximation to the Block-Holomorfic Functional
Calculus

We study the problem of projecting the state-space model (1) to a smaller dimensional
system (3). Typically, this problem arises when ¥£(4, B, C, D) needs to be of a high-
order so as to be an accurate approximation of the physical system being modelled, let
us say, via partial-differential equations. However, because the order of the discretized
model is high, it is often unrealistic to compute its dynamics numerically and therefore
a smaller dimensional system is needed for practical control. Then another problem
arises: How to effectively and efficiently construct a low-order model that is close
to the original one? Recently projection-based formulations using Krylov subspace
techniques have become generally accepted.

Let us suppose that we have an orthogonal projector Py and the dynamics of (1)
is projected onto the subspace P,C" via (3). If P,C" is an invariant subspace of A
such that PyB = B, then we are satisfied for the following reason. The dynamics of (1)
is completely characterized by the projected system as P;C" contains the controllable
subspace of £(4,B,C,D) and %(Ak, B, Ck, D) yields a realization of the transfer
function of (1). If P,C" is not invariant for A, then the remaining alternative is: How
invariant is P,C" for A? One possibility is to derive estimates using the invariance of
a subspace based on quasitriangularity (Halmos, 1968). In the context of numerical
linear algebra this provides, roughly speaking, a global residual for a set of Ritz
pairs. The applicability of quasitriangularity to numerics was noticed in (Nevanlinna,
1995; Nevanlinna and Vainikko, 1996) where it was used in spectral approximation,
see also (Huhtanen, 1997; 1998) and the recent paper (Knyazev, 1998). Based on
this approach, we apply the concept to obtain an approximation to the holomorfic
functional calculus for matrices. More precisely, we obtain estimates for the accuracy
of the approximation in the subspace PyC", not just for a single vector. This yields
a way to control the error when equations involving matrices, like the Lyapunov
equations or the Hankel operator, are being solved approximately. Thereby we can
also assess whether the constructed low-order model X(Ag, By, Ck, D) is close to the
original one.

Let us assume that we have constructed a projector P, = W;W;' by using an
iterative method. That is, we suppose that W}, is an nxk matrix having orthonormal
columns that span the range of Py, and that the columns of W} are obtained via
an iterative scheme. Qur basic assumption in this paper is that preconditioning of
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some sort is used while generating Wy, but, to give an example, a simple way to
produce Wy is to use the Arnoldi method. For the definition of the Arnoldi method,
see e.g. (Saad, 1992). Then the columns of W} form an orthonormal basis of the
Krylov subspace

Ki(A;b) = span{b, 4b, ..., AF"'b} (7)

generated with A from a vector b € C*. Let us designate by Aj the restriction
of PyAP, to P,C" with the matrix representation W;AWj. In our notation || - ||
denotes the spectral norm and rank(A) stands for the rank of A. Furthermore, let
us introduce the quantity

& = ||(T = PO AP|| = || (T - W, W) AW 8

to measure the invariance of PyC" for A. This gives a compromise in case P,C" is
not an invariant subspace for A, but there is, instead, a ‘small overflow.” To put it
in another way, if ¢ is small, then the subspace P,C" is roughly invariant for A.
Clearly, one obtains this quantity inexpensively as it is given by the largest singular
value of the n x k matrix (I — WW})AW}. Note that this quantity is also used in
the Arnoldi method: For a single vector b of unit length this means that when the
columns of W}, form an orthonormal basis of (7), then Aj; is a Hessenberg matrix
fulfilling

AWy = Wi AL + ekbk-i-lez

where ey is the k-th unit vector in C™.

While working with the matrix representation Ay, we need the following relation
to the original matrix A. Here p(A) denotes the resolvent set of A.

Lemma 1. (Nevanlinna and Vainikko, 1996) Let A € C**" and X € p(A). If
exll(AI = A)71| < 1, then X € p(Ay) and

(A — A7
1= el|(A = A)~]

| = 47| <

First of all, once ¢, is small, this gives a sufficient condition for the existence of
the inverse of Al — Aj. Second, this yields a sufficient condition for the spectrum
of Ay to belong to a neighborhood of ¢(A), the spectrum of A. This neighbor-
hood is determined by the level sets of the norm of the resolvent matrix, i.e. the
e-pseudospectra of A (Trefethen, 1992). Third, by using this, it can be shown that
Wi (M — Ag) "W} is, for a small €, a good approximation to (A —A)~! restricted
to PkC".

Proposition 1. Let A € C" and X € p(A). If &||(AM] — A7 < 1, then for
z € P,C" of unit length we have

(AT — 4)~H2

WM — Ag) "' Wiw = (M - A) 7'z < e
Wi ATy — Ag) "' Wiz — (AT - A) w”—ekl—ekll()\I—A)—IH
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Proof. By Lemma 1 we have A € p(Ay). Thus we obtain

Wi\ — Ag)~'Wie
M- A k = Wi\l — Ap) W}
( )||Wk(>\fk = Ap) T Wizl HOe = AW

WMy — Ap) "' Wie
WMy — Ar) " Wizl|

+y

T
= +1
WeMi — Ag) " Wiz

for some y € C* of norm at most ¢x. So as A € p(A), we get

ml.(WkQIk — Ap)TTWE = (M - A)—l)mH

< [0 = AW~ 407 W — 1 - )]

= llyll [|[Wi(MLx — Ak) 7 Wia|| < e f|(Mk = Ar) 7|

from which the claim follows after multiplying both sides by [|(A\] — A)~}|| and using
Lemma 1 again. |

Plugging the above approximation into Dunford’s integral formula, we obtain an
approximation to the holomorfic functional calculus for matrices. Here we assume that
f is analytic in the neighborhood G of the spectrum of A and e||(A\] —A4)7}|| < 1
on the path of integration I'.

Corollary 1. If z € P,C" is of unit length, then

* O~ 4)F
Wi f(Ar)Wia ~ f( /!f 1v6kH (A=A W

where T 1s a path surrounding o(A) in G.

Proof. As €x||(AI — A)~|| < 1, we are in the resolvent set of A as well, hence
1
Wef(A)Wiz = — / FOVWeO e — Ag)~ Wiz dA
r

so that, after subtracting f(A)z = 5L [ fF(\)(M — A)"'zdX from it and taking the
norms, we get the claim. [ ]

For the case f(\) = ¢* and for a single vector this problem has been studied
in a number of papers, see e.g. (Saad, 1992). In (Hochbruck and Lubich, 1997)
estimates are derived based on the use of the Faber polynomials such that the path
of integration I' surrounds the field of values of A. Recall that the field of values of
A is the set {z*Az € C: z*z =1} (Horn and Johnson, 1991). These papers cover
the Arnoldi and the non-symmetric Lanczos methods for A. Since we are concerned
with possibly very non-symmetric systems (A4, B, C, D), possibly with rank(B) > 1
and rank(C) > 1, preconditioning may be needed and therefore we need more general
bounds to cover block-analogies. In particular, we will show later that it is important,
for obtaining good bounds, to be able to use paths I' cutting through the field of
values of A. The condition /(A — A)7!|| < 1 allows us to do this.
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Corollary 1 states that as soon as € is small, f(A) is well approximated in the
whole subspace P,C® and not just for a single vector. In particular, the variation
of constants formula provided by the control matrix B is well approximated if the
range of Py contains the range of B. However, for better bounds, notice the following
property: For any X € C**P we have

(AT = A = Wi (ML, — Ap)™'W5)B

= (M = A7 = Wi (AL — A)7'WE) (B — (M — AW X)  (9)

since W (A — A)W, = (M — Ay). For our bounds we need, additionally, that the
range of (A] — A)W;X be contained in the range of Py, so we make the following
assumption: We say that the scheme for producing W}’s has the property P, ; for
l <k, if:

The first | columns of Wy equal W; and span{AW,} C span{W;}. (10)

This restriction is obviously not the most general for the needed condition, since we
need only to see that X is such that (Al — A)W;X is contained in the range of Pj.
However, this condition is very easy to check and several important schemes fulfil
it. For instance, in the block version of the Arnoldi method columns for Wj are
formed from subspaces K(A;B) = span{B, AB, ..., A*"1B} so that it clearly has
the property P; . Another scheme that fulfils this is the inverse iteration defined as
follows: Using the Arnoldi method with A~! applied to B, construct from

Ki(A™'; B) = span{B,A7'B, ... ,A™*1B}

W, and then generate Wy from this by using the subspace span{W;, AB}. This
scheme obviously has the property P, .

With this notation we obtain the following bounds: Again we assume that f is
analytic in the neighborhood G of the spectrum of A and e||(A\J — A)7!|| < 1 on
the path of integration.

Corollary 2. Suppose that P,B = B and the scheme has the property Pik. Then

[Wif(Ax)WiB - f(A)B||

IO = )7 )
-%/lf 1-Ek|| (M — 4)~ 1||XI§C1,2,,HB (AT — AW, X || d[A

where [ is a path surrounding o(4) in G.

Proof. Thus, using again Dunford’s integral formula, we obtain from Proposition 1 in
a similar manner

Wi f(A) W B—f(4)B]| < 2% /F |FOO] | (WM W= (A1 -4)7) B a

= 5 [ IO | W0 = 407 W = 01— )7 (8~ (1 - ywix) | an
r
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since Py(AI — AW, X = (\I — A)W,X for all X € C*?. Consequently, using
Proposition 1 we obtain

[[ (Wi(Mlk — Ap) ™ Wi = (AL — A7) (B — (A - A)WlX)“

< €k

A= A)7? H
|

T GO = A) - = Amx) |

and the claim follows. | |

After the projector is fixed, an interesting question clearly is: How to derive
simple pointwise bounds to |f(\)|minxecixs ||B — (A — A)W, X|| for A € I'? Of
course, if we take X = 0 for every A € T, we trivially get |f(A)|[|B]]. A further
aspect becomes apparent too: How well B is approximated by (Af—A)W;X depends
strongly on the way in which W} is generated, that is, on the chosen iterative method
and preconditioning.

3. Approximations to the Lyapunov Equations and the Hankel
Operator

In this section, we use the estimates of Section 2 to derive error bounds for approxi-
mations to the Lyapunov equations and the Hankel operator. Our purpose is to derive
bounds that show what kind of preconditioning strategy should be considered while
reducing the order of a large state-space system in an effective manner.

3.1. Bounds for the Lyapunov Equations

Let us first study how the solutions to the Lyapunov equations
ALg + LgA*=—-BB*, A*Lg+LgA=-C"C

can be approximated if the analysis is based on Corollary 2. For that purpose, we
suppose that A € C™*™ is exponentially stable with [leA?|| < Me™“¢, where M > 1
and w > 0, and that the approximation scheme yielded by projectors Py is uniformly
stable, i.e.

HeA’“tn < Moe ™ for My >1 and wp>0 (11)
Theorem 1. Suppose that (11) holds, PxB = B and the scheme has the property
Py i Then with e, = ||(I — Po)APg|| and e||(M —A)7'[| <1 on T' we have

|Ls = Wi L W5 ||

IBIST [ -1 A= 47
<@l | R0 T T = AT o 1B~ O = A ay

where & = min{w,wo}, M = max{M, My} and T’ surrounds o(A) in C.
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Proof. From the representation of the corresponding solutions in the form
0 . 0 N
Lp = / eA*BB*et 0 ds, Wi LW} = / Wie s W BB*Wie W ds
0 0
we obtain after subtracting

Lp - Wi LW} = / eA*BB*e?’s — Wie W} BB*Wietes W ds
0

o0
_ / ASBB* (e — Wie A W?) ds
0

(o]
+/0 (e — Wie™ W{)BB*W.e W} ds

where we added and subtracted e*BB*WyeA:*W} from the integrand. Conse-
quently, this yields, after taking the norms and using Py B = B,

o0
|Ls — WiZhwe| < |1B| / (€4 + [leA=<1) [ (WieAxs W — %) B ds

-1 -1 [[(AT — A)~1|? .
< ||B||M = B—(AI-AW X
< 1B /F Re(—0) 1~ eullOF — A) 1] 2k, 1B~ (A = WX di
by Corollary 2 so that the claim follows then after changing the order of integration
by Fubini’s theorem and performing the integration. ]

A simple, but crude, upper bound is obtained if we set X = 0 for every A, so that
then ||B — (A — A)W;X|| = ||B|| on . Moreover, note that if P,C" is invariant
for A, with the constraint P,B = B, then ¢; = 0 and the Lyapunov equation is
solved exactly. This corresponds to the case when there exists a smaller dimensional
realization of the plant £(4, B,C, D).

If the subspace construction is made with C, then in a similar vein we obtain the
following for the solution L to the second Lyapunov equation. Then Ay designates
the adjoint of the restriction of PrA*P; to PC". More precisely, W} A*W, is the
matrix representation of the adjoint of Ay.

Corollary 3. Suppose that (11) holds, P,C* = C* and the scheme has the property
Pii for A*. For &, = ||(I — P,)A*Py|| and &||(AI — A*)71| <1 on T we get

2o - Wezkw;|

<alOW [ 1 jor- e,
- T r Re(A =) 1 — &||(AT — A)~ 1| xecx~

C* = (AT — AWX || d|)|

where & = min{w,wp}, M = max{M, My} and T surrounds o(A*) in C.
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Again, if P,C" is invariant for A*, with the constraint P,C* = C*, then the
Lyapunov equation is solved exactly.

To get an illustration of these bounds, let us consider a simple example where
we approximate just the integral term

-1 JJA =AY
/FRe)\ T exiOT — A1) N (12)

Example 1. In this example, we study the contribution of a single eigenvalue to the
error. Let us consider the stabilized heat equation

. 0? 5

2(t) = 3227 47°z + Bul(t)

y(t) = Cz(t) + Du(t)
with the boundary conditions z(0,t) = z(1,t) = 0. Suppose that A is a discretization
of the stabilized partial differential operator 9%(-)/8z% — 4% such that A has the

eigenvalues —(4 +n?)7? for n = 0,1,...,100. If we surround the n-th eigenvalue
of A with the circle T',, of radius one, then, as soon as €; < 1/2,
-1 A — A)7H)? 4 4
[ LM
r, ReAl —e||(A] — A)~1]] (4+n2)m2 -1 7n?

However, we can do much better. If, instead, we take I';, to be a circle surrounding
the n-th eigenvalue of A with radius (n? — (n —1)?)7%/2 = (n — 1/2)72,ie. T, is
chosen such that the minimum distance to the n-th and (n — 1)-th eigenvalue is the
same, then

1 AT = A2 4 1 4
-1 djAl < 37.2_3n , b N~ "33
T. Re/\l—ﬁkll(/\I—A) “ s (n ——2—+Z)(n—§) m™n

From the above example it is apparent that there are two factors that can make
the contribution of (12) to the error small. First, the real parts of the eigenvalues are
large negative. Second, if the eigenvalues are isolated and clustered such that they
can be surrounded by a large circle. Above we encircled just one eigenvalue by cutting
the field of values of A and then used the fast decay of the term ||(AI — A)71(|? far
from the eigenvalues. In (Hochbruck and Lubich, 1997) there are estimates for the
analytic functional calculus for the Arnoldi method with A applied to B, i.e. without
preconditioning, but only with paths surrounding the field of values of A. To be able
to integrate inside the field of values of A is important since it is relatively easy to
construct examples with nilpotent weighted shifts that have a huge field of values and
an arbitrarity small e;. As soon as € is of a reasonable size, we can integrate with
paths inside the field of values of A.
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3.2. Bounds for the Hankel Operator

By the previous subsection it seems that two sequences of projectors are needed for
a good approximation to the Hankel singular values: One with A using B and an-
other with A* using C*. Then, with the computed approximations to Lg and Lg,
a reduced-order model is constructed with, for instance, balanced truncation. How-
ever, the construction of two sequences of projectors complicates the model reduction
problem and, needless to say, makes it more expensive. Another factor that can make
this approach unrealistic is the assumption that all dense matrix manipulations are
feasible. For instance, the availability of the adjoint of A need not hold in large-scale
computations. A very good description of situations of this type can be found in
(Phillips, 1998; Phillips et al., 1996). Therefore, to generate a reduced-order model in
these cases, we next show that a single sequence of projectors suffices and that one can
compute approximations to Hankel singular values by using A (or A*) only. Then a
justified way to create a reasonable reduced-order model is to set Ay = W w AW, (or
Ay = Wi A*Wy, respectively), By, = W} B and Cy = CW;,.
Thus, let us consider the Hankel operator of £(A, B, C) defined by

(Tuw)(t / CeAlt+9) By(s) ds (13)

from L2(]0, 00); CP) to L’([O 00); C"). The corresponding approximative Hankel op-
erator equals (Iyu)(t) = [;° CWyeA*+) W) Bu(s)ds. To start with, we need the
following auxiliary result for the pointwise error. To simplify the notations we put

A=A _
G = T TOT =) s, 1B - L - x|

Lemma 2. Suppose that P,B = B and the scheme has the property Prr- Then with
€r = |[|[(I = Pr)AP|| and e||(M — A)7Y <1 on T we get

_lpAt
[|(Tu — Tru) (1) < ;HCH H“Hz(/r R|ZA| G dl/\I /Ie/\t|G d|A[)

where I' surrounds o(A4) in C™.

Proof. After subtracting the solutions and then applying Holder’s inequality we obtain

o0
[|(Tu - I‘ku)(t)“ < / “C(eA(H"S) - WkeA"(Hs)W,:)Bu(s)” ds
0

< / ICl [[ (449 — WieAsC+wy) B] [lu(s)]| as

o0 P 2
< jic| ||u|12(/0 [(4e09 — wietsesomy) B as) "
<

el ||u|[2(/0 /rleh(ws)]G()\l)dl/\ll

X/le>‘2(t+3)|G(A2)d|A2|d5)1/2
r
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by using Corollary 2, since PrB = WW;B = B. Then from Fubini’s theorem, while
integrating with respect to s, and by using the approximation (again, I' is supposed
to surround the spectrum of A in C7)

—|ePtr2)t) _je(AutAa)t
Re()\l + )\2) - Re )\
the claim follows. |

Using this we obtain the following error bound for the Hankel operator approxi-
mation. The norm is the operator norm from L2([0,00); CP) to L*([0,00);C").

Theorem 2. Suppose that P,B = B and the scheme has the property Pry. Then
with ¢ = ||(I — Py)AP|| and €A — A)7|| <1 on T we have

€ -1 || = A)7 2 )
Tyl € = B— (A - AW,
”F rk“ - 77”0“/[“ R,GA]. Ek”(AI'— 4)_1“ Igérip H ( A) [XH diAl

where T' surrounds o(A) in C.

Proof. Taking the inner product gives, after using Lemma 2,

/0 "l Cu = Do) (0)] dt

6% 2 2 00 _|e>\1t|G A2t G d
< 2
< g0 Il [ Feg e din [ 11600 il at

Then from Fubini’s theorem, while integrating with respect to ¢ and by using now
the approximation

-1 < -1
Re(/\l + Az) ~ ReXq

we obtain the claim. [ |

It is clear how the Hankel singular values are approximated as they equal the
singular values of T, since after adding and subtracting I'T'; we have

(ITT* = TeTE N < (ITI + (ITEI)IT = Tell < AT+ 1T = Tell) IT — Tl

In some cases it may be worthwhile to construct P, with C*. This could be
the case if the rank of C is smaller than B or if there exists a low dimensional
realization of (4, B,C, D) based on a small rank Pj for which (I — Py)A*Py =0
with P,C* = C*. For that purpose, we state the adjoint claim which is proven in a
similar vein.

Corollary 4. Suppose that P,C* = C* and the scheme has the property P for
A*. Then with &, = ||(I — Py)A*Py|| and &||(M — A*)7Y| <1 on T we have

€x -1 [[(M=A)7P :
T-Tyf <
I = Tell < rr”B”/FReAl—ékH()\I—A)—lll Xewxr

where T' surrounds o(A*) in C.

C* — (A\I — AMW, X || d|A|
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As a summary for an iterative Hankel operator approximation, we have the fol-
lowing: There are two factors, in addition to the amount of invariance of a constructed
subspace, that make the contribution of (12) to the error small. First, (12) is small
for the eigenvalues with large negative real parts and, second, it is small for clustered
eigenvalues which can be surrounded within a large circle. Therefore, in order to
reduce the effect of the eigenvalues close to the imaginary axis, preconditioning that
takes into account B or/and C* is needed for keeping

g(A):= min ||B—- (A -AWX

Xelxrp

(14)

small on I' near the imaginary axis.

4. Inverse Iteration and Preconditioning in Reduction
of the Order of a Model

In this final section, we first motivate the use of the inverse iteration, or some ap-
propriate preconditioning, in iterative model reduction purely from a mathematical
point of view. Finally, we give numerical examples.

4.1. Construction of Projectors for Discretizations of Partial Differential
Equations

Before giving numerical examples, we briefly describe why projectors obtained by
simply applying A to B may not be a good choice for iterative model reduction of
discretizations of systems modelled by partial-differential equations. For that purpose,
we have to recall some aspects of infinite dimensional system theory.

It is well-known that K(A; B) = span{B, AB,...,A" !B} equals the control-
lable subspace of the system (1). For computation of the controllable subspace via
iterative methods, see (Boley and Golub, 1991) and references therein. Obviously,
the Arnoldi method applied with A to B, yielding projectors P, with the range

Kk(A; B) = span{B,AB,A’B, ..., A*"' B} (15)

is probably the most attractive and inexpensive candidate to be used in iterative model
reduction. However, for large systems originating from discretizations of partial-
differential systems the quality of the subspace K;(A4;B) can be unsatisfactory. To
give mathematical reasons for this statement, let us suppose that (1) is a discretization
of a state-space model, denoted by E(A, B,C, f)),

#(t) = Az(t) + Bu(t)
R (16)

y(t) = Cz(t) + Du(t)

where A is a generator of a strongly continuous semigroup S(t) on a separable
Hilbert space H. Further, B is a bounded linear operator from CP to H, C is
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a bounded linear operator from H to C" and D:Cr - C. For E(A,E,C‘,f))
the states that can be approximatively reached with the controllability map B™u =
Jy S(r — s)Bu(s) ds, defined from L2([0,7] to H, are obtained as follows:

Definition 1. The approximatively controllable subspace of E(/i,f?,é’,f)) is the
closure of |J,5o{B™u € H :u € L*([0,7];C")}.

The following should be a well-known fact:

Lemma . .A(Curtain and Zwart, 1995) The approzimatively controllable subspace of
(4, B, C’, ) equals the smallest closed S(t)-invariant subspace containing the range
of B.

As to iterative methods, the important point is that the smallest closed S(t)-
invariant subspace containing the range of B is precisely

K((AI—~A)™YB) =span{B,(\[ - A)~'B,(\I - A)%B,...}

for A in the component of the resolvent set of A containing the interval [r,c0) for
an r € R This can be seen from the following:

Theorem 3. The approzimatively controllable subspace of E(A,é,é’,f)) equals
K((MI - A~ B).

Proof. Flrst a closed subspace is invariant for S(¢) if and only if it is invariant for
(Al — A)~! (Curtain and Zwart, 1995, Lemma 2.5.6). By construction, ((AI —
A)~%: B) is an invariant subspace of (A\I — A) with the additional property that it
is the smallest invariant subspace of (AI — A)~! containing the range of B. ]

Clearly, for an unbounded A, K (A; B) does not, in general, make any sense. And
even if it does, it need not have anything to do with the approximatively controllable
subspace of %(A, B,C, D). Let us illustrate this with an example.

Example 2. This is an adaptation of (Zwart, 1989, Example 1.6). Let H = L2(0,1)
and A = 8%(-)/82 with the domain consisting of all f € H with the second deriva-
tive in H such that f(0) = f(1) = 0. With x[1/2,1], the indicator function of the
interval [1/2,1], we have

. ' { —s, s €1[0,1/2]

s)=A"1 72 sin(ms)) =
g(s) (X127 sin(ws)) —s+1—sin(rs), s€[1/2,1]

Take a smooth function b(s) which is close in L2-norm to X[1/2,1)7> sin(ws) such
that it is equal to zero for s € [0,1/2 — €] and which has derivatives b/(1) = 0 for

all j =1,2,.... Thus, X(A;b) is well-defined. However, all the elements of }C(A b)
are equal to zero in the interval [0,1/2 — ¢]. But by the continuity of A~!, the

point A1 is close to g(s), which is not equal to zero on that interval and thus the
approximatively controllable subspace is very different from K(A;b). ¢
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Thus, with the heat operator and with a very simple control operator the approx-
imatively controllable subspace of E(A, B,C, ﬁ) can be completely different from the
forward iterated subspace. This is a partial reason why the quality of Ky (4; B) may
be insufficient for an approximation of the controllable subspace of (1), unless & is
very large, that is, unrealistically large for practical computations.

To sum up, the inverse iteration, or preconditioning, is a good alternative for a
projector construction in model reduction for the following reasons: First, in order to
make (14) small on I' near the imaginary axis. Second, it is needed for keeping the
approximations stable. And third, the forward iteration is not generally well-defined
for infinite-dimensional unbounded systems, and, even if it were, it would not yield
approximatively controllable states of the system. In finite dimensions and for small k
this shows up in the possible poor quality of the Krylov subspace Kj(A; B) while
approximating the subspaces corresponding to the largest Hankel singular values.

Instead of using the inverse of A in the subspace construction, there is, as already
mentioned, the less expensive possibility of using some sort of approximation for the
inverse of A as a substitute. In other words, this means using a preconditioner for A
while constructing subspaces. Recall that a preconditioner for A is a matrix M
that has the property that AM is close to the unit matrix I in some manner. As
to finding a good preconditioner for A, at the outset there is virtually no limits to
available options for a good preconditioner. For example, preconditioners can be
derived from knowledge of an original physical problem from which the linear system
arises. Therefore, finding a good preconditioner is often viewed as a combination of
art and science. Therefore it is also a huge topic in itself. Good references in this
context are recent books (Saad, 1996) and (Greenbaum, 1997). Some preconditioning
techniques used for model reduction can be found in (Grimme et al., 1995; Huhtanen.
1997).

4.2. Numerical Examples

Finally, we illustrate the previous analysis by computing two numerical examples.
The first example is non-symmetric and the second one is symmetric. In both the
examples projectors with the range equal (15) generated via the Arnoldi method
with A yield too large matrices for constructing a reduced model for $(A4, B, C, D).

We generate projectors in two different ways. First, we use the Arnoldi method
with A to produce Wy for P, = W, W, At each step the range of P equals (15).
This projector construction was proposed in (Jaimoukha and Kasenally, 1994). Then
we compare this with Py in which W}, is obtained from the inverse Arnoldi iteration

Ki((M - A)~' B) =span{B,(A\I - A)7'B,...,(A\I - 4)"¢"UB}  (17)

with a A € C, i.e. the Block-Arnoldi method with (AI — A)~!. Unless there is infor-
mation about the spectrum of A, we use A =0 which seems to be a good choice e.g.
for symmetric systems. As to the amount of operations, we make an LU-factorization
of AI — A and use it throughout the process. This amounts approximatively to
2n®/3 aritmethic operations in the beginning and O(n?) for each inverse iterate.
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s ‘ i ;
-900 -800 -700 -600 -500 -400 -300 -200 -100 0

Fig. 1. The eigenvalues of Example 3, the matrix of the model for a CD-player regarding.

The computations were carried out with MATLAB and we used the ARE command
to compute numerical solutions to the Lyapunov equations.

Example 3. In this example, A is obtained from a model for a CD-player (Wortel-
boer, 1994) and it is of size 120 x 120. This matrix is also used in (Grimme et al,
1995) as an example for which the Arnoldi and Lanczos methods with A yield un-
stable reduced models practically for all steps, i.e. preconditioning for a reasonable
reduced model is needed. In Fig. 1 we have plotted the eigenvalues of A and we
emphasize that they spread wide open to the left half-plane (note the scales). In
our computation we chose B to be a random vector of unit length. In Fig. 2 we
have computed approximative solutions to the Lyapunov equation with two iterative
methods. In the first case, Wy is constructed via the Arnoldi iteration with A (i.e.
as in (Jaimoukha and Kasenally, 1994)) and in the second one we computed W}, via
the inverse iteration at the origin, i.e. A =0. ¢

Example 4. In this example, A is a diagonal matrix of size 100 x 100 with elements
—j272% for j = 1,...,100 and B is a random vector. In Fig. 3 we have computed
approximative solutions to the Lyapunov equation with two iterative methods. In the
first case, Wy is constructed via the Arnoldi iteration with A (i.e. as in (Jaimoukha
and Kasenally, 1994)) and in the second one we computed W}, via the inverse iteration
at the origin, i.e. A = 0. Note that A is self-adjoint. ¢
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2 4 6 8 10 12 14 16 18 20

Fig. 2. The error in log)y-scale of the Lyapunov equation of Example 3. Here the g-axis
denotes the size of the approximation matrices (—x— denotes the Arnoldi method
and — O — denotes the inverse iteration of (17)).

-9 I L 1 I ) L t L I

Fig. 3. The error in log,,-scale of the Lyapunov equation of Example 4. Here the z-axis
denotes the size of the approximation matrices (—x— denotes the Arnoldi method
and - O - denotes the inverse iteration of (17)).
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5. Conclusions

We have derived error bounds that can be used in reduction of the order of a large
state-space system via iterative methods using the Hankel singular values as the cri-
terion. The error terms show how the eigenvalues of A contribute to the error as a
function of distance to the imaginary axis. Thereby the bounds explain why a simple
Arnoldi iteration with A does not suffice while reducing the order of the system. The
reason is that close to the imaginary axis the block-equation (A — A)W; X = B (or
(M — A*)W, X = C*) should be solved accurately. This, however, can be achieved if
preconditioning or inverse iteration is used in the projector construction. Finally, we
have given two realistic numerical examples showing that the Arnoldi iteration with
A applied to B is not sufficient as the order of matrices used in model reduction can
then become very large before being accurate enough.
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