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ROBUST STABILIZATION FOR UNCERTAIN
TIME-VARYING DELAY CONSTRAINED SYSTEMS
WITH DELAY-DEPENDENCE

QiNg-Long HANT*, Driss MEHDI*

This paper is concerned with the problem of robust stabilization of linear time-
varying delay systems containing saturating actuators in the presence of nonlin-
ear parametric perturbations. Based on Razumikhin’s approach to the stability
of functional differential equations, we determine upper bounds on the time-
varying delay such that the uncertain system under consideration is robustly
globally or locally asymptotically stabilizable via memoryless state feedback
control laws. The obtained bounds are given in terms of solutions to Lyapunov
equations. Two numerical examples are included to illustrate the results.

Keywords: time-delay systems, stabilization, robustness, nonlinear parametric
perturbations, saturating actuators.

1. Introduction

Time-delays are frequently encountered and their existence is often the source of
instability and poor performance (Malek-Zaveri and Jamshidi, 1987). The problems of
stability analysis and stabilization of dynamic systems with time-delay are, therefore,
of theoretical and practical importance and have attracted considerable attention for
several decades. Various techniques of stability and robust stability analysis have been
proposed over the past few years, including delay-dependent stability criteria which
include the information on the size of time-delay (Cheres et al., 1989; Gu, 1997; 1999;
Li and de Souza, 1997a; 1997b; Mori, 1985; Mori and Kokame, 1989; Shyu and Yan,
1993; Su and Huang, 1992; Thowsen, 1982; Xu, 1994), as well as those which are
independent of time-delay (Chen and Latchman, 1995; Chen et al., 1995; Han and
Mehdi, 1998a; Hmamed, 1986; Kamen, 1982; Luo and Van den Bosch, 1997; Mori et
al., 1981; 1983; Trinh and Aldeen, 1994).

In many practical control problems, nonlinear actuators are also frequently met,
and one of the common nonlinearities is saturation. If the saturating actuators are
not considered, such a system will produce many difficulties, not only during starting-
up and shifting-down, but also during sudden changes. Therefore, many researchers
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have investigated the stabilization of linear (time-delay) systems with saturating actu-
ators. For example, using differential inequality techniques and the Bellman-Gronwall
lemma, several sufficient conditions to guarantee the stability of the saturating time
delay are derived in (Chen et al., 1988). Improved results over those of (Chen et al.,
1988) are given in (Tissir and Hmamed, 1992). Some sufficient delay-independent
conditions addressing the global {or local) asymptotic stabilization of a linear time-
delay system with saturating controls are presented in (Klai et al., 1994). Sufficient
conditions on the time delay, which maintain the asymptotic stability of the closed-
loop system via a state feedback control law, are obtained in (Su et al., 1991). The
case of a linear system with delayed input is treated in (Liu, 1995; Shen and Kung,
1989) where sufficient conditions are derived for stabilization via a state feedback
controller, a dynamic controller and an observer-based controller.

Recently, a keen interest has been taken in robust stabilization for uncertain
time-delay systems containing saturating actuators. For example, by using a matrix
measure and comparison theory, a sufficient condition for the dynamic feedback com-
pensator, independent of the delay, is derived in (Chou et al., 1989). By employing
Razumikhin’s approach, an observer-based controller is designed to stabilize an un-
certain time-delay system with a saturating actuator in (Han and Mehdi, 1998Db).
Some sufficient conditions are also proposed. These results are less restrictive than
those derived in (Su et al., 1989). By the Lyapunov-Krasovskii technique, the re-
sults in (Han and Mehdi, 1998b; Su et al., 1989) are improved in (Han et al., 1998).
Using Razumikhin’s approach, two sufficient delay-dependent criteria are given in
(Niculescu et al., 1996) for robust stabilization via memoryless state feedback control
laws of uncertain time-delay systems with a saturating actuator. In (Niculescu et al.,
1996), the admissible uncertainties are assumed to be of linear time-varying forms,
and upper bounds on the time delay are given in terms of solutions to appropriate
finite-dimensional Riccati equations.

In this paper, we investigate the problem of robust stabilization of uncertain
linear time-delay systems containing a saturating actuator. These uncertainties may
be linear, non-linear and/or time-varying, but only norm bounds are known. Razu-
mikhin’s approach is employed to propose robust global or local asymptotic stability
conditions.

This paper is organized as follows. Section 2 presents briefly the problem state-
ment. Section 3 gives the robust global asymptotic stabilization result. A positive
invariant and robust local asymptotic stability domain is determined in Section 4.
In Section 5, two numerical examples illustrate the results. Finally, Section 6 gives
conclusions.

Notation:

R the real number field

Ry the set of positive real numbers

R? the n-dimensional real vector space

R™**™  the space of real n X n matrices

z a vector, = [z1 T2 ... Tn)T, z; €R
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zT(AT)  the transpose of a vector z (matrix A)

AifA] the i-th eigenvalue of a matrix A

ol4] the spectrum of a matrix A (the set of all eigenvalues of A)

Amax[4] the maximum eigenvalue of a matrix 4 = AT, i.e. Amax[A] = max{\i[A]}

Amin[4]  the minimum eigenvalue of a matrix A = AT, i.e. Amin[4] = min{\;[4]}

|l the Euclidean norm of z, ||z{| = VzTz
HA|l the norm of a matrix A defined as ||A]| = \/Amax[AT 4]

©(A) the matrix measure of a matrix A defined as u(A) = $Amax[4 + AT]

I the identity matrix

Q2 the square root of a symmetric positive definite matrix Q@ (Q/? =
VAY2VT |V being the eigenvector matrix of Q satisfying VVT = I and
A the diagonal eigenvalues matrix of @)

z<y the partial ordering relation in R™ equivalent to z; < y; fori =1,2,...,n
and z, y € R*

2. Problem Formulation

Consider the uncertain system described by the following differential-difference equa-
tion:

&(t) = Aox(t) + A1z(t — h(t)) + (B + AB(t))u(t) + fo(z(t), )

+f(e(t—ht),1), VE>te20 @

where z(-) € R” is the state vector, u(-) € R™ is the control vector, Ao and A; are
matrices in R"*" and B € R**™. The time-varying delay h(t) is a nonnegative,
bounded and continuous function, i.e. 0 < h(t) < h, where h is a positive constant.
Here, it is worth noticing that we do not require for the time derivative of the time-
varying delay h(t) to be less than one, i.e. h(t) < 1. It is well-known that such
an assumption is often needed in many works dealing with the stability problem for
systems with time-varying delay (Ikeda and Ashida, 1979).

The initial condition for (1) is given by

z(0) = (), 0€lto—h, to] (2)

where () is a given continuous vector-valued function on the interval [ty — h, to].

Here AB(t) is the time-varying perturbation matrix of input matrix B. The uncer-
tainties fo(z(t),t) and fi(z(t — h(t)),t), which are smooth vector-valued functions
satisfying fo(0,¢) =0 and f;(0,t) = 0, are unknown and represent the system’s non-
linear parametric perturbations with respect to the current state z(t) and the delayed
state z(t — h(t)), respectively. In general, it is assumed that ||AB(t)||, ||fo(z(t),t)]|
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and ||fi(z(t — h(t)),t)|| are bounded, i.e.

IAB@)| < 6 3)
fo(@(®, Dl < Bollz® ()
112 (2(t - 2(®). )] < 81 |la(t ~ h(t))] (5)

where 6 > 0, Gy >0 and f; > 0 are given.
The control vector u(-) € R™ is assumed to belong to a compact set 2 C R™,
Vt >ty > 0, defined by

Q= {u() ER™ | —um <u() <um; um, uy €RT} (6)

Assumption 1. The pair (Ao + A1, B) is stabilizable and all the states of system (1)
are available.

Note that Assumption 1, which is equivalent to the stabilizability of system (1)
without time-delay and uncertainty, is necessary for the existence of a stabilizing
memoryless state feedback control law for the system (1).

By implementing a saturated controller
u(-) ='sat(Fz())), FeR™" (7
the system (1) becomes
&(t) = Aox(t) + Aiz(t — h(t)) + (B + AB(t))sat (Fz(t)) + fo(z(t),t)

+ f1 (z(t = h(¢)),t), Vi>t>0 (8)

where the saturation term is given by
sat(Fz(-)) = [sat([Fz()1),...,sat([Fz(-)]m)] (9)
The operation range of the nonlinear saturation sat ([F'z(-)};), ¢ = 1,2,...,m is con-

sidered inside the sector [w,1] which means that the graph of the nonlinearity lies
between two straight lines passing through the origin with slopes w and 1, respec-
tively, with 0 < w < 1. The saturating actuator sat ([Fz(-)];) saturates at —(um)s
or (upr)i, as shown in Fig. 1.

Note that the system (8) is of nonlinear nature. However, when the controls do
not saturate, i.e. for any z(t) such that Fz(t) € £, (8) admits the following model:

() = (Ao +(B+ AB(t))F)m(t) + Az (t— h(t) + fo(z(t),t)

+ fi(z(t—h(t)),t), V>t >0 (10)
which is valid only in the set of admissible states defined by
D(F,Q) = {2() €R™ | —um < Fo() <unj um, um €RT}  (11)

Before stating the problems to be treated in this paper, let us give the following
definition.
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sat (u:) Slope = 1
(uM)z
Slope = w
“(UM)'
(unr) i

Fig. 1. The saturation function for the nonlinear sector [w,1], 0 <w < 1.

Definition 1. A non-empty set D C R" is said to be positively invariant w.r.t. the
motions of the system (8) if for every ¢(8) € D (V8 € [to — h, {1o]), the motion
!E(t,to,(p) €D, Vt>1t; > 0.

Our purpose in this paper is:

1) to determine a static state feedback matrix F' and to express some conditions
for the parametric perturbations so that the closed-loop systems (8) is robustly
globally asymptotically stable;

2) to determine a positive invariant and robust local asymptotic stability domain
for (8) in which the behaviour is linear.

3. Robust Global Asymptotic Stabilization

From Assumption 1, there exists a matrix F' such that 4q + A; + (1/2)(1 + w)BF
is Hurwitz with 0 < w < 1. Then there exists a unique symmetric positive definite
matrix P which is a solution to the Lyapunov equation

T
(Ao + A + 112;-—“131?) P+P (Ao + A + 1wﬂ;—i—‘fBF) =-Q (12)

for any given symmetric positive definite matrix Q.
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By adding and subtracting (A; + (1/2)(1 + w)(B + AB(t))F) z(t) to the right-
hand side of (8), we get

&(t) = (Ao + A+ %ﬂ (B+ AB(t))F) 2(t) + A1 o (t - b)) - 2(0)]
+ fo(z(t),t) + f (z(t = h(t)),t)
+ (B+AB(t)) (sat(Fx(t)) - }—“;—wa(t)) , Vt>t>0 (13)
Without loss of generality, we supplement the definition of z(t) on the interval [to —

2h, to—h] by z(8) = () = (to—h), V8 € [to—2h,to—h]. Since z(t) is continuously
differentiable Vt >ty > 0, one can write (Hale, 1977)

z(t — h(t)) —=z(t) = - /0 &(t+0)do (14)

—h(#)

Then (13) can also be written as
B(t) = (Ao + A+ ”T“’ (B + AB(t))F):c(t)
0
— A / 8(t +6)d8 + fol(a(),0) + fu (2(t — h(t)), 1)
—h(t)

1+
2

+ (B + AB(t)) (sat(Fx(t)) - wFJ;(t)) , Vt>to>0 (15)

z(0) = (p(g), Vo € [to - 2FL, to] (16)

Remark 1. From the above discussion, any solution to the functional differential
equation associated with (8) (with the initial condition (2)) is also a solution to the
functional differential equations (15), (16). In view of this statement, a sufficient
condition for the robust global asymptotic stability of (15), (16) is also a sufficient
condition for the robust global asymptotic stability of (8) (with the initial condi-
tion (2)) and thus a sufficient condition for the robust global asymptotic stabilization
of uncertain time-delay systems (1) and (2) via the memoryless state feedback control
law given in Theorem 1 below.

Theorem 1. Consider the system (1), (2) satisfying Assumption 1. If the state
feedback matriz F is chosen in such a way that the inequality
0 <h(t) <h < hg

_ Amin[GTQG] - 2 (354 ||GTPB|| + 6 ||GTP|) IFG|| - 2||GTP| 1G]l (Bo + eBy)
- 2aka

(17)
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is satisfied with

1+w

ko = .GTPA1 (Ao + TBF) GU +||GT PAIG||

+ (1—;1"— |GTPAB|| +6 HGTPA1||) I1FG|
+[|GTPAIIGI (6o + B1) (18)

then the system (1), (2) is robustly globally asymptotically stabilizable via the mem-
oryless state feedback control law (7), where G € R™*™ is any nonsingular matriz
and & = \/Amax[P]/Amin[P] and the symmetric positive definite matrices P and Q
satisfy the Lyapunov equation (12).

To prove Theorem 1, we have to make the following observation.

Observation 1. (Shyu and Yan, 1993) Consider the positive definite function
V(z(t)) =27 (t)Pz(t), z(t) R, Vt>to—2h (19)

where P is the unique symmetric positive definite solution to (12). Assume that
there exists a constant ¢ > 1 such that

V(z(t - h(t))) < @#V(z(t)) (20)

Then we have

lo(t - h®)] < galla®l (21)

where « is given in Theorem 1.

Proof of Theorem 1. Let us take the positive definite function (19) as a Lyapunov
function candidate for (15). Then the time derivative of V(z(t)) along the trajectories
of system (15) is as follows:

V(z(t)) = -zT(t)Qx(t) + (1 + w)z” (t)PAB(t)Fz(t)
0

—2cT(t)PA; / i(t + 6) do
—h(t)

+ 23T O)P(fo(w(t),t) + f1 (2t - h(t)), ) )

+2z7(t)P(B + AB(t)) (sat(Fx(t)) - HTsz(t)> (22)
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By introducing a nonsingular matrix G, we get

V(z(t) = —(G"lm(t))TGTQG(G“lm(t))+(1+w)(G‘1x(t))TGTPAB(t)FG
0

x (G '&(t)) — 2(G'x(t)) T GTPA, / GG li(t+6)do
—h(t)

+2(G7'a(®)) " GTP(fo(GG T 0(t),t) + /1(GGa(t - h(t)), 1) )
+2(G'z(t))"GTP(B + AB())
1+w

% (sat (Fo(@a) - 22V FG (e att ))) 23)

In view of Fig. 1, and based on the definition of the norm function, it is easy to
show that (Chen et al., 1988)

sat (FG(G7a(1)) - ~52FG(G -%m)“ < S2NFGl o =) (24

From (3), (4) and (24), we have

(1+w)(G'a(t)) ' GTPAB(t) FG (G (t))

<8(1+w) ||GTP|IFG| |G =@t)|®  (25)

and
2(G1a(t)) " GTPfo (GG (), 1) < 26 |GTP| |Gl |G =(t)||”  (26)

with

2(G'z(t))TGTP(B + AB(t)) (sat (FG(G'z(t)) - HTwFG(G‘lm(t)))

<@-w)([[¢7PB| +5||¢"P| ) IFCl [~ =)]*  (@7)
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From (3)-(5), (24) and Observation 1, we get

]
~2(G'o(1))TGTPA / GG i (t +6) df
—h(t)

0
< “ —2(G'z(t))GT P4, GG 'i(t +6) d0” < 2“ (G '2(t)) T GTPA,

—h{t)

x /_Oh(t) [(Ao + l—239(15’ +AB(t+ 0))F) GG 1a(t + 0)] d9“

0
+2[|(G'z(t) TGT P4, / A\GG 'z (t+60 - h(t +6)) d9”
~h(t)

+2|[(G2(t)) 6T P4, / ’

fo(GG™'z(t +6),t +96) do”
—h(t)

+2 (G‘lz(t))TGTPAl /Oh(t) fLI(GGT z(t+ 60 — h(t+6)),t + 6) dB”

+2 (G—l_'z;(t))TGTPz‘h /_ Oh(t) (B+ AB(t+6))

X (sat (FG(G'z(t +0))) — %iEFG(G'la:(t + a))) da“

< 2ok |[|GTPA, (Ao + 1—;33F> G” + a# |6TPA || |FG|
+||GTPAIG| + 6o |GTPAL| IGIl + 61 |GT PA: || |G|
- 1—
+ IT“’ |G" PAB||I1FGI| +6-5= || 6T P A | i|FG[|] lc ()|
= 20h ‘GTPAl (Ao + l—g-'ﬂBF) G“

+IFGl| (1—_23 IGTPA;B|| +6 || G P4, |]>
+[GTPAIG] + [P A1 (5o + m] 6~ =(o)?

= 2gakkg |G z(t)|? | (28)
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and
2(G12(t))TGTPf (GG a(t — h(1)),t) < 2qafy |GTP| G |G 2(®)||*  (29)
From (25)-(29), we have

V(z(t)) < —{A‘mm [GTQG] - 2||FG|| (1—_2—7“3 ||GTPB||+6|]GTP|[>

~26, ||GT P|| |G| — 2qahks — 2908 |GTP| |G| } lc—t=@)]* (30)

If (17) holds, then there exists a constant

dmin [GTQG] - 2||1FG|| (352 [|G"PB| + 6| G"P|) — 26, |G"P|| IGI|

1<g< 2ahka + 200, ||GT P|| |G|

(31)
such that

i [6706] ~ 2761 (152 |67 PB] +5 67 )

- 26, |GTP|| |G| - 2qa<7zka + 6 ||GTP| HG!]) e >0 (32
which implies, for any z(t) # 0,

V(e() < —e||ca(t)| (33)

Thus, according to the Razumikhin theorem (Hale, 1977), the system (15) and
hence (8) is robustly globally asymptotically stable, therefore (1), (2) is robustly
globally asymptotically stabilizable. H

Remark 2. When G = Q™ 2, then (17) becomes
0<h(t)<h<hg

1-2(152)Q #PB| + s|Q-tP|)) [FQ-}| - 2|Q@ P [|Q~F] (B0 +afy)
2akQ

(34)
with

ko = “Q"%PAl (Ao + ”TwBF) Q-%]

+|lo-tpato?

(5 e trac] coferieal) fro

ertraffo-

(Bo + B1) (35)



Robust stabilization for uncertain time-varying delay constrained ... 303

When G = I, from (17) we have

0<h(t)<h < hy

_ Amin[Q] = 2 (352 [|PB|| + 8 |1PI)) 1FI| = 2[1P| (Bo + @Bh)
- 2ak1

with

bt = HPA1 (A0+1—“;-EBF) “ + || P2

+ (——-1 ; CIPALB| + 6 “PAIH) 1EIl + [|PAL]] (Bo + Br) (37)

It is easy to verify that
hr < hg (38)
In fact, since

L 1-2(550-ip] +slQ ) [FQ-¥ -2 AP o | (4 + 0t
Q= 2akq

_ 1-2(QtIesl+ slo-t | IP) IFi Q-4
) 20| Q=4 ||kr(| Q%
_ QNQ_%” 1Pl “Q—% | (Bo + ap1)
20|Q % [kf| @]

Amin[Q] — 2 (£55* [[PBI| + 0 [|P1)) 1] = 211Pl| (Bo + 1)
2ak1

=hs (39)

Remark 3. When the uncertainties fo(z(t),t) and fi(z(t — h(t)),t) are linear and
time-varying parametric perturbations, i.e. they are of the form

fo(z(t),t) = Ado(t)z(t), f1(z(t—h(t)),t) = AA()z(t — h(t)) (40)
with known upper norm bounds
[A40®)]| < Bo, [AA®)] < B (41)
where B >0 and B; > 0 are given, (1) becomes
i(t) = (Ao+ AAo(t))z(t) + (A1 + A4 (1)) z(t — h(t))
+ (B+AB(t)u(t), Vt>ty >0 (42)

It is easy to check that the results of Theorem 1 also apply to (42).
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Remark 4. When fo(z(t),t) = 0 and fi(z(t — h(t)),t) = 0, the condition (36),
with (37) in mind, becomes

OSh(t)SB<BJO '

_ Amin[@] = (1 — w) [|PB|| ||| (43)
2a (|PAZ]| + 5 |PABI[|F|| + [|PA: (4o + S5 BF)]|)

In case the delayed state x(t — h(t)) is not measurable and only the current state
z(t) is available, Chen et al. (1988) gave the following condition:
0 < h(t) < h < hChen

_ —#(Ao+4 +H=BF) - 52 ||B|||F|
1AL (1Al + 52 B IFI + || 4o + 252 BF]))

(44)

where (Ao + Ay +(1/2)(1+w)BF) < 0. In this case, from the Lya-
punov equation (12), we have P = I (therefore a = 1) and Ami[Q] =
~2u (Ao + A1 + (1/2)(1 + w)BF) and, noting that |[MN| < [|IM||[|N] for
any matrices M and N, it is clear that Achen < hio. When
1 (Ao + A; + (1/2)(1 + w)BF) > 0, by condition (44) no conclusion can be made.
However, we can use (43) in this paper to design a controller for the considered sys-
tem. This means that our result is less restrictive than that given in (Chen et al.,

1988).
From the above analysis, the design procedure is proposed:

Algorithm 1:

Step 1. Check the upper norm bounds of the system uncertainties and adequately
choose the eigenvalues \;, i = 1,2,...,n in the open left complex half-plane.

Step 2. Find the corresponding F by any eigenvalue assignment technique and check
if the robust stability conditions are satisfied. If so, then go to Step 4.

Step 3. Shift the eigenvalues to the left in the open left complex half-plane according
to N = A — AN, @ = 1,2,...,n, where A);, @ = 1,2,...,n are non-
negative real numbers, and go to Step 2.

Step 4. Obtain the memoryless state feedback controller from (7).
4. Positive Invariant and Robust Local Asymptotic Stability
Domain

Since the pair (Ao + A1, B) is stabilizable (Assumption 1), there exists a matrix F
such that (Ao + A; + BF) is Hurwitz, and then for any given symmetric positive
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definite matrix Q;, there exists a unique symmetric positive definite matrix P, being
a solution to the following Lyapunov equation:

(Ao + A1 + BF)T PL + P, (Ag + A; + BF) = —Q, (45)

In much the same way as for (15), the system (10) can be written as

#(t) = (Ao + A+ (B+ AB(t))F)m(t)

_A1/° ){(Ao+(B+AB(t))F)m(t+9)A1m(t+0—h(t+9))

—h{t
+f§(m(t+9),t+9) +fi{z(t+60—h(t+0)),t+6) }dB

+ fo(z(2),t) + f1 (z(t — h(t)),t), VE>t3>0 (46)

with the initial condition (16). In this case, a positive invariant and robust local
asymptotic stability domain of linear behaviour for (8) can be determined. The result
is given below.

Theorem 2. Consider the system (1), (2) satisfying Assumption 1. Let V(z(t)) =
zT(t)Piz(t), with Py being the unique symmetric positive definite solution to the
Lyapunov equation (45). If the state feedback matriz F € R™*™ is chosen to satisfy
the inequality

0<h(t) <h< hgr

_ Amin [GTQ1G] - 28| GTA|| [|[FG|| - 2||GTPL|| IGIl (Bo + a1 81)

2o koL (47)
with
kar = ||GTPLA; (Ao + BF) G| + || GTPLAIG|
+ 3 |GT P |1FGI| + | GT P AL IGI| (B0 + B) (48)

where G € R™*" is any nonsingular matric and a1 = \/)\max[Pl]/)\min[Pﬂ, then
there ezists a positive scalar n for which the domain

DWV,n) = {z() eR* | V(z()) <n, n>0} (49)
satisfying
D(V,n) C D(F,Q) (50)

is a positive invariant and robust local asymptotic stability domain of linear behaviour

for (8). ‘
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Proof. If the state feedback gain F is chosen in such a way that the asymptotic
stability of Ao + A1 + BF is assured, the quadratic function V(z(t)) = 27 (¢t)P1z(t)
is positive definite. Computing the time derivative of V(z(t)) along the trajectories
of (46), we obtain

V() = —(Ga(t) GTQ:G(G x(t))

+2(Ga(t))  GTRAB(H)FG(G (1))

—2(G'a(t)) T GT P4 / ’ GG Vé(t +0)dd +2(G12(t) T GTPy
—h(t)
x (fo(GG2(t),1) + (GG a(t - h(®)) 1)) (51)

Following similar arguments as in the proof of Theorem 1, we get

V(a(t) < ~{Amin [GTQ1G] - 28(|FG |GTRi]| 260 [|GT 1| G

~ 2qan (kg + By | GT R IGI) } G| (52)
If (47) holds, then there exists a constant

Amin [GTQ1G] — 28 |FG|| ||GTPL|| - 260 ||GTRL|| |Gl

1<g< =
e 2a1hkar + 20161 |GTPL|| |G|

(53)

such that
Amin [GTQ1G] - 26 ||FG| |GT A
~260 [|GT P2 ||GH.— 2ga; (hkgr + B |GTPL|IIGH) =1 > 0 (54)

which implies that for any z() # 0,

2

V() < —e |Gz (t)|| (55)

Thus V(z(t)) = 2T (t)Piz(t) is a Lyapunov function of (46), and so is (10), generating
an elliptic domain D(V,n). Hence, since the scalar 7 is chosen to satisfy (50), the set
D(V,n) defined in (49) is a positive invariant and robust local asymptotic stability
domain in which the behaviour is linear. ]

Remark 5. When G = Ql_%, the condition (47) becomes

05h(t)§71<7LQL

= 1-% ”Ql—%PlH HFQ;% (Bo + @151)

oforafort
20nkor

~—
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7 with

kop = “Ql‘iplAl(Ao +BF)Q[?

+|ertnazor?

cofarinafrr

fertrajort

(Bo + B1) (57)
Also, if we set G = I, the condition (47) becomes

Amin[@1] — 20 ||P1[| [|F]| = 2{|P1][ (Bo + 0161)

0<h(t) < h < iLIL = S0krr

(58)
with
krr = ||P}A1(Ao + BF)||+|| P AY||+6 || PLAL| | FII+ 1P ALl (Bo + B1)  (59)

Similarly to Remarks 2 and 3, it is easy to prove that hj; < BQ 1 and the results of
Theorem 2 are also true for the system (42).

Remark 6. Note that Theorems 1 and 2 can be easily extended to the case of multiple
time-varying delays, using similar arguments to those developed in the present paper.

Now we present a design procedure to find a positive invariant and robust local
asymptotic stability domain of linear behaviour for (8).

Algorithm 2:

Step 1. Use a similar method to that in Algorithm 1 to find the state feedback gain
matrix F.

Step 2. Find a scalar n > 0 such that D(V,n) C D(F, Q). It suffices to choose n;,
1=1,2,...,m for which the elliptic domain is tangent at z; for different
hyperplanes fiz; = ut,, fiz; = ul;, i = 1,2,...,m. Then the contact
points z; are obtained as the solution to

T .
HIHES

for vy = —ui, or v = ul,, i = 1,2,...,m, where the w;’s are the
Lagrange multipliers. For each of these points, compute z} Piz; = 7;
and then the suitable n satisfying D(V,n) C D(F,Q) is obtained as

1 = min 7;.
1
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5. Numerical Examples

Example 1. Let us consider the uncertain time-delay system

i(t) = Apz(t) + Arz(t — k() + (B + AB())u(t) + fo(z(t),t)

+ fi (z(t = h(t)),t), VE>0 (61)
with
05 0 -0.5 0 2 .
Ap = { 01 -2 }, A = { L B= 0 :|, h(t) = 0.2 + 0.1sin(t)
| [-0.1, 0] _ | 0.2sin (z1(2))
AB() = [ 0 ] fol(®).) = [ 0.2sin (z2(t)) }
0.05sin (z; (t — h(t)
£ (et — h(H).0) = [ | (21 ( )) ]
0.05sin (z2(t — h(t)))
Then

IAB®)[| <01 (6=01),  |ifo(z(®), )l <0.2[lz(®)l| (Bo =0.2)

|1 (z(t — h(®),t)|| < 0.05]jz(t = A)| (B = 0.05)

Assume that all the states of the system (61) are available and the control variable is
constrained as follows:

~15< u(t) <2

It is easy to check that the considered pair (Ao + Al,B) is controllable, so it is
stabilizable, i.e. Assumption 1 is satisfied. Let w = 0.5. According to Algorithm 1,
we find F = [—1 0] such that Ag+A; +(1/2)(1+w)BF = [§4° 9] is Hurwitz. In
the present case, the choice of the symmetric positive definite matrix @ = [_8_1 _g'l]
yields P = I as the unique symmetric positive definite solution to (12). From (34),

we have
0 < h(t) < h=03< hg =0.3781

With Theorem 1 in mind, we conclude that the memoryless state feedback control
law u(t) = sat (Fz(t)) = —sat (z1(t)) is robustly globally asymptotically stabilizing
for the system (61). ¢

Example 2. Let us consider the constrained uncertain time-delay system
E(t) = Aox(t) + A1z (t — h(t)) + (B + ABQ®))u(t) + fo(z(t),t)

+ A (z(t—h),t), V>0 (62)
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with

10
1

] ,  h(t) = 0.2 4+ 0.2sin(z)

N R BT et il

0
A (e(t = h()),1) = { 0.1sin (22(t — h(t))) ]

Then
lAB@®I| <02 (6=02), [folz@®),t)| <03lz(t)|| (Bo =0.3)

|7 (=(t = R@®)), )| <01t —R®)] (8 =0.1)

Assume that all the states of (62) are available and the control variable is constrained
as follows:

—2<u(t) <05

It is easy to check that the considered pair (Ag + A;, B) is controllable, so it is
stabilizable, i.e. Assumption 1 is met. Using a pole assignment technique, e.g. o[A4y +
A1+ BF] = {-2,-2.15}, we have F =[-0.3 —0.15]. Choosing Q; = [% ,15] yields
P =1 as the unique symmetric positive definite solution to (45). From (56) we have

0<h(t) <h=04< hgp = 0454

According to Theorem 2, we can determine the set D(V,n), with V(z(t)) =
zT(t)Piz(t) = 2T (t)z(t), in which (62) has a linear behaviour and the control does
not saturate. Applying Algorithm 2, we obtain 7 = 20/9. ¢

6. Conclusion

The problem of robust stabilization for uncertain time-delay systems containing a
saturating actuator has been addressed. Delay-dependent criteria for robust global
or local asymptotic stabilization have been obtained by using the Razumikhin theo-
rem. Based on the symmetric positive definite solutions to Lyapunov equations, the
proposed criteria have given upper bounds on the time-varying delay. Two numerical
examples have illustrated the obtained results.
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