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STRUCTURAL FORMULATION AND
SELF-OSCILLATION PREDICTION
IN MULTIDIMENSIONAL NONLINEAR
CLOSED-LOOP AUTONOMOUS SYSTEMS

KarTik C. PATRA*, BiBHuTI B. PATT*, ApAM LOZOWICKI**

This paper describes the structure of a general two-dimensional nonlinear closed-
loop system and application of the universal chart, leading to the use of computer
graphics, for a systematic analysis of the complex problem of predicting self-
oscillations (limit cycles). The graphical approach provides an explicit and novel
insight into the conditions for the occurrence of limit cycles in such systems.
This technique forms the basis of computer algorithms for predicting limit cycles
in multidimensional nonlinear systems. Application of the technique has been

illustrated through examples and comparison of results with digital simulation
in MATLAB 4.0/SIMULINK 1.3.

Keywords: universal chart, phasor diagram, limit cycles, multidimensional,
nonlinear system, describing function.

1. Introduction

Increasingly complex physical plants are commonly demanded in view of today’s in-
dustrial needs. The control of those plants has become a problem due to both the
plant complexity and attendant stringent control requirements. Such plants are usu-
ally characterised by multiple inputs, as well as multiple outputs. The outputs are
physical variables over which some degree of control is to be exerted.

The plants under consideration may be mathematically described by parameters
relating one set of plant variables to another. A particular parameter may represent
a very small physical portion of the plant, yet for engineering reasons the identity of
this parameter is important and should be retained in the design of a control system
for the plant. For example, this parameter can be peculiarly subjected to variation
in the response to an environmental disturbance. By retaining this parameter’s ex-
plicit identity, the parameter variation can be accommodated to the control system
specifications by feedback, adaptive or other techniques.
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This structure technique based upon intermediate variables and parameters of the
plant is discussed here for multivariable systems with interactions between individual
systems. A systematic review of the nature and structure of nonlinear multivariable
systems reveals the existence of many distinct structural forms (i.e. interconnection of
the elements constituting the system) unlike linear systems (Singh, 1965). However,
most of the work on nonlinear mutivariable systems continues to be developed in a gen-
eral framework and, in general, little use is made of the character of the system struc-
ture in the analysis of symmetric self-oscillations (limit cycles), the modus operandi of
nonlinear systems (Atherton, 1975; Atherton and Dorrah, 1980). The paper investi-
gates the nature of possible system structures that a general two-dimensional system
with nonlinear elements can possess. Subsequently, several important sub-classes of
this general structure are obtained by successive simplifications. A large number of
industrial systems like coupled core reactors (Raju and Josselson, 1971), PWR-type
nuclear-reactor systems (Parlos et al., 1988), radar antennae pointing systems (Niki-
foruk and Wintonyk, 1968) are known to possess the structure of a two-dimensional
nonlinear system.

Recognition of limit cycles, the modus operandi of nonlinear systems analysis, has
had a long and glorious history. Although no truly significant results have been ob-
tained in recent years for multidimensional systems, the study of limit cycle prediction
is of evident importance and hence addressed in this work.

Unfortunately, in spite of a great amount of work, it is well-known that exact
methods concerning limit cycle prediction are rare and even if they exist, they are dif-
ficult to apply. Thus approximate methods are used and probably the most versatile,
especially for complex and higher-order systems, is the sinusoidal input describing
function (DF) method. The describing-function approach provides a convenient tool
to analyse such oscillations and, by virtue of its inherent approximations, leads to a
significant reduction in the complexity of the analysis itself. A graphical technique
suitable for computer graphics has been developed for prediction of limit cycles in
two-input/two-output nonlinear systems. The paper presents a universal chart for
limit-cycle prediction. To the authors’ knowledge, this is the first work on limit-cycle
prediction of two-dimensional systems using universal charts. The attractive features
of the paper worth mentioning are as follows:

(i) A most general structure has been developed in view of the coupling effect be-
tween subsystems and claims more suitable for oscillation prediction. In addi-
tion, the chances are that any practical 2 x 2 system can be reduced to this
general structure form. The authors would like to mention that from the limit-
cycle point of view nothing is gained by complicating the situation by overem-
phasizing the importance of a structure which is different from that mentioned
here.

(ii) Apart from a direct application, the method has the clear advantage that
it brings out the influence of an individual system (the effect of interac-
tion/coupling) on the oscillation parameter.

(ili) The paper depicts clearly the amplitude ratio condition derived from the cross-
coupled MIMO system and has been used in conjunction with phase and gain
conditions for determining a limit cycle.
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(iv) The graphical technique (universal chart) forms a basis for computer algorithms
of limit-cycle prediction.

(v) The technique is derived from the basic concept of phasor relationships between
system variables and illustrated through examples without loss of generality.

(vi) The simplicity of the method and its close connection with frequency concepts
explain its wide practical application.

Notation:
w Frequency [rad/s].
G Linear element transfer function, function of frequency.

Ri, R, Amplitudes of inputs to Subsystems 1 and 2, respectively.
X1, Xo Amplitudes of inputs to nonlinearities.

Y1, Yo Amplitudes of nonlinear element outputs.

C1, C»  Amplitudes of subsystem outputs.

Ny, N Nonlinear functions of X; and X,.

B Phase angle between C' and R.

ér, Phase angle contributed by linear elements at a particular w.

2. A Most General Two Dimensional Nonlinear System
Configuration

This is an extension of the corresponding representation of a SISO system incorporat-
ing one nonlinear element developed in (Singh and Subramanian, 1980; Subramanian,
1978). To the best of our knowledge, this extension develops for the first time a general
framework for two-dimensional systems in a systematic and rational manner.

Figure 1(a) shows a two-input/two-output system incorporating only two nonlin-
ear elements and any number of linear elements connected in any arbitrary manner.
Since the system incorporates only two nonlinear elements, it follows that, in the most
general case, signals 1, z2, ¢; and ¢ must be derived from the signals u1, us, z1,
Za, Y1, Y2, ¢1 and cy passing through appropriate linear transmittances as shown in
Figs. 1(b)~(e). The signal flow graph (SFG) of the most general system can therefore
be visualised as the union of Figs. 1(b)—(e) as shown in Fig. 2(a) which can be finally
reduced to Fig. 2(b) or its equivalent block diagram representation as shown in Fig. 3.

The general system represented by Fig. 3 can further be simplified to the equiv-
alent representation shown in Fig. 4. This is treated as the most general two-
dimensional nonlinear system. From this structure, a special case shown in Fig. 5
is obtained for which G11 =1 and the other linear transfer functions have been given
new designations. Furthermore, from Fig. 5, an interesting case shown in Fig. 6 is
obtained, where Gz = —1. It can be noted that in the transformation from Fig. 3
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Fig. 1. A most general representation of a 2 x 2 nonli-
near system and relationships between variables.
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Fig. 2. A simplified equivalent form of the most general con-
figuration of the 2 x 2 nonlinear system under con-
sideration.
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Fig. 3. A most general configuration of the two-dimensional
nonlinear system.
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to Fig. 4, the transfer functions for the linear elements and the outputs C;, Cy and
C3 are also transformed even though the same symbols have been retained for conve-
nience. For a higher-dimensional system it becomes practically impossible to analyse
the system in terms of its explicit structural form and we have to resort to a matrix
formulation. The structure of a most general multidimensional system and the cor-
responding matrix formulation has been developed in (Patra and Singh, 1994; Patra,
et al., 1995). The paper analyses the limit cycle behaviour of the system shown in
Figs. 4-6 in their autonomous state. In the presentation of the work here, we have
sought to increase the complexity of the problem at successive stages, each stage dif-
fering from the previous ones in just one respect. This approach is adopted in order
to achieve greater clarity of presentation. However, the paper explains in detail ap-
plication of universal charts for the simplified system of Fig. 6 for clarity. The results
for other structures of Figs. 4 and 5 are given in Table 1 for various nonlinearities.

2.1. Limit Cycles in SISO Systems

In general, when a closed-loop system exhibits a sustained oscillation, the signal at
any point of the loop is transmitted round the loop to that point with no change in
the amplitude and phase. In other words, the system exhibits a self-oscillation when
the loop gain is unity and the loop phase shift is +2nn (Atherton, 1975), where n is
an integer. The equivalent characteristic equation, obtained with the use of DF’s of
nonlinear elements in the SISO system, satisfies the above two conditions (i.e. the loop
gain and phase shift) for the sustained self-oscillations. The characteristic equation
deals with complex functions of frequency and hence can be split into two independent
equations by separating the real and imaginary parts which can yield the amplitude
and frequency of self-oscillations.

2.2. Limit Cycles in Two-Dimensional Systems

Consider a system consisting of two interconnected subsystems as shown in Figs. 4-6.
A rigorous analysis of periodic phenomena in such systems is extremely complex.
However, if the system exhibits a predominantly single frequency oscillation, and if
the loops possess low-pass characteristics, then a simplified analysis based on the first
harmonic linearisation approach can be developed along the following lines (Atherton,
1975; Patra, 1986; Patra and Singh, 1996).

2.2.1. The Universal Chart Method for the Analysis of Limit Cycles

Consider the system shown in Fig. 6 in an autonomous state. When such a system
exhibits a limit cycle at a frequency w, then making use of DF’s, N;(X;) and Na(X5),
of the nonlinear elements, the characteristic equation in the frequency domain is
obtained as

1+ Ni(X1)Gi(jw) + N2(X2)G2(jw) + 2N1 (X1) N2 (X3)G1 (jw) G2 (jw) = 0

Three unknowns X;, X, and w require three ihdependent equations for their eval-
uation. By separating the real and imaginary parts of the above equation (after
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substituting the linear elements by the corresponding frequency response functions)
only two independent equations involving the three unknown quantities can be de-
veloped. Therefore the characteristic equation alone is not sufficient for the analysis
of limit cycles in such systems. However, replacing the nonlinear elements by the
respective DF’s, we note that for a possible limit cycle the following conditions must
be satisfied for ensuring harmonic balance (Patra, 1986; Patra et al., 1995):

(i) The Phase Condition:

0, + 0., = 180° (1)
where
NGy (jw) }
B, = Arg | ——————
'8 [1 + NG (jw)
_ NgGg(jw)
bea = Are [1 T N:Gs (jw)

(ii) The Gain Condition:

C1Cy

RiR )
where

G _ | _MNGi(w) i

Ry {14+ NGy (]w)

G _ ] NyGs(jw)

Rg - 1 + NgGg(jw)

(iii) The Amplitude Ratio Condition:

Xy 1

22— | Ry=0C) = MGi(jw)X
Ry |1+ NoGs(jw) 2 = C1 = MG (jw)X

leading to
Xo _|_MNiGi(jw) 3)
Xl 1 + Nsz(jw)

The last condition has been derived from relationships between the system vari-
ables. One may use the ratio C;/R; for that purpose instead. So whether the C;/R;
or X1/X ratio is used for the comparison or plotting, is a matter of individual pref-
erences. Our option is to use the latter because of its easy determination from the
intersection-point coordinates and at least in some part beacause it seems to be a
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more appealing data representation from the system eigenvector concept (Patra et
al., 1995; Patra and Singh, 1994).

The method comprises two steps. The first one determines all the possible solu-
tions satisfying only the phase and gain conditions for self-oscillations (cf. eqns. (1)
and (2)) and the second one determines possible solutions satisfying only the gain
condition and the amplitude ratio condition (cf. eqns. (2) and (3)). The intersections
of the possible solutions obtained from the two steps would simultaneously satisfy
all the three conditions for the existence of a self-oscillation and therefore yield the
desired solutions.

Step 1. Possible solutions satisfying phase and gain conditions.

The phasor diagram shown in Fig. 7 represents the phasors of the subsystems
S1 and Sy of the system of Fig. 6 (Patra and Singh, 1996). From the triangle ABD
of Fig. 7, we have

sin(180° - 6Lm) _ Sin(aLm had ch)

Rm B Cm
or
Cp _ sin(fr,, — 0em) _
log R Sn L , m=1,2 (4)

where 81, stands for the phase angle between X,,, and C,, = Arg(G,,(jw)) (assum-
ing that the nonlinear elements involve no phase shift) and 6., denotes the phase
angle between C,, and R,,.

For particular values of 6z; and 6, that correspond to a specific w (assumed),

a plot of log(C,,/Rmm) versus 6., can be obtained. We note that for a sustained self-
oscillation 6¢1 + 6.2 = 180° and log(C1/R:1) = —log(Ca/Rz) (cf. eqns. (1) and (2)).

m=1or2

Fig. 7. The phasor diagram for the system of Fig. 6.
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Hence possible solutions simultaneously satisfying these conditions can be directly
obtained if both the plots (log(Cy/R1) vs. 6,1 and log(Ca/Ry) vs. 6.2) are su-
perposed back to back and intersect each other. If no intersection occurs, then
no solution exists. This process is repeated for a range of w and the values of

log(C1/R1) = —log(C2/Ry) corresponding to the intersections are noted and subse-
quently a plot of log(Ci/R;) vs. w is obtained.

It is interesting to note that the plot of log(Cp/Rm) vs. 8cm depends on 61 and
does not depend on any particular characteristic of the system under consideration.
Hence two families of such curves can be drawn for various values of 8r; and 6p,.

These have been designated as the universal curves (Patra, 1986; Patra and Singh,
1996).

The two sets of curves are superposed on each other in the manner shown in
Fig. 8 (cf. Example 1). For each w, the angles 11 and 8o are known and we check
for the existence of intersections between the 611 curve of one set of universal curves
with the corresponding 8y curve of the other set in Fig. 8.
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Fig. 8. Superposition of universal curves for the system of Example 1.
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Step 2. Possible solutions satisfying the gain and amplitude ratio conditions.

The universal chart (Atherton, 1975; Singh, 1965) provides an elegant and simple
method for determining solutions satisfying the gain and amplitude ratio conditions.

The phasor diagram shown in Fig. 7 also yields

sin 8.,
sin HLm ’

X
log R—:: = log m=1,2 (5)
Hence, for a chosen value of i, and by taking 6., as a parameter, a plot of
log(Cr/Rm) versus log(X,,/R.,) can be obtained. This is called the universal chart
(Atherton, 1975; Singh, 1965).

Each curve of the universal chart also represents a plot of log Cp, versus log X,,
provided that the origin of the chart is shifted to a point O' having coordinates
(—log Ry, —log Ry,) as in Fig. 9. Mathematically, this can be expressed as follows:

sin{@rm — Bem)

1 My k)

IOng = 1()g Sin @ + ogE m=1,2 (6)

log X,, = lo st = +logR =1,2 7
g Am gSi 9 08 Lim, m ’ ( )

4

(y, /- _ -v i

(-log Rpn,-log Ko
4

e
e

Fig. 9. The universal chart with a shifted origin.
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Assuming a frequency w, a plot of log C,, versus log X,, can be obtained for a

particular Ry, (with 8., as the parameter). Further, examination of the system of
Fig. 6 also leads to

log Cy, = log Yy, +1log Gy

(8)
logYy, = log Ny, +log X, m=1,2

The DF’s (N,,’s) for both the nonlinear subsystems will be given. The plots
of logY;, versus logX,, for saturation-type nonlinearities are shown in Fig. 10.

A log y1
N,
0y 'log X
011 [
(0]
W3
(O
(O]
(a)
log y2
N3
(O]
Wy
3
0 1
0 0
0, “log X
(b)

Fig. 10. System characteristics on the universal chart plane.
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For a particular assumed w, a plot of logC,, versus log X,, can be obtained at
various values of X,,, using eqn. (8). Now, we have two sets of log Cy, versus log X,,
plots: the first is found by shifting the origin of the universal chart and the second by
shifting the DF plot. If both the plots are superposed on each other, the intersection
of the DF plot with that from the shifted universal chart will yield possible values of
log Cy, for each chosen value of w and R,,. For a particular value of w, by considering
various R,,’s, log Cp, values can be determined and hence the ratio C,/R,,. For a
limit cycle to occur, Ry must be equalto C; and R; = —C». In view of eqn. (2), the
C1 /R, value is plotted versus R; and the reciprocal of C3/R; is plotted versus —Cs.
The intersection gives the C;/R; value satisfying the gain and amplitude conditions
for the assumed w.

The whole procedure is repeated for a range of w and the values of logC;/R;
obtained for each w are plotted. Both the plots of logC /R1 versus w obtained
from Steps 1 and 2 are superimposed and the intersection gives the frequency of a
limit cycle satisfying all the three conditions mentioned in eqns. (1)—(3).

Once the frequency of self-oscillations is determined, the amplitudes of other
variables of interest can subsequently be determined in a straightforward manner.

The following example is intended to illustrate the procedure outlined above.

Example 1. Consider the system shown in Fig. 6 with G1(s) = 2/s(s+1)%, Ga(s) =
1/s(s + 4), the two nonlinear elements having ideal saturation characteristics with
saturation limits S} = 1.5 and Sy = 2.0, respectively, and the unit linear gain.

The DF’s for the two nonlinear elements (N; and N,) are (Atherton, 1975) as
follows:

2(. 4,15 15
NI(XI) = :]_r— <Sln 1 Z + —)21“ 1- (15/X1)2) for X1 > 1.5

2 20 20 ©)
Ni(X5) = - (sin*1 —X—2 + 3(—2- 1-— (2.0/X2)2) for X5 > 2.0

Step 3. The superposition of the two sets of universal curves is shown in Fig. 8 (for
clarity, only a few curves are shown) and the values of log(C1/R;) yielded by the in-
tersection points at several frequencies are read out leading to the plot of log(C; /R;)
versus w shown as curve A in Fig. 12.

Step 4. For the nonlinear characteristics considered in this example the curves
N1 (logYy versus log X;1) and Ny (logY; versus log X3) are shown in Figs. 10(a)
and (b), respectively, and the origins, O.,s, corresponding to several values of w are
also marked in the same figures. The universal chart for the system can be drawn
following the procedure outlined in Step 2.

For a typical value of w = 0.775 and R; = 0.74, the superposition of the
N1 curve on the universal chart (61 = 165.55) is shown in Fig. 11(a) and yields
the value of C; = 1.74 and 2.95. Similary, for Ry = 2.95 at the same frequency
the superposition of the N, curve on the universal chart (82 = 101.0) shown in
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Fig. 11(b) yields C2 = 0.74. For several values of Ry, the Cp,/R,, ratios were found
and plotted as explained earlier. The intersection points give the value of C1/R; for
the assumed frequency.

The process is repeated for several values of w and the corresponding values of
log (C1/R1) which satisfy the required gain and amplitude ratio conditions are noted
and based on these results a plot of log(C1/R1) versus w is added as curve B in
Fig. 12.

The point of intersection of curves A and B in Fig. 12 yields w, the frequency
of self-oscillation, as 0.7813rad/sec.

Subsequently, the amplitudes of the other variables of interest are determined as

X, =2.997, X, =29743, C;=29038, C,=0.7345

Step 2 of the universal-chart method appears to be somewhat cumbersome at
first sight. However, the whole programme has been implemented with the use of
MATLAB 4.0 leading to fairly accurate results at the expense of a small amount of
computational and graphic work (Table 1). ¢

2.3. The Most General System

Consider the system of Fig. 4. For this, the subsystem S, along with G3 can be
considered as one subsystem. We can take for static and memory-less nonlinearities

61 = Angle(G11(jw)) + Angle(G12(jw))

(10)
1o = Angle(ng(jw)) + Angle(Gg (]w))
The subsystem gains are C1/R; and C3/R,, respectively. A limit cycle occurs when
Cy = Ry, and C3 = —R;. The steps explained for the analysis of Fig. 6 can be used
for this system with these modifications.

The system of Fig. 5 is the same as that of Fig. 4 except for the linear element
G11 = 1.0 here.

Example 2. Consider the system of Fig. 4 with G11(s) = s+1, Gi2(s) = 2/s(s+1)3,
Gaa(s) = 1/s(s +4), G3(s) = 1/(s + 1)(s + 4) and the two nonlinear elements
having ideal saturation characteristics with saturation limits S; = 1.5 and Sz = 1.0,

respectively, and unit linear gain. The results of the limit cycle analysis are given in
Table 1. ¢

Example 3. Consider the system of Fig. 5 with Gz = 2/s(s + 1)?, Gaa(s) =
1/s(s+4), G3(s) = 1/(s+3) and the two nonlinear elements having ideal saturation
characteristics with saturation limits S; = 1.5 and S; = 1.0, respecively, and unit
linear gain. The results of the limit cycle analysis are given in Table 1.
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165.55° and frz = 100.96° for w = 0.775rad/sec).
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Fig. 12. The solution to the system of Example 1.

Table 1. Results of Examples.

Example I Parameter I Graphical l Digital simul™ | Simulink

1 wlrad/s] | 0.7813 0.7728 0.7854
G 2.9038 2.9559 3.05
Co 0.7345 0.7719 0.8
X 2.9973 3.0583 2.99
X, 2.9743 3.0684 3.15

2 wlrad/s] | 09737 0.9728 0.9779
G 1.1444 1.1645 1.1546
Ca 0.2754 0.2783 0.2763
X1 1.5591 1.5543 1.558
X, 1.1839 1.1941 1.1893

3 wlrad/s] | 0.9511 0.9518 0.9533
Cy 1.8287 1.8158 1.8289
Co 0.3111 0.3211 0.3289
X 1.7967 1.7763 1.838
X; 1.8811 1.8826 1.8703
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3. Digital Simulation

A digital simulation method for the system considered here is similar to the one earlier
used by the authors (Patra et al., 1995). The method makes use of an extension of
two-dimensional nonlinear systems of the technique adopted by (Subramanian, 1978)
for SISO systems. For clarity, the technique is illustrated by application to a specific
example.

Example 4. Consider the system of Example 1. A state variable representation
for this system in canonic form is shown in Fig. 13. Introduction of samplers at the
input and output points of the nonlinear elements and insertion of a gain T (since
TG(z) ~ G(s) for a small T) leads to the equivalent Z-transform representation as
shown in Fig. 14, where:

v1(nT) = filz1(nT)], y2(nT) = fo[z2(nT)]
z1(nT) =r(nT) —aa(nT), z2(nT) =ro(nT) — c2(nT) (11)
ri(nT) = —ca(nT), ro(nT) = ¢1(nT)
and
Wi(z) 2z Wy (z) -2z Ws(z)  —22Te T

Yi(z) z—-1" Yi(2) T e T Yi(z) (z—eT)2
(12)
Vi(z) 025z  Va(z)  —0.25z

Ya(2)  z2—1" Ya(z)  z—e 4T

Equation (12) leads to the following difference equations:

w1 (nT) = 2y1(nT) + wy ([n — 1]T)

wa (nT) = —2y1 (nT) + e~ Twa ([n — 1]T)

wy(nT) = —2Te™"y1([n — 1]T) + 2¢~Tws ([n — 1]T) — e~ * w3 ([n - 2]T)

vy (nT) = 0.25y5(nT) + v1 ([n — 1]T")

v2(nT) = —0.25y2(nT) + e *Tva ([n — 1]T) : (13)

a (nT) = T{wi(nT) + w2 (nT) + w3(nT)}

ca(nT) = T{v1(nT) + vo(nT)} (14)

Equations (11), (13) and (14) define the recurrence relationships for the system

variables and can be directly implemented on a digital computer. It should be noted,

however, that in the case of simulation the system demands the presence of a low-
frequency signal initially. This is the excitation signal used to initiate the oscillation
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Fig. 13. The state-variable representation in ca-
nonic form for the system of Example 4.
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Fig. 14. The digital representation of Fig. 13 in Z-domain.
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built up in the system. This technique has been found to yield accurate results with
considerable economy in programming and the computing time.

Following the same approach, the limit cycle parameters have been predicted for
systems of Examples 2 and 3 too. The results are presented in Table 1 for all the
examples.

The proposed method of digital simulation offers the following advantages:

(i) It is based on principles of continuous-time controller approximation and in-
cludes therefore an intersampling behaviour of the system.

(ii) The value of the chosen sampling interval is much less (T = 0.001s).

iii) Even for a relatively larger sampling time (T' = 0.01sec) the results are com-
g g
parable to the earlier values computed at a small sampling time (verified by an
author).

(iv) It is straightforward and works well with any example system.

(v) It is also suitable for multirate sampling.

4. Conclusions

The advantage of the universal-chart method over the other methods is that, be-
ing a general method, its use can be extended to systems incorporating nonlinear
elements having more general characteristics (including multivalued ones) while the
other methods would become exceedingly complex in such cases. In addition, for
systems with more complex linear transfer functions and nonlinear characteristics, it
would be extremely difficult to formulate and simplify the expressions in the harmonic
balance method.

Making use of the universal chart, a graphical method, leading to application of
computer graphics has been developed for analysing limit cycles in nonlinear multidi-
mensional systems. The method is particularly elegant for two-dimensional nonlinear
systems and can be applied to higher-order systems. This technique can also be ex-
tended to the analysis of complex oscillations during the process of signal stabilisation
(the dither signal may be fed at u; or uy of Fig. 6 (Atherton, 1975)). For the system
possessing low-pass loop characteristics, the DF analysis provides results of acceptable
accuracies as verified from the comparison with results from MATLAB/SIMULINK
and digital simulation of the system.
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