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DECENTRALIZED VARIABLE STRUCTURE TRACKING
FOR SYSTEMS WITH TIME-DOMAIN DOMINANCE

ANDREA BALLUCHI*, ANTONIO BICCHI**

In this paper, we consider the design of tracking controllers for linear MIMO
systems described by an input-output model. The presence of known ‘weak’ in-
teractions among SISO or MIMO subsystems may allow the designer to achieve
objectives by using independent controllers of lower complexity than are nec-
essary in general (control decentralization problem). Sufficient conditions for
asymptotic tracking employing decentralized variable structure techniques are
derived. The condition is shown to be closely related to (and in a sense, a time-
domain counterpart of) dominance criteria used in frequency-domain techniques,
as they have developed out of Rosenbrock’s original diagonal dominance con-
cept. The synthesis of a decentralized variable-structure controller for asymp-
totic tracking is illustrated for systems obeying some conditions on their nominal
relative degrees.

Keywords: dominance conditions, decentralized control, robust control, vari-
able structure control (VSC).

1. Introduction

The study of decentralized controllers for multivariable systems has attracted much
attention in the last two decades, mainly because of its relevance to practical large-
scale systems such as encountered in electric power systems, socioeconomic systems,
chemical processes, space structures and robotic applications (Siljak, 1978). A fre-
quent attitude of control system engineers in attacking large-scale systems is to try
and find, by accurately analysing the system model, an underlying pattern of simpler
SISO or MIMO subsystems connected by means of ‘weak’ relation links. Once such a
structure has been recognized, an attempt can be made at controlling the subsystems
by means of relatively simple controllers and only use information relative to each
subsystem.
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1.1. Previous Work

The literature on decentralized control can be grossly divided in two main branches,
dealing with methods in the frequency and in the time domains, respectively. Fre-
quency domain methods have attracted the interest of researchers due to the fact that'
available models of large-scale systems are often of the input-output type, mostly in
the form of approximated transfer function matrices. Rosenbrock’s DNA and INA
techniques (Rosenbrock, 1974), for the design of decentralized linear controllers for
linear multivariable systems have proved to be among the most effective and practi-
cal tools for approaching large-scale systems that exhibit weak coupling among SISO
subsystems.

Rosenbrock’s diagonal dominance conditions are generally recognized to be rather
difficult to meet in practical applications, while the design of a precompensator to
help attain dominance might spoil the simplicity of the design procedure that makes
the technique attractive. Less restrictive dominance conditions have been therefore
sought for actively. Generalized diagonal dominance, investigated first by Araki and
Nwokah (1975), allows arbitrary scaling of inputs and outputs to be applied to achieve
dominance. Further extensions of Rosenbrock’s work involve the use of generalized
diagonal dominance by blocks, and applies to weakly interacting MIMO subsystems.
Successive refinements of the idea led to a definition of block diagonal dominance
(Bennet and Baras, 1962; Feingold and Varga, 1962), generalized block diagonal dom-
inance (Limebeer, 1982), and quasi-block diagonal dominance (Nwokah, 1987; Ohta
et al., 1986). The latter, more general formulation, can be expressed as an M-matrix
condition on a suitably defined matrix of norms applied to transfer function blocks.
A coherent treatment of dominance concepts from both the standard and M-matrix
approaches is developed in (Yeung and Bryant, 1992), where the more general con-
cept of ‘fundamental dominance’ is also introduced. In that paper, the relationship
between dominance, system approximation, and robust stability & la Doyle (Doyle,
1979; 1982) is also enlightened. :

On the other hand, while state-space, centralized methods for multivariable track-
ing or servomechanism problems in LTI systems based on the internal model principle
(see e.g. Wonham, 1979) attracted much attention, decentralized controllers for robust
tracking in large-scale systems have also been an active research area. The pioneering
work of Wang and Davison (1973) and Davison (1976) has been followed by important
contributions, among which we mention (Chen et al., 1991; Gavel and Siljak, 1989;
Toannou, 1986; Shi and Singh, 1993).

At about the same time, application of variable structure controllers (VSC) to
multivariable systems has begun to be investigated (Utkin, 1977), and VS solutions to
the MIMO servomechanism problem have been proposed (Young and Kwatny, 1982);
also, see (DeCarlo et al., 1988) for a tutorial introduction). A particularly prolific area
of application has been the control of robot arms (Balestrino et al., 1984; Slotine and
Sastry, 1983; Young, 1978). More recently, efforts have been made to develop decen-
tralized variable structure controllers (DVSC) in order to conjugate the outstanding
performance provided by VSC even in the presence of nonlinear, uncertain plants
with the requirements of limited controller complexity encountered in typical large-
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scale problems. Lefebvre et al. (1982), Matthews and DeCarlo (1987), Khurana et al.
(1986) studied decentralized VS stabilizing controllers, while the tracking controller
problem for a class of interconnected multivariable systems was given a solution by
Matthews and DeCarlo (1988). Variable structure methods for tracking control of
complex mechanical systems that cannot be considered algebraically interconnected
(such as robot arms) have been discussed by Singh (1990). The authors (Balluchi
and Bicchi, 1997) have derived necessary and sufficient conditions for robust perfect
tracking under variable structure control.

1.2. Main Contributions and Organization

In this paper, we investigate the connections between input-output dominance con-
cepts and VSC techniques for decentralized control of general multivariable systems.
In order to retain the practice-oriented flavour of frequency-domain methods, the as-
sumed model of the plant is an input/output relationship as represented e.g. by a
transfer matrix G.

The problem addressed is to find conditions on a plant G under which a VSC
law that achieves asymptotic tracking on a block-diagonal approximation Gp, is
guaranteed to accomplish the same performance on the actual plant G. A sufficient
condition for the existence of such a controller is produced in Theorem 1. The con-
dition can be regarded as a time-domain counterpart of Rosenbrock-like dominance
conditions.

This theoretical result is utilized to synthesize practical decentralized tracking
controllers for systems having unit row-relative degrees. Rather than on sliding-mode
observer design, the proposed controller is based on a novel scheme, somewhat affine
to reference-model tracking.

The problem is formulated precisely in Section 2. The new dominance conditions
for decentralization are proposed in Section 3. Section 4 presents the synthesis of
the tracking VS controller for systems with row-relative degree one and unaccessible
states. Finally, in Section 5, simulation results are reported on the application of such
a control scheme to systems with different dominant patterns.

2. Background and Problem Setup

Consider an m-input, m-output strictly proper MIMO system as comprised of
N < m, m;-input, m;-output ‘weakly’ interacting square subsystems, with m =
my + -+ +mpy. We assume at this stage that such an interconnection structure has
been identified by the designer, and that inputs and outputs have been arranged and
partitioned in contiguous groups so as to reflect the subsystem structure (algorithms
to achieve this in a preliminary analysis phase have been discussed e.g. in (Balluchi
et al., 1993)). Accordingly, decompose the transfer matrix G(s) of the given system
in the sum of a nominal part Gp(s) and an additive term G¢(s), namely .

G(s) = Gp(s) + Ge(s) (1)
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For decentralized control, the nominal part of the plant is block diagonal
Gp(s) = diag(Gi(s),...,Gn(s))

It is assumed that the m; x m; transfer matrix of the i-th nominal subsystem G;(s)
is a strictly proper rational matrix with full rank over the field of complex numbers,
implying that the number of effective inputs and the number of effective outputs of
the ¢-subsystem is actually m;. The system G¢ is decomposed in blocks Gj; of
dimension m; x m;.

Based on such a decomposition, classical results on decentralized control show
that, if a constant block-diagonal feedback K stabilizes the nominal system, i.e. if
I + KGp is Hurwitz, sufficient conditions for K to stabilize the real plant G can
be given in terms of the matrix

Q=(K"+Gp)'G¢ (2)
with the inherited block partition
Q=1{Qi}, Qi; = (K;' +Gi) 7 'Gy;

Denoting by D the Nyquist contour, two such sufficient conditions are

p({Qij(s)}) <1, VseD (3)
prr({llQi(9)}) <1, VseD ()

where p(-) is the spectral radius of a matrix on the complex field, ppr () is the
Perron-Frobenius root of a real nonnegative matrix, and || - || is any induced norm

on the space of complex matrices of given dimensions (for a proof of (3) and (4), see
(Ohta et al., 1986) and (Yeung and Bryant, 1992), respectively).

Motivated by these results, we investigate under what conditions a given VS
controller that achieves asymptotic tracking of a given class of reference output tra-
jectories y,(t) with a specified error dynamics and bounded input disturbances v(t)
for the nominal plant, maintains the same characteristics when connected to the real
plant.

To make this idea more precise, consider a controllable realization &; of the
nominal subsystem Gy,

Si . { j_ci = Aixi + Bz (ui + Vi), X,‘(O) = X(i] (5)
Y = CiXi

with initial conditions satisfying

%2 [| o < pi € Ry (6)

For further convenience, realization S; is chosen in a column-wise controllable canon-
ical form, namely

ll

A; = diag (Agl),...,AE"“)), B; = diag (bgl),...,bgmﬁ)
(7)

ci=[cl,...,c™)]
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where (Agj ),bgj ),ng )) are minimal realizations (of order ngj ) in controllable
canonical-form of the j-th column of G;. We assume in this section that the states
x; € R are accessible to measurements (this hypothesis to be removed in Section 4).
Input disturbances v; represent noise on the actuators and possibly nonlinearities

satisfying the so-called matching conditions.
Denoting by Lg° the space of functions f: R — R? such that

[£®lo, = max sup|fi(®)] < 00

let the i-th disturbance vector v; € L7, with

i@, < NieRy (8)

and let the class of desired trajectories to be followed be described by the n;-th order

system R;,

Ri . { rz = Ariri + Brivri: ri(o) = I‘? (9)
yri = Cpir;

where (A, B,;,Cy;) are in column-wise controllable canonical form (hence B,; =
B;), A,; is stable, C,; = C;, and v,; € Lg;, with

[vri®)|, < VieRs and [e?]| ., < pri € Ry (10)

Hence, restrictions on reference trajectories y,; amount to boundedness and some
mild regularity conditions in case &; is minimum-phase. If S; has some zero in the
closed right half-plane (CRHP), reference trajectories are generated through a system
with the same CRHP zeroes. Although more general tracking schemes can be devised
(see e.g. (Kwatny and Kalnitsky, 1978)), the one considered above is sufficiently gen-
eral for the purposes of this paper, while it lends itself to straightforward application
of the theory of sliding modes (Utkin, 1977), which is briefly reviewed as follows.

The dynamics of tracking error between reference states r; and states of the
diagonal subsystem x; (and hence, the dynamics of output tracking errors) can be
chosen by enforcing a sliding motion on a linear manifold ¥; = {x; € R* | o; = 0},
where o; € R™ is defined as

g; = Fi (Xz' — l‘i) , 1‘1 (S R™: xmi (11)

A convenient choice for the realization above is T'; = diag(l"gl),...,l‘gm")),

I‘gj) € R such that I‘gj)bgj) = 1 (hence I';B; = I,,,;). Pole assignment or
LQ techniques can be employed for choosing the remaining nEJ )
in T, as described e.g. by Dorling and Zinober (1986).

A well-known technique to study the behaviour of the system during the sliding
motion is the method of the equivalent control. The equivalent control is the input
signal u;,, that solves o; = 0. We have

— 1 free parameters

u,,, = —I‘z(Azxz +B,v; — l‘z) (12)
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Therefore, by means of the equivalent control and noting that (I — B;I';)A,; =
(I-B;T;)A;, the dynamics of the state error x; —r; for the system restricted to the
sliding surface ¥; can be expressed as

}'ci — f‘i = (I - B,’I‘,‘)(Aixi — Am'ri ot B”'Vm;) = (I - B,I‘,;)A,;(Xi - I‘i) (13)

where the column-wise controllable canonical form of the realizations of §; and R;
is exploited. Note that only the coefficients of T'; actually appear in the sliding
dynamics. Thus, the sliding motion on ¥; yields the convergence of the states x; to
the states r; with the dynamics imposed by the choice of T';.

Owing to a proper choice of T';, outputs ¥; during sliding asymptotically track
reference ouputs y,; under the equivalent control (12). However, since the distur-
bance is unknown, the equivalent control cannot be synthesized directly. Switching
control laws are commonly designed as

w; = —T;(Ax; — 1;) — ki sign(o;) (14)

One says that a stable sliding regime exists on %; if all system trajectories originating

in a neighborhood of ¥; point towards ;, i.e. agj )dgj) < 0 for all components afj )

of ;. Such an existence condition is met globally on the state space if and only if

ki > [lvi(®)] A (15)

Furthermore, by choosing l
ki=N;+¢ (16)

where €; > 0, it is guaranteed that the sliding manifold is reached in finite time, i.e.
that o; =0 for all ¢t > ”U"L(O)H/Ez

In this framework, we define the tracking performance of a VSC as

Definition 1. A VSC law is said to achieve performance Pr on a system G if it
ensures the stability of a sliding regime, during which outputs of G asymptotically
track reference trajectories (9), (10), with error dynamics determined by I';, in spite
of disturbances as in (8).

The problem this paper is concerned with is therefore the following:

Problem 1. Under what conditions on a system G = Gp+ G¢ will a decentralized
VSC law (14) exist, which achieves Pr on G?

3. Time-Domain Dominance Conditions

The i-th block of outputs of the plant G, y;, can be expressed in terms of the
disturbed outputs of the nominal subsystem G; in (5), as

Yi=¥ite; (17)
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with

Y= Z Pij

j=1,N

and

Xij = Aixij + Bij(u; +vj), x;5(0) = x5
¢ = Cijxyj

where N2 MIMO systems (Aij,B;;,C;j) have been introduced, each providing a

minimal realization of order n;; of the transfer matrix G;, with initial conditions

satisfying

%% [l oo < pis € Ry (18)

Consider further N m;-input, m;-output systems Z; of order n;, with parameters
and initial conditions equal to those of the nominal realizations in (5), and excited by
an input signal ,(¢),

(19)

z. . z; = A;z; +Bi’l/)i, Zi(O) = X?
Y wi = C

We are interested in conditions for 1), under which outputs w; match the actual
plant outputs y;. In order to investigate this point, we need to establish a preliminary
result regarding the properness of rational matrices.

Given a proper rational function G(s), let §(G(s)) denote its relative degree. If
M(s) is a p x ¢ proper rational matrix whose (4, j) element is M;;(s), we define the
relative degree of the i-th row of M(s), dg,(M(s)), as the smallest relative degree in
all entries of the i-th row of M(s)

SR,- (M(S)) = l’IblIl 5(MZJ (S))

A nonsingular p x p proper rational matrix M(s) is called row reduced with respect
to the relative degree if

5(detM(s)) = 3 g, (M(s)) (20)

Lemma 1. Let A(s) and B(s) be p x p and p x ¢ proper rational matrices, re-
spectively, and, moreover, let A(s) be row reduced with respect to the relative degree.
Then the rational matriz A~'(s)B(s) has p poles at infinity if and only if

Or; (A(s)) < dr, (B(s)) + for i=1,2,...,p

where an equality holds for at least one i._In particular, A~'(s)B(s) is proper
(strictly proper) if and only if dr,(A(s)) < 6r,(B(s)) (Br,(A(s)) < Or; (B(s))) for
i=1,2,...,p.
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Proof. The proof of this lemma, appearing in (Balluchi, 1996), is based on the theory
of polynomial matrix reduction (Wolovich, 1974), and is not reported here because of
space limitations. ]

We now turn back to the problem of finding an input disturbance 1, under
which outputs w; match y; in (17).

Lemma 2. Assume that, for all 1 and j, blocks G; of Gp and Gi; of G¢ satisfy
the following:

H1 all CRHP transmission zeros of G; cancel in all products G 'Gy;;
H2 all CRHP poles of Gy cancel in all products G 'Gyj;

H3 G;(s) is row reduced with respect to the relative degree;

H4 SRk(Gij(S)) ZSRk(Gi(S)) for E=1,2,...,m;.

Under these conditions, there ezist distributions ;(t) = u;(t)+v;i(t)+¢;(t) such that
w;i(t) = yi(t),Vt > 0. Distributions {; may contain delta junctions and derivatives
of delta functions in the origin up to the order maxg=1m; Or,(Gi(s)) —1. If the plant
1s initially relozed and if u € LYY and v € LY, then ¢ € LY.

As a useful tool in the proof of this lemma, we recall the definition of the set
of stable undelayed impulse response matrices A™*™ (Vidyasagar, 1978), whose ele-
ments -are matrices of distributions f: R — R™*" of the form

' 1o : ift <0
ft) = { FS(t) +£,() ift>0

where F is an m X n constant matrix, 4(t) is the unit delta distribution and f,(t)

is a matrix of measurable functions. The norm || - ||4 of a matrix of distributions
f(t) € A™*" is defined by

o=z, 3 (17l + [ 1fe0]a2)
Jj=1,n

Notice that this norm corresponds to the L,-induced norm of the convolution oper-
ator corresponding to distribution matrices: if v(t) is an n-vector signal in Lo, we
have

lE@ *v©)l, < [EO v Ol

Proof of Lemma 2. Let g; (respectively, g;;) denote the impulse response matrix of
G; (Gyj). Equating y; and w;, we have

gixCi= D &+ (uj+vy)+Cyj exp (Ayt)x) (21)
J=1,N '

Let g; be defined such that

gi * g = 6(t)lm,- Xy
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and consider the system whose transfer function is the m; x mj-matrix G; Gij =
G, 1GZ] By Lemma 1, hypotheses H3 and H4 are necessary and sufficient condltlons
for G; iGi;j to be a proper rational matrix which, under conditions H1 and H2, is
stable. Hence g; * g;; belongs to A™*™i. From (21) we have

Ci= ) Bixgyx(uj+vy)+(] (22)
j=1,N

where C? stands for transient terms,

F=8ix| Y Ciexp (Ayt)xy (23)
' j=1,N

For arbitrary initial conditions of the plant, C? may contain delta functions and
derivatives in the origin. Indeed, applying Lemma 1, the number p; of poles at
infinity in the expression G;*(s) - Cy;(sI — Aj;)™*xY; is such that

Wi > SRk (GI(S)) - SR;C (Cij(SI - Aij)“lx?j) for k=1,2,...,m

where an equality holds for at least one k. In particular, since for any k there exist
x%. such that

5r. (Coi (T = A) ) = 3(IC Ik (1 - Ay) x5y ) = 1

where [C;;]x denotes the k-th row of C;;, the maximum order of the derivatives of
delta functions is

pi = max. O, (Gi(s)) — 1

For relaxed initial conditions, the following upper bound holds:

16Ol € D0 1 @ixgi) * (w; +vy)],

j=1,N

< X gl (i@l + v ©),) (24)

j=1,N

Under the hypotheses of Lemma 2, define P € RY*Y as
P={P;}, Pj=|8&i*gil, (25)
A sufficient condition solving Problem 1 stated in Section 2 is given in the following:

Theorem 1. (Sufficient condition for DVSC) Given the MIMO system G = Gp +
Gc satisfying the hypotheses of Lemma 2, consider a decentralized VSC law as in
(14) with k; = N; +¢;. If

ppr(P) <1 (26)

with P as in (25), there exist values of €; > 0 such as to guarantee performance Pr.
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Proof. Applying the decentralized control law (14) to the actual plant, we have

{ z; = Az +Bi(u; +vi+¢;), 2z(0)=x?

w; = C;z;
with
w; = u} — k; sign(Ti(z; — 13)) (27)
where
uj = —T;(Az; — 1) (28)

The existence of a stable sliding regime on X; for t > ¢, is guaranteed if and only if
ki > ||vit +ts) + Gt +15)]| (29)

The conditions on G and Gp under investigation are derived by studing the above
inequality in terms of parameters k;. Obviously, N; > ||lvi(t + t5)||. From (22) and
(24) we have

it + )l < D2 Pi(flus e+ )]t st + )]l ) + 163 + )]
j=1,N

According to the control law defined in (27), an upper bound for ||Ju;(t+t,)|] is
given by

i (¢ + )] oo < [t + o) oo + R

The first term on the right-hand side corresponds to a bound on the evolution of (28)
after the onset time of the sliding mode. Since parameters in I'; have been chosen
so as to have stable tracking dynamics, states will evolve on the hyperplane 3J;
asymptotically converging to the origin. A bound U; > ||uj(t +1,)|| can be therefore
established in terms of the values of states at time ¢;, which in turn are bounded due
to finiteness of t;.

From (23) we also have

“C?(t + ts)“oo = gi * Z Cij exp (Aij(t + ts))ng

j=1,N o

= Z Cij exp (A,,J (t + ts))ﬁijxq,qj
j=1,N

o0

where (A;;,B;;,C;;) are minimal realizations of the causal part of G71(5)Cij(sI —
A;;)7t. Hence, in the hypotheses of Lemma 2 and for any xgj (18), an upper bound
for [|¢9(t +1t,5)|| is given by

20 =Y [Cill,, alBe)|Bisl, i (30)
j=1,N
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Recapitulating, bounds on the peak norm of the vector of equivalent input dis-
turbances ¢;(-) after time t; are provided as

Gt +t)oo € D Piy(Us+kj + Ny) + 27 (31)
Jj=1,N

Using vector notation
T
2= [[6 ¢+t [CnE+ 8] ]  w=[U,., UNIT

T
k=[ky,....kn]", n=[Ny,...,Ny", 2°=[20,...,2%]
inequalities (31) are rewritten as
z <Pk +u+n)+2° (32)

(inequality signs in vectorial relations are to be interpreted elementwise). Accordingly,
condition (29) is verified provided that

k>Pk+(I+Pn+Pu+z’>n+z (33)

Introducing € = [el,...,eN]T, the VSC law (14) with k = n + € guarantees the
existence of a sliding regime yielding performance Pr on G, provided that

€>Pe+P(u+2n)+2° (34)

From the theory of positive matrices (Gantmacher, 1977), a nonnegative solution
€ to this equation exists for nonnegative P, n, u, and z°, if and only if the Perron-
Frobenius root of P is less than 1. [ |

Remark 1. The proof of Theorem 1 directly offers a formula for the DVS controller
parameter k, i.e.

k=n+(I-P) ' 2Pn+Pu+z"+8), B>0 (35)

The set of all controller amplitude vectors k accomplishing decentralization is there-
fore the cone C C RY with vertex in n+ (I—-P)~'(2Pn+ Pu+2°) and positively
spanned by the columns of (I —P)~!,

Remark 2. Notice that condition (26) is related to the quasi-block diagonal domi-
nance condition (4), in the limit case of interest dominance is sought for high gains
K;; that enforce arbitrary small tracking errors on minimum-phase nominal systems.
In such a case, in fact, from (2) one gets

lim Q(s) = Q(s) = Gp'(s)Ge(s)

1Kl —o0

so conditions (4) and (26) can be rewritten as

PPF ({”Qij(S)”}) <1l VseD (36)
PPF ({Hﬁlia‘(t)”A}) <1 (37)

respectively, where §;;(t) denotes the impulse response matrix of Qij (s).
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Remark 3. Conditions equivalent to (26) can be obtained from the theory of non-
negative and M-matrices as:

e there exists an induced norm || - || on R¥X¥ such that ||P]| < 1;
o W=I1I-P isan M-matrix,

Furthermore, easy-to-check sufficient conditions for (26) to be met are derived from
Gershgorin’s theorem as

Pl <t Pl <1 (38)

i.e. in terms of conventional row or column dominance. Note also that, according to
the theory of generalized diagonal dominance (Araki and Nwokah, 197 5), conditions in
Theorem 1 guarantee the existence of an input-output scaling matrix S with positive
elements such that S™! PS satisfies one of (38).

4. Synthesis of a Robust Decentralized VSC

The results of the previous section indicate general conditions for deciding whether
a decentralized control can be attempted on a given plant model. In this section, we
are interested in demonstrating how a practical synthesis of a VS controller can also
be derived from the presented techniques. The first obstacle to the straightforward
application of a controller of type (27) to a given plant is that being the controller
based on a particular realization (19) of the nominal part of the plant, it is necessary to
set up observers for systems (19) with suitable dynamics to reject input disturbances
¢;- Nonlinear, variable structure observers have been proposed in the literature that
can be applied in principle to this problem (Slotine et al., 1987; Walkott and Zak,
1988). An alternative approach to this problem is developed in this section. Another
concern in the practical design of a VS controller is to discuss the attractivity of the
sliding manifolds in the large (Section 3 was only concerned with existence conditions
for the sliding regime, i.e., with local stability of the sliding manifolds). Also this
concern will be addressed in what follows.

Consider a MIMO system with nominal description given by the block-diagonal
matrix Gp and structured interconnections G¢. Assume that the matrix Gp =
diag(G;) satisfies a stricter version of hypotheses H1 of Lemma 2:

H1' all G; are minimum phase, '
as well as hypotheses H3 and the further hypothesis

H5 each row of all G;(s) has relative degree one.

Note that hypotheses H3 and H5 are necessary and sufficient conditions for the
product C;B; to be nonsingular.

Assume also that the interconnections G¢ satisfies with respect to nominal ma-
trix Gp the sufficient condition for decentralized control (26) given in Theorem 1.
Let the desired output trajectories to be followed be described by the outputs of sys-
tems R; in (9). The proposed structure of the i-th controller is based on an auxiliary
system M; consisting of a column-wise controllable canonical-form realization of G,
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Fig. 1. The i-th channel of the proposed control scheme. The dashed box contains the
controller. The outer part of the scheme represents the i-th row of the actual plant,
with the input disturbance (; replacing the effects on the output y; of unmodelled
dynamics Gi; and off-diagonal blocks Gi;.

and is reported in detail in the dashed box of Fig. 1. Inputs, states, and outputs of
the auxiliary system are 1;, Z;, and Ww;, respectively, and its initial conditions are
assumed to be zero;
M { ij = Az?l + B;1,, iz(O) =0 (39)
W; = Cizi
The control inputs to the plant u; consist of the sum of two signals, @; and 1,
synthesized by two switching controllers (see Fig. 1). Within a specified finite time
to, control ; enforces a sliding regime that produces asymptotic tracking of the
auxiliary system’s outputs w; on the reference signals y,;, while control #1; enforces
a different sliding condition, which yields y; = w;, for all ¢ > .
The design of the control input 1; is obtained by applying the VSC techniques
of Section 2. Similarly to (11), introduce a linear manifold ¥; = {z; € R™ | o; = 0},
where o; =T'j(Z; — r;), and T'; € R™*" ig such that I';B; = IL,,. The control law

a; = —I‘i(Aiﬁi - I'z) - ’??i Sign(ai) (40)
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with

= ], 2 (a1

where p,; is as in (10), guarantees that a sliding regime on X; is maintained for
all t > tg. During such a sliding motion auxiliary states 2; asymptotically track
reference states r;, i.e. outputs w; converge to reference outputs y,;, with an error
dynamics fixed by T';.

To design the second control input i;, consider the system Z; in (19), whose
outputs w; coincide with the i-th output channel y; of the plant in the hypotheses
of Lemma 2. The goal of i; is to counteract noise v; and interconnection effects
¢;, so as to have w;(t) effectively tracking w;(t), hence y,;(t). Denoting the state
error between the plant Z; and the auxiliary system M; by e; = z; — 2;, we have
the error dynamics

e; = Aje; + Bi(ﬁi +v; + Cz’)7 ei(O) = zi(O) = X? (42)

Since under assumptions H3 and H5 matrix C;B; is invertible, let us consider the
sliding manifold S; = {e; € R™ | ¢; = 0} with

si=Cie;

The closed loop dynamics obtained by enforcing a sliding motion on the surface S;
have poles coincident with the transmission zeros of G;(s). This can be easily verified

by noting that
sI— Ai —Bi
C; 0

Hence, under assumptions H1' these dynamics are stable. Futhermore, consider the
control law

det {SI - (Az - Bz(Cle)“ICZAz)} = g™ det {CZBZ} det {

ﬁi(t) = —(CiBi)—l HC‘BZ“ooE’ sign(ci) (43)
with
R [(CBY)]| | Cihiei@)]| o, + 30 o + 1G] + (44)

and

e = MCillee llec@ly, _ IGille o
I S O O

(45)

with p; as in (6). Assuming (44) to hold, all sliding surfaces S; are reached within
time to as well, and in the ensuing sliding regime, the plant outputs equal the auxiliary
system’s, i.e. y;(t) = w; for all ¢ > t,.

Due to interconnections among nominal subsystems G;, the evolutions of e;(¢)
and ¢;(t) on the right-hand side of inequality (44) depend on all k;, chosen as in (41),
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and on all ]_Cj for j =1,...,N. Then the problem of the synthesis of a decentralized
VSC for the given plant amounts to finding parameters

k= (k... kn]"

which solve the set of the N inequalities (44) for 1 =1,..., N.

The discussion of the right-hand side terms of (44) is subdivided in two successive
time intervals, namely the ‘reaching phase’, t € [0,%], and the ‘sliding regimes’,
t € (o, +00). Note that conditions (41) and (44) ensure that sliding motions along
manifolds ¥; and S;, respectively, are established before time ty,. However, the
instants at which the different manifolds are reached are not specified and depend on
the initial conditions. To study inequality (44), an upper bound must be provided for
the terms (;(t) and C;A;e;(t) both for t € [0,%] and for t € (¢, 4+00).

The detailed computations for these two cases are reported in the Appendix.
Results for the case t € [0,%] are summarized by the inequality

k > (P+R(I+P))k+(I+R)(P(a+k)+2°)+(I+R)(I+P)n+e’+&  (46)

where R can be made arbitrarily small (at the cost of larger control inputs) by a
suitable choice of ¢9. On the other hand, for ¢ € (tp,00), we have

k>Pk+P@ +k)+2°+(I+P)n+e (47)

From the results of the previous section, therefore, since the condition (26) holds by
assumption, positive solutions k satisfying the above inequalities can be found.

In conclusion, a set of gains k ensuring convergence to the sliding manifolds S;
and sliding motions along them is given by the intersection of the solutions of (46)
and (47). To find a set of possible solutions note that any k satisfying

k>Pk+P®@ +k)+2°+ (I+P)n+e+RI+Pk (48)
also satisfies inequality (46). Then any k satisfying
k > (P+RI+P))k+I+R)(P(a+k)+z°)
+(I+R)(I+Pn+e’ +e+Pii' +e

satisfies both (46) and (47). Hence, it follows that the time-domain dominance con-
dition (26) is a sufficient condition for the synthesis of a decentralized VSC scheme
such as that described in this section.

5. Simulation Results

In this section, we present simulation results to illustrate how various degrees of decen-
tralization can be imposed on a controller, without compromising performance, at the
expenses of higher control energy. A 4 x 4 system with two possible decompositions
(four and two blocks resp.) is considered for that purpose.
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It is to be noted that direct application of the DVSC control described in the
preceding sections to plants would lead to the well-known phenomenon of ‘chattering
control’, which is almost ubiquitous in sliding-mode control schemes. Chattering may
be a serious disadvantage of variable structure controllers, because of the high activity
imposed on the actuators and of possible excitation of unmodelled dynamics. Elimi-
nation of chattering has been widely studied in the VSC literature (Slotine and Sastry,
1983). One effective technique for chattering suppression is the so-called ‘boundary
layer’ control, roughly consisting in replacing the switching part of the controls with
a steep saturation function. Such a replacement basically affects the asymptotic sta-
bility of the resulting design, but still guarantees uniform ultimate boundedness of
trajectories (bounds being arbitrarily reduced by increasing the saturation function
gain), which is a satisfactory goal under any practical regard. In the simulations
reported in this section, we apply a standard boundary layer technique to eliminate
chattering from inputs to the plant. Degradation of expected tracking performance
of our proposed control technique is negligible.

5.1. 4 X 4 System with 1 x 1 Nominal Blocks

Consider the plant described by the transfer function matrix

(s+.4) + .02(s+.3) 35(s+.5) _ | .02(s+.1)
(s—.05)(s+.2) (s+.5)(s+.7) (s+.2)(s+.4) (s+-9)(s+1.1)
.35(s+.1) + .02(s+.1) (s+.2) + .02(s+.6)
(s+.3)(s+.5) (s+.9)(s+1.1) (s—.025)(s+.7) (s+.4)(s+1)
G(s) =
.02(s+.4) .02(s+.2)
(s+.6)(s+.8) (5+.3)(s+.5)
.02(s+.3) .02(s4.4)
(s+.9)(s+1.2) (s+.6)(s+.8)
(49)
02(s+.4) .02(s+.2)
(s+.6)(s+.8) (5+.3)(s+.5)
.02(s+.8 .02(s+.4
(s+.4)(s+1.2) (s+.6)(s+.8)
(s+.1) + .02(s+.2) .35(s+.2) + .02(s+.1)
(s—.025)(s+.2) (s+.5)(s+.7) (s+.4)(s+1.2) (s+.3)(s+1.1)
.35(s+.4) + .02(s+.1) (s+.5) + .02(s+.3)
(s+.3)(s+.5) (s+.3)(s+1.1) (s—.05)(s+.7) (s+.4)(s+.8)
Assume input disturbances to be the sinusoidal signals
v = 5sin(.07¢), vo = 5sin(.02t)
(50)

v3 = 5sin(.10t), v4 = 5sin(.05¢t)

Consider first a four-block decomposition G = G D‘+ G¢, with

s (s +.4) (s+.2) (s +.1) (s +.5)
Gp = diag ((s Z.05)(s +.2)" (5 —.025)(s +.7)’ (s —.025)(s +-2) (5 —.05)(s +.7))
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The corresponding matrix P is

0.0437 0.7953 0.0433 0.0437
0.8000 0.0427 0.0430 0.0416
0.0422 0.0418 0.0424 0.8064
0.0413 0.0413 0.8060 0.0416

P =

Since ppr(P) = 0.92916, a decentralized VSC of type (40) and (43) can be applied.
Let the output trajectories to be tracked be generated for each channel by filtering
the sinusoidal inputs

vy = 50sin{.10¢ — 0.92), vrg = 20sin(.15¢ + 1.67) (51)
51
vpg = 30sin{.18¢ — 1.43), vrg = 60sin(.08t + 0.56)

through a second-order filter with poles at —0.5 and —1 and initial conditions
bounded by pr; = 1073. Choose sliding manifolds £; so as to obtain a tracking
dynamics with pole at -2, ie. T'; =[2, 1].

Assuming a reaching time ty equal to 6 x 10~%, by means of (41), we set k =
(33.3, 33.3, 33.3, 33.3]7.

Let the initial conditions of systems Gp and G¢ be bounded by p; = 2.5 x
1073, p2 = p3 = pa =5 x 1073, and p;; = 1072 for i,5 = 1,4.

By (A10) one gets R = diag[1.50, 2.85, 0.45, 0.90] x 107°, and, since ppr(P +
R(I+P)) = 0.92919, positive solutions k for eqn. (46) exist. By (30) and (50) 2z° =
[10~%, 1.50, 2 x 1023, 2.15x 102 and n =[5, 5, 5, 5]7. Applying (A2), pi(to) =
4 x 1073, for i = 1,...,4; and, according to (A7) and (A9), & = [50, 20, 30, 60]T
and e® = [1.25, 4.75, 0.75, 1.50]T x 10~3.

Further, by (45), the reaching of the sliding manifolds S; within time #; is
guaranteed if € = [41.6, 83.3, 83.3, 83.3]7. The solutions k to (46) taken with the
equality sign evaluate to

k = [2038, 2077, 2225, 2209]"

It is easy to verify that such a value for k also satisfies (47). Indeed, by (B2),
W' = [107, 40.7, 64.1, 124]T, by (A8) pi(to) = 0.250, pa(te) = 0.255, pa(ty) =
0.273, pa(tp) = 0.273, and, by (B3), e = [0.087, 0.145, 0.022, 0.061)7. The outputs
of the plant and of the auxiliary systems are compared with the desired trajectories
in Fig. 2. Input signals for the four channels are reported in Fig. 3.

5.2. 4 X 4 System with 2 X 2 Nominal Blocks

Finally, consider 2 x 2 decomposition of the matrix (49) obtained by choosing

(s+.4) .35(s+.5) (s+.1) 35(s+.2)
Gp = diag ([ (6=05)(s+2)  (s+:2)(s+9) ] | TROmGEY) GRAGTLE) D

.35(s+.1) (s+.2) .35(s+.4) (s+.5)
(s+.3)(s+.5) (s—.025)(s+.7) (s+.3)(s+.5) (s—.05)(s+.7)
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Fig. 2. Simulations for the control based on a 4-by-4 decomposition described in Section 5.1.
Desired trajectories (dashed), auxiliary system outputs (dash-dot) and plant outputs
(solid) during the reaching phase, t € [0,t0] (left), and during sliding motion, ¢t €
(to,0) (right).



Decentralized variable structure tracking for systems with ... 283
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Fig. 3. Control signals (u1(t) solid, u2(t) dashed, us(t) dash-dot and wu4(t) dotted) during
the reaching phase (on the left) and during sliding motion (on the right) for the case
of Section 5.1.

Reference trajectories are generated by filtering the signals (51) through a 4-th order
filter with poles at —.5,—.75,—1 and —1.5 and initial conditions bounded by p,; =
10~*. In this case, the coupling among the nominal subsystems in Gp is much
weaker than in the previous one. In fact,

p_ | 00778 0.0704
| 0.0654 0.0643

and ppr(P) = 0.1393 is lower. Each row vector of the 2x2 block-diagonal matrix T';
is chosen so as to provide tracking dynamics during the motion on the sliding manifolds
¥; with poles at —2, —2.2 and —3. Assuming the constraint on the reaching time as in
the previous case, namely #o = 6x10~5, amplitudes k have been set as k = [64, 64]T.
Matrix R evaluates to R = diag[4.94, 5.38 |x107° and ppr(P+R(I+P)) = 0.1393.

Let the initial conditions of systems Gp and G¢ be bounded by p; = py = 1073
and p11 = p12 = pa2 = 1073, ps; = 7 x 107%. By the same procedure one gets z° =
[0.69, 3.22]T, n =[5, 5|7, and since pi(to) = f2(to) = 4.6 x 1073, according to (A7)
and (A9), @t = [274, 283]7 and €° = [6.6, 7.2]7 x 1073. Setting & = [44.5, 64.1]7,
in order to ensure reaching the manifolds S; in the specified time ¢y, the solution
to (46) with the equality sign is

k = [120, 134]"

Furthermore, since -t = [538, 559]7, 5y (to) = 2.28 x 1072, fa(to) = 2.36 x 10~2 and
e = [1.38, 3.11]%, one can verify that (47) is also satisfied.

Note that the weaker interactions among interconnected subsystems allow the
use of much lower control efforts. The outputs of the plant and those of the auxiliary
systems are compared with the desired trajectories in Fig. 4 while the control inputs
are reported in Fig. 5. The behaviour of the controlled output system is comparable
with that obtained with the stricter, 1 x 1 decentralization scheme.
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Fig. 4. Simulations for the control based on a 2-by-2 decomposition described in Section 5.2.
Desired trajectories (dashed), auxiliary system outputs (dash-dot) and plant outputs
(solid) during the reaching phase, t € [0,%0] (left), and during sliding motion, ¢ €
(to,00) (right).
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Fig. 5. Control signals (u1(t) solid, u2(¢) dashed, us(t) dash-dot and u4(t) dotted) during
the reaching phase (on the left) and during sliding motion (on the right) for the
control described in Section 5.2.

6. Conclusions

We considered under what conditions a variable structure controller designed for
asymptotic output tracking on a set of nominal, decoupled MIMO subsystems, retains
its performance when applied to a real plant with modelling errors and interactions
among subsystems. A sufficient condition to obtain such a property has been derived,
which was shown to be a time-domain analogous to well-known frequency-domain
dominance conditions employed in classical decentralized stabilization theory a la
Rosenbrock. As a final remark, we stress that, although we made use of the theory
of sliding modes and of tools of variable structure control design, the time-domain
dominance condition of Theorem 1 turns out to be independent of this choice, as
well as of the specifications of tracking performance. Further investigations will be
devoted to understand to what extent the results found in this paper can be extended
to different styles of controller design.
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Appendices

A. Case t € [0, t(]

By (24), under controls (40),(43) ¢;(t) is bounded for ¢ € [0,ty] as follows:

sup [|¢;(M)|| o < D Py(U; +k; + ki + Nj) + 27 (A1)
TG[O,to] j=1,N
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where P;; is defined in (25), U; stand for upper bounds on terms ||T';(A;2;(r) —
;(1))|| for 7 € [0,%5], N; is asin (8) and Z) is given by (30).

Provided that k; is chosen according to (41), at some time t; € [0,%,] manifold
¥; is reached and a sliding motion satlsfymg o;j=T; i(2; —rj) = 0 is established for
t >1;. At t = {; the distance ||2;(£;) —r;(£;)|] between the states of the auxiliary
and reference system is bounded by

pi(E5) = o) (I-B3T;) Ag) prj+| exp (I-B,T3)Ajt)Bih(Ei—t)|| J&; (A2)

where o ;) (M) = supg<i<, || €xp(Mt)||co, prj is asin (10), and h(t) is the Heaviside
function. Efficient techniques for providing such bounds of matrix exponentials can
be found e.g. in (Kagstrom, 1977; Van Loan, 1977). Consider the k-th channel of the
j-th block of the nominal system (see (7)). Introduce the transformed state variables

ﬁﬁk) = ’i‘;k) (i;k) - rg-k)) , with 'i‘g«k) e kY xn” given by
I 0
(,) (k) -1 (A3

pithk) ON
Partitioning the transformed state n(k) as ﬁj(k) |:1:)J(2,k):| with # A(l K e rY
;i

hi)

ﬁj(-z’k) € R, the sliding regime condition o; =T';(2; —r;) = 0, is rewritten as

A*P =0 for k=1,...,m;

while the sliding mode evolution in the (n; —m;) reduced state space is described
by

A9 () = exp (Aj(t - t‘j))'iy (zj(t“j) - rj(t‘,-)) for k=1,...,m; (Ad)
where A; = diag(Agl), e ,Agm" )) with Agk) the upper-left (n; —1) x (n; —1)-block
in Tgk)Aﬁk)(Tﬁk))‘l, and T; = diag(T§l),...,T§m’)).

By means of (9),

T;(A;2;(t) — #;(t)) = T;A;T7'%; + T;(A; — Ayy) exp(Ap;t)r?

+ (Tj(Aj — Arj) exp(Ay1)Bry — 8(1)I) * vy (A5)

with 7; = [n(l) ...,ﬁj(»m" )T, Since A; is Hurwitz (this results from the choice of

stable tracklng dynamics in T';), from (A5) and (A4)

(s [T (85250 = £50) oo < IT5ATTT | s (BT B

+ ”rj(Aj . AT‘j)Hooa(fj)(Arj)prj
+[[(T5(A; = Ary) exp (Arjt)Bry — 5(1))
x h(t; = )| 43 (A6)
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Further, since [2(E)~1; (&)l < |12;(to) —r; (to)ll < 5 (to) with p;(to) given by (A2),
and for any 71 > 73 it holds a(r,)(M) > a(r,)(M), upper bounds U; in (A1) can be
obtained from (A6) as follows:

0; = ||rjA,lrir.—l1|ma(to><Aj>||Tijﬁj (to) + T3 (A5 = Ars)|| o (to) (Ary)prs
+ “ A ATJ) €xXp (Arjt) 6(t)1)h(t0 - t)”AVJ (A7)

with T; asin (A3) and V; as in (10).

By similar arguments, the evolution of e;(t) for ¢t € [0,%o], according to (42)
under control (43), is bounded as follows:

a(go)(Aito)pi + H exp(A;7)B;h(tg — T)“A

sup |les(7)|| ., < Ai(to)
TE[O,tu]

]

 (ki+ Ni+ [|G(Dh(to — 7)) (A8)

with p; asin (6). Hence, introducing

E} = |CB| J|ICiAi] aw)(Aipi (A9)
Ri = [|CBi||. | CiAs| . | exp(Ast)Bihto — )|, (A10)

from (A8) and (Al), we get

sup [[C:Bi|| || Cihiei(r)],
TE[0,t0]

<E°+R(k F N+ D0 Pyl + by ks + Ny +29) (A1)
=1,N

Note that, since ty is a design parameter, terms E? and R; can be made arbitrarily
small at the expenses of the control effort.

Let R be diag(R;) and let k, 2° €°, & and & stand for the N-dimensional
vectors collecting terms k; (as in (41)), Z? (as in (30)), E? (as in (A9)), U; (as
in (A7)) and & (as in (45)), respectively. By (A11) and (A1), attractivity conditions
(44) for t € [0,to] are met by any k solving

k>(P+RI+P)k+(I+R)(Pa+k) +2°)+(I+R)I+P)n+e’+e

Hence, since by hypothesis matrix P satisfies the dominance condition (26) and
matrix R can be made arbitrarily small by a suitable choice of to, it is always
possible to obtain ppr(P + R(P +1I)) < 1 so that the 1nequahty can be solvable for
any positive k.
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B. Case t € (tg,00)

Also in this case, an upper bound for ¢;(¢) for ¢ >ty can be given as

wp (167 = e+t < Y Py +ki+ki+N)+2Z] (B1)
T€(to,00 j=1,N

where N; is asin (8), Z{ is as in (30), and upper bounds [73’ on terms ||T;(A;Z;(t+
to) — (¢t +to))|| are obtained as in (A7) with a(-) evaluated on the infinite horizon,
ie.
Ti = IT5A 17| o alAg) || Ty 85 (o) + [T5(As — Ary)]| L0(Ari)prs
+||T5(A; — Arj) exp (Apt)Bry — (DI ,V; (B2)

Furthermore, introducing the state variables

_(1,k)

7 -

ﬁik) = [ _1(2 ) } = Tgk)ei
7

(6 _y

with n(l *) ¢ g ‘52”“’ € R, where matrix Tgk) is defined similarly to (A3):

the motion along the sliding surface S; can be described by
a1t~ to) = exp (Ault — to))n{" (t0)

with T;A;T;! = [é"l gi:] and T; = diag(T{", . e

Under hypothesis H1', this sliding motion is stable. Therefore

OB [Cier]
TE(to,00
-1 - = =1 =
< Bi = |[CiBi|, [|C: AT ™| (AT T| o Pi(t0)  (BI)

with p;(to) as in (A8). Denoting by @' and e the N-dimensional vectors of entries
U/ (asin (B2)) and E; (as in (B3)), respectively, conditions (44) are met for ¢ >t
by any k satisfying

k>Pk+P(i +k)+2°+(I+P)n+e
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