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LQR-BASED NONLINEAR TUNING RELAY
CONTROL DESIGN WITH FAST CONVERGENCE

XINGHUO YU*, YaNGg XIA**
GERARD LEDWICH"™, WARDINA OGHANNA**

In this article, we present a relay control scheme based on LQR design with fast
convergence. This scheme provides a practical and simple way to achieve fast
convergence based on the well-known LQR design principle. The controller is a
global stabiliser in the sense that for any given initial condition, we can always
initialize the controller to drive the system to reach the origin. This controller
is tunable in accordance with the position of the system state: the closer to the
origin, the larger the control gains, which results in a fast control that maintains
bounded control magnitude. It has also been shown that setting matrix Q can
significantly influence the tendency of eigenvalues to switch the hyperplane.
The relation between matrix @ and the tendency of those eigenvalues has been
identified. Simulation results are presented to demonstrate the effectiveness of
the scheme.
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1. Introduction

Power electronics and relay systems are limited to a finite set of control values. The
control techniques for these systems are often based on a conventional controller
followed by a saturation function, which is often sufficient (Ledwich, 1995). A fast
control is required in a real control situation as the accuracy and time to reach targets
constitute performance indicators of a good control system. Commonly used linear
control, due to its asymptotic stability nature, does not usually deliver a fast conver-
gence performance. Appropriate nonlinear control can enable finite-time control, but
the design of a fast control is difficult and there is no general theory available.

In (Ledwich, 1995) a novel method was proposed for the design of linear switching
hyperplanes based on the sequential linear optimal relay principle. The LQR design
method was used in a relay controller to yield a sequence of feedback gains k& by

* Faculty of Informatics and Communication, Central Queensland University, Rockhampton, Qld
4702, Australia, e-mail: X.Yu@cqu.edu.au.
** Faculty of Engineering and Physical Systems, Central Queensland University, Rockhampton,
Qld 4702, Australia, e-mail: Y.Xia@cqu.edu.au.
School of Electrical and Electronic Systems Engineering, Queensland University of Technology,
Brisbane, QLD 4000, Australia, e-mail: g.ledwich@qut.edu.au.

ok



314 X. Yu et al.

letting a control parameter decrease from a large value to zero such that kz = 0
becomes an adaptively adjusted switching hyperplane. Fast convergence performance
was reported. Based on the idea proposed in (Ledwich, 1995), in this paper, we will
develop a relay controller based on the LQR design for SISO systems that enables
a fast control. We will show that under a mild condition, the relay controller is
a global stabiliser. This controller is simple to implement because it makes use of
the existing LQR design technique which is a standard component of many control
softwares. We will use a complexity function approach (Fisher and Reges, 1992) to
analyse the fast control performance applicable to general single-input single-output
linear systems. The selection of matrix ¢ in the LQR design will be examined in
terms of convergence performance. Simulation results will be presented to show the
effectiveness of the control design.

This paper is organized as follows. In Section 2, we present a description of the
problem to be dealt with. The stability analysis is given in Section 3. The main results
are derived in Section 4. Numerical simulations are shown in Section 5. Conclusions
are drawn in Section 6.

2. Problem Statement
Consider the single input single output linear system (SISO) in the canonical form
= Az + Bu (1)

where z € R® is the state, u € R! is the control and

[ 0 1 0 0 7
0 0 1 0
T
A= oo 0 ] B:[O 00 - 1]
0 0 o - 1
. —@1 —az2 —az - —0p |

The system (A, B) is assumed to be stabilisable and A is stable. The control
law u is a relay control defined as

u = sgn(kzx) (2)

where k£ € R™ is a control gain vector to be determined.

In this paper, we investigate the design of a fast convergent controller by using
the LQR design principle.

Most nonlinear systems are assumed to satisfy the Lipschitz condition. This
condition guarantees the existence of a unique solution for each initial condition,
and results in asymptotic convergence. The dynamics with finite-time convergence
does not satisfy the Lipschitz condition. For example, the dynamics 2 = —gz!/3
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(Zak, 1989) does not satisfy the Lipschitz condition, because the Jacobian dz/dz =
—(1/2)27%% - —co0 as z — 0, which is actually the tangent to the curve (or an
eigenvalue), and this means that the closer the trajectory to the origin, the faster the
convergence speed, which results in fast (finite time) convergence which yields a near
time-optimal response. Hence an important characteristic of fast convergence is that
all eigenvalues tend to infinity when the trajectory tends to the origin. Note that a
time-optimal control exhibits fast (finite-time) convergence.

The standard LQR problem is as follows: For the system (1) and a given quadratic
performance index

J = / (:cTQm +ru2) di (3)
0
find an optimal linear state feedback control gain &
k=-r'BTP (4)

such that (3) is minimized. Here P is a positive-definite symmetric matrix which
satisfies the algebraic Riccati equation

PA+ ATP - PBr'BTP+Q =0 (5)

The problem is how to use kx as a relay input to form a switching hyperplane
such that the closed-loop system is asymptotically stable and the system exhibit fast
convergence. A preliminary study (Ledwich, 1995) showed that decreasing r would
improve the convergence speed. A modified fast convergence algorithm (MFCA) based
on (Ledwich, 1995) is given as follows:

1) Select a semi-positive definite symmetric matrix @ with rank n -1 (I < n)
and a large value r.

2) Solve egn. (5) to obtain P and hence k. Record them in a table.

3) Based on P and k derived in Step 2, find a corresponding maximum Lyapunov
function V = zT Pz such that |kz| < 2.

4) Decrease r according to r = r — Ar, where Ar is a small value such that the
new vector k derived from the Riccati equation satisfies |kz| < 2.

5) Then repeat Step 2 until r reaches an arbitrarily small positive value.

Note the Ar should be selected such that |kz] < 2 is always satisfied to maintain
stability. The lower bound on r should be zero. As r tends to zero, the control
becomes a high-gain feedback control which exhibits robustness. For effective control,
ideally when kz = 0 under r is reached, Ar should be chosen such that the system
state just reach a new kxz = 0 under r + Ar. How to choose such a parameter is
being studied.

The stability of the system under the relay control can be analyzed (Anderson
and Moore, 1971). It can be shown that, as long as the open-loop system (4, B) is
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stabilisable and (4, D) (here DTD = @) is detectable, the closed-loop system with
the LQR design is globally asymptotically stable. Also with the relay control using
the LQR design, the asymptotic stability is guaranteed in the neighborhood of the
switching hyperplane kz = 0. For states not close to the switching hyperplane, the
stability of system (1) can be shown as follows.

Consider the Lyapunov function candidate
V =2TPz (6)
Differentiating (6) along the dynamics (1) yields
V =3"Pz+ 32" P
= gT AT Pz + 2T P Az + 227 PBsgn(kx)
Using eqn. (5), we get
V = —2"Qz + zT PBr~rr BT Pz + 227 rr~* PBsgn(kz)
= —27Qx + r(kz)T (kz) — 2r (k)T sgn(kz)
For V < 0 to hold, it is necessary and sufficient that
kz — 2sgn(kz) < 0 (except at kz = 0)
A sufficient condition for the asymptotic stability is

|kz] <'2 (7)

Inequality (7) indicates that, to maintain the asymptotic stability, the larger value
the state, the smaller the feedback gain k.

To guarantee the global stability, it is first necessary to know a range of possible
initial conditions. For any given initial condition, we can always find a constant r
such that (7) is satisfied. So, if at the beginning we derive a constant 7 such that (7)
holds, then the condition (7) holds and hence the global stability is realized. In this
sense, the controller is a global stabiliser.

3. Analysis of Fast Convergence Performance

In this section, we shall analyze the fast convergence performance of the system (1)
with the MFCA. We assume that ideal adjusting k is done as soon as the switching
manifold kxz = 0 is reached. We shall first look at second-order systems to gain some
motivation.
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3.1. Second-Order Systems
Consider the second-order system defined by

0 1
A=[

—a1; —a2

., B=

Given a positive/semi-positive definite matrix @ = diag(qi,q2) and a positive
scale r, using (5) we can obtain a positive definite matrix P. The switching hyper-
plane kz =0 is expressed through P by virtue of (4):

kx = p1221 + p2aw2 =0 (8)

The stability of (8) relies on a relation between pi2, p2s and r. From (5) we have

[pu Plz}[ 0 1 —+[0 —GlHiPu plz}
D12 P22 —a1 —az | 1 —a P12 P22
-r‘l[pll p12]—0][0 1][1711 P12}+|ifhl 0}:0
P12 p22 |1 D1z D22 0 g

—2a1p12 — Tklpfz +q@ =0 9)

Hence

2p12 — 2a2p22 — TPy + g2 =0 (10)

As we have shown in the previous section, the LQR-based design for any positive
r guarantees the system stability (Anderson and Moore, 1971). It implies when the
switching line (8) is reached, it is asymptotically stable as well. Solving (9) and (10) is
possible (but hard for higher-order systems), but here we use the complexity function
approach, i.e. the O notation to simplify the analysis which can be easily extended
to higher-order systems.

Consider the expression (9). Since ¢; and ¢» are constants (without loss of
generality we assume ¢; # 0 but ¢» may be zero), the expression (9) holds only if
one of the two terms a;p;2 and r~!p?, converges to a constant. Clearly, p;» cannot
be a constant, otherwise r~!p?, — co as r — 0. Furtheremore, p;» = O(r") for
v # 1/2 does not hold, otherwise the term —2a;p12 — r71p?, tends to either infinity

or zero. This will not balance the constant g;. The only solution is pia = O(r!/?).

For the expression (8), we consider two cases:

Case 1 (g # 0): Similary to the analysis for (9), we can obtain psy = O(r1/2). The
switching function (8) can now be rewritten as pz1 + 22 = 0 but p = p1a/pey —
const. In this case fast control is not achievable because the slope of the switching
line tends to a constant, which indicates asymptotic convergence.
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Case 2 (go = 0): In this case, 2p12 —2a2pas—77p3, = 0. The term —2azpz2—77"p3,
must converge to pia = O(r'/2). For pss = O(r") (v # 3/4), it is easy to see that
the term (—2agpas — 7 1p3,)/O(r'/?) will tend to either infinity or zero. Hence the
solution is pas = O(r3/*). Therefore p = pia/p22 — o0, and finite time convergence
is achieved.

Now we look at third-order systems in order to gain a motivation for a possible
solution for n-th order systems.

3.2. Third-Order Systems

We now consider the third-order system

0 1 0 0
A= 0 0 1 , B=
—a1 —as —ag 1

For Q =diag(qi,g2,gs), the corresponding Ricatti equation becomes

i Pz piz|| O 1 0 0 0 —ai||p11 P12 p13
P12 P22 pas|| O 0 1 | +1{1 0 —az||p12 P22 P23
P13 P23 P33f|—ar —as —as 0 1 —as||p13 p23 P33

(P11 pi2 pi3] [0 P11 P12 P13 g 0 0
-7t |p12 p22 pas||0 [0 0 1} p12 p22 pas|+|0 ¢ 0| =0 (11)
|P13 P23 pas||l P13 P23 P33 0 0 gs

The switching equation is then pj3z1 +p2sza +pssxs = 0. It also can be rewritten
as p1%1 + pate + 23 = 0, where p; = p13/p33 and ps = pa3/ps3. We will split our
discussion into three parts according to the three different forms of matrix Q.

Case 1 (g1 =1, g2 = 1, g3 = 1): The matrix Q has full rank. It follows from (11)
that

a3 — riply +1=0 (12)
2(1712 - (121?23) ~r7lpl+1=0 (13)
2(pos — agpss) — 7 'p3z+1=0 (14)
—a1pas + P11 — Gap13 — 7 ' piapas =0 (15)
—a1pss + P12 — agpiz — ' piapss =0 (16)
—aspss + P13 + P22 — aspas — T 'Pagpss =0 (17)

Using the same argument as for the second-order systems, from (12) we can easily
derive

D13 = O_(Tl/z) (18)
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Since p12 is a function of r, from (13) and (14) we get
pas = O(r'/?) (19)
psz = O(r'/?) (20)

With (18), (19) and (20) the switching hyperplane turns out to be pyz1 +pazs +x3 =
0, where p; = pis/ps3 = const and p; = D23/p33 = const. The corresponding
characteristic polynomial of the switching function becomes

N4+ pA+p1 =0 (21)

It is easy to check that two eigenvalues of (21) will have finite values (but all are
either negative or have a negative real part) as r — 0. This means that the system
trajectory will reach the origin asymptotically, but not in finite time.

Case 2 (1 =1, ¢2 = 1, g3 = 0): The matrix @ does not have full rank. It follows
from (10) that (12)—(17) will be the same except for (14) due to g3 = 0 which becomes
2(pa3 — aspss) — r1p3; = 0. Using the same argument as for Case 2 of second-order
systems, since ps3 = O(r'/?), the complexity of ps3 is

pss = (rpas)'/? = O(r*/%) (22)

With (18), (19) and (22), the switching hyperplane turns out to be pyz1 +pazs +x3 =
0, where p1 = p13/pss = O(r™'/*) and p; = pa3/pss = O(r~1/4).

The characteristic polynomial of the switching function becomes
M4+ pd+p =0 (23)

and the two eigenvalues of (23) are Ay —» —oco and Ay — —1 as r — 0. This
shows that when the system trajectories reach (23) with r approaching zero, one
dimension of the trajectories on the two-dimensional hyperplane will approach zero
very fast while the other dimension approaches zero asymptotically. Only one of the
two dimensions has fast convergence.

Case 3 (1 =1, ¢2 =0, g3 = 0): The matrix @ does not have full rank. It follows
from (11) again that eqns. (12)—(17) are the same except the ones containing g, = 0
and g3 = 0. We have

2(p12 — agp23) —r 'phy =0 (24)

2(p23 —agps3) —r 'p3g = 0 (25)

First, because g, = 1, we have p13 = O(r'/?). Equation (24) can be alternatively
expressed as p3; +2asrpa3 — 2rp12 = 0, hence the complexity function of pogz is po3 =
O(max(r, r1/2p142)) = O(r1/2p142). The same reasoning applies to (25), so ps33 =

O(max(r, r'/2pi/?)) = O(max(r, r3/4piih)) = O(r3/4p1}*). Since pyy is a function of
r, from (16) we have —a1p33+p12—as3piz—r"'p13pss = 0, hence O (max(r, 7”3/4Pié4)+
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p12 + O(rY/?) + O(max(r'/?,r1/*p}/*)) = 0. The term that is slowest decreasing is
P12 = O(rl/‘ipiéli), which leads to piz = O(r1/3). Hence po3z = O(r?/3) and

pss = O(r®/®) (26)
With (18) and (26) the switching hyperplane turns out to be pyz; + p27s + 33 =0,

where p1 = pi3/pss = O(r™'/%) and py = pas/paz = O(r~/5).
The characteristic polynomial of the switching function becomes

X4+ pA+p =0 (27)

and the real parts of the two eigenvalues of (27) ReA; — —co and Red; = —o0 as
r — 0. This shows that when the system trajectories reach (27) and r approaches
zero, all the trajectories will approach zero, thus the system exhibits fast convergence.

In summary, by varying the form of matrix @, the system convergence can change
from asymptotic convergence to partial and further complete finite-time convergence.

3.3. Higher-Order Systems

From the analysis for second-order and third-order systems, we can see that by keeping
one entry in the ) matrix non-zero and the others zero, fast convergence can be
achieved. Now we study higher-order systems. The matrix @ is of the form @ =
diag(q1, q2,---,qn). Without loss of generality, we set ¢; = 1, ¢ = 1,...,m and

g; =0, j=m+1,...,n. The Ricatti equation yields the set of scalar equations
—2a1p1n — r_lp%n +1=0 (28)‘
2(pm‘_>1 — QiPin) — T_lp?,n +1=0, i=1,...,m (29)
2(pjj—1 — @jPjn) =T D5, =0, j=m+ i, ) (30)

Dij — @j+1Din — GiDjs1,n + Pie1jtl — T PimPjtin =0
for i=1,...,n—1 and j=i+1,...,n—1 (31)
poj+1 =0, j=4,...,n—1
The formats of (28)-(31) are similar to the ones for the third-order systems. We

omit tedious computations here. For r» — 0, similary to the third-order systems, we
can get

pin=0@Y?), i=1,....m (32)
Pin = 0(7‘1/2]9%121,1'), t=m+1,...,n (33)

Piit1 = O(r ' pinpiyan), i=1,...,n—2 (34)
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As in the case for the third-order systems, by solving (32)-(34), the complexity
of Pin is
O(r/?) if 1<i<m
Pin = n—2m1ti . .
O(r=+t-m1) if m<i<n
The switching hyperplane is then written as

P1T1 + pa%a + -+ pp_1ZTp—1 + 2, =0

where
o Bin _ O(r~ T-m) if 1<i<m
i T —1
Pan O(r™T+=m) if m<i<n-1

The corresponding characteristic polynomial is
AP o A2 A+ pr =0 (35)

As is demonstrated in (Anderson and Moore, 1971), when the system trajectories
are near the switching hyperplane, the stability of the system is guaranteed. That
implies that all the eigenvalues of (35) are located on the left half of the complex plane
as 7 — 0. What we are concerned with, is the tendency of each eigenvalue of (35).

Set § = O(r~1/2(n+1=m))  The coefficients become
O@™™) if 1<i<m
") oy it m<i<n-1
The polynomial (35) can be rewritten as
AL O@O)N T+ 00N 4+ OO TN
+ 4+ 0@E"TTA+O0WO ™) =0 (36)

It is easy to see that among n —1 eigenvalues of the polynomial, there are n—m
eigenvalues which are of O(f) and the other m — 1 eigenvalues are constant. Indeed,
from the relations between the coefficients and eigenvalues, assuming that the n — 1

eigenvalues are denoted by A1, As,...,An_1, it is well known that
n—1
> hi = -0(9) (37)
' =1
n—1
>N = 06?) (38)
ij=1

Adz - Aoy = O(6™™) (39)
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From (36), one can see that there exists at least one eigenvalue which is O(8).
Without loss of generality, assume that A; is such an eigenvalue. From (37) one can
see that, since A1 = O(6), there exists at least another eigenvalue which is O(8) such
that (37) holds. Continuing this deduction, we can draw the conclusion that there
are n—m eigenvalues which are O() and the other m —1 eigenvalues are constant.

In conclusion, for higher-order systems with ¢ of rank m, as r tends to zero,
n —m eigenvalues will approach —oo, while the others will converge to fixed values
on the left side of the complex plane. In order to achieve fast convergence, the rank
of @) should be set to one.

3.4. Occurrence of Sliding Modes

Since the system (1) under the control (2) with MFCA is asymptotically stable, the
system trajectory will approach the equilibrium. It should be noted that the sliding
mode will occur when the trajectory is close to the equilibrium. Indeed, take the
Lyapunov function V(z) = (kx)?/2. Differentiating it along the system dynamics (1)
with (2) yields

V = (kx)ki
= (kx)k(Az + Bsgn(kz))
= (kz)(kAz + kBsgn(ks))
= (kz)kAz + kBlka]|

Since k = —r~'BTP and the system is asymptotically stable, there exists a moment
to such that for ¢ > to we have |kB| > |kAz|, hence a sliding mode on s = kz =0
occurs. The system then exhibits the invariance properties of the sliding mode control
(Utkin, 1992). '

4. Numerical Simulation

For simulation studies, a second-order systefn and a fourth-order system were used
and the simulation software was Matlab.

4.1. Second-Order System

The parameters were chosen as

=[5 3] o) e fa]

and the value of r was decreased from 102 to 107%. The initial condition was
z(0) = (0.3,0).

Figure 1(a) shows the response of the system states versus time. Figure 1(b)
depicts the phase-plane trajectory. It can be seen that when close to the equilibrium,
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the slope of the trajectory tends to —oo, which is an indication of finite time con-
vergence. Figure 1(c) presents the corresponding switching function. The ripple is
due to the sampling period which was set to 0.01sec. The zigzagging was due to
changing k. The tendency of finite time convergence was observed. However, the
power of this scheme is better shown in the following higher-order system.

4.2. Fourth-Order System

The parameters were chosen as

0 1 0 o0 0 1 000
0 0 1 0 ) 10000
A 0001’B—O’Q“0000
-2 -3 -5 -3 1 00 00

and the value of r was decreased from 10% to 10~8. The initial condition was
z(0) = (0.3,0,0,0).

Figure 2(a) shows the system response as a function of time. Figure 2(b) presents
the corresponding switching function. It is seen that the switching hyperplane is
reached before the state reaches zero. The ripples are due to the iterative changes in
k. Along the switching hyperplane, the system trajectory is guided to reach zero very
quickly.

5. Conclusion

In this paper, we have presented a relay control scheme based on the LQR design with
fast convergence. This approach provides a practical and simple way to achieve fast
convergence based on the well-developed LQR approach. The controller is a kind of
global stabiliser which is tunable in accordance with the position of the system state:
the closer to the origin, the larger the control gains, which results in a non-linear
tuning relay control that maintains a bounded control magnitude as well and exhibits
fast convergence. It has also been proved that setting the @ matrix can significantly
influence the tendency of eigenvalues to switch the hyperplane. A relation between the
@ matrix and the tendency of the eigenvalues have been identified. It should be noted,
under ideal switching, that the convergence of the proposed scheme is nearly time-
optimal. The advantage of the scheme is that, unlike the situation in time-optimal
control where obtaining an analytic solution for linear systems of orders higher than
two is very hard if not possible, it provides an alternative analysis and synthesis tool
for fast control design.

It should be noted that when r tends to zero, the gain k tends to infinity. How-
ever, this does not translate to a high gain control, rather the ‘slope’ of the switching
line becomes ‘deeper’, which results in a fast transient process. The robustness is
reflected in the situation that in most cases, when r tends to zero, the magnitudes
of the states become small, hence they make the asymptotic stability condition eas-
ier to be satisfied. A further study will be conduced for MIMO linear systems and
non-minimum phase systems.
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Fig. 1. The second-order system: the system responses (a),
phase trajectory (b) and switching function (c).
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ing function (b).
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