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DETECTION AND REGULATION PROBLEMS
FOR DISCRETE-TIME DISTRIBUTED
SYSTEMS WITH DELAYS

ABDELWAHED NAMIR*, Fouap LAHMIDI*
OMAR ALIF*

A distributed discrete-time hereditary system is considered. An unknown in-
put is supposed to be a perturbation. First, we investigate the possibility of

" reconstructing this input using the information provided by an output equation.
Then we treat the problem of keeping the observation as close as possible to
some desired values (with the system still perturbed by the unknown input).. To
illustrate the results, some examples are presented.

Keywords: detection, discrete and delay systems, regulation, unknown inputs.

1. Introduction

In recent years, many works have been devoted to the study of discrete-time dis-
tributed systems, we can cite e.g. the works (Kern and Przytuski, 1988; Kubrusly,
1989; Phat and Dieu, 1992). More recently, the case of discrete-time distributed sys-
tems with delays in the state, the control or the observation has also been considered
(see the works of Karrakchou and Rachik, 1995; Karrakchou et al., 1999; Namir et al.,
1998; etc.). In these studies, several concepts related to discrete-time systems have
been investigated such as controllability, observability, stability, observers, compen-
sators, etc.

The aim of this work is to investigate the ‘detection’ and ‘regulation’ problems
for discrete-time distributed systems with delays in the state, the input and the out-
put. When considering a mathematical model for a system of physical, chemical or
economic type, it is often necessary to take into account some unknown parameters
that affect the system. Depending on the nature of the considered system, these
parameters can be of different origins: errors in the approximation of the original
system, some external perturbations, excitations of an unknown source, etc.

Many works have been devoted to the study of systems with an unknown input.
The problems considered depend on the nature of the unknown action. We can note
e.g. the works (Afifi and El Jai, 1994; 1995) where the input has been considered
as the excitation of an unknown source. The aim of those works was to investigate
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the possibility of reconstructing the input using the information given by an output
equation (the detection problem).

A more classical problem is the so-called regulation problem. In this case the
unknown input is considered as an undesirable perturbation (noise) whose effects on
the system must be ‘regulated’ instantly by a suitable control.

In this work, we study the detection and regulation problems in the case of
systems whose states evolution is described by a set of discrete-time delayed equations
in Hilbert spaces. More precisely, we consider the systems which can be written after
transformation as

P 4 r
Gis1 =9 Aj&ij+ > Difij+» Bjuij, i>0
j=0 j=0 j=0

(1)
fv =¢r givenfor —~¢g<k<-1and & eX,—-p<k<0
with the output equation
m
yi=» Citicj, i>1, m<p (2)
e

where & € X, fy € F, u; €U, y; €Y. Thespaces X, F, U and Y are supposed to
be Hilbert spaces with Y of a finite dimension. The operators A;, D;, B;, and Cj
are linear and bounded in the appropriate spaces. In the sequel, the sequence (f;)i>o0
will denote the unknown input.

In the first part of this work, we investigate the possibility of reconstructing the
input (f;)i>o using the information given by the observation (the detection problem).
The problem considered can be formulated as follows:

Given eqn. (1), with (f;)i>o unknown, and the observation (2),
(P1)S .. . =
is it possible to reconstruct the sequence (f;)i>o0?

It can be considered as a mathematical model of many practical phenomena, especially
the problem of environmental pollution. The danger of pollution increases when the
pollution source is unknown. In this case the source can be considered as an unknown
action (input) which is observed via an output equation and must be detected.

In the second part, our objective is to keep the output y; as close as possible to
a desired value y¢. To achieve this, we apply, at every instant i, a suitable control
u; to the system (the regulation problem). More precisely, the problem considered in
this section is as follows:

At every instant 4, find a control u; which will ensure that the
(P2) ¢ observation y; is maintained as close as possible to the desired
output y¢.
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The work contains four sections. In the second section, we treat the detection
problem. We begin by considering the case of systems with delays only in the input
and output (without delays in the state). Then we give a generalization of all the
presented results to the case of systems with delays in the state, input and output.
The regulation problem is investigated in Section 3. We develop two methods to
calculate the appropriate control that will ensure that the output is maintained as
close as possible to the desired values. The work also contains examples that illustrate
the developed results.

2. Detection Problem

In this section, we assume that the system (1) is not controiled ((u;)i>—q = 0)

¥4 q
Eir1 = EAj€i~j + ZDjfi—j, 0<i<N-1

j=0 7=0 (3)
fr=¢r given, .¢<k< -1 and &€ X, -p<k<0

where N =1,2,.... First, we investigate the detection problem in the case of systems
without delays in the state and then we generalize the results.

2.1. The Case of Systems with Delays in the Input and Output (without
Delays in the State)

Consider the system

q
£i+l=A§i+szfi—j, 0<i<N-1 (4)
Jj=0

fe=10¢r givenfor —g<k<-1 and € X

where A € L(X) and the operators D;, j = 0,...,q satisfy the same hypothesis as
in the Introduction. The solution to (4) is given by

g i-1

& =A%+ ZZAi—j_lefj—ka 0<i<N

k=0 j=0

In the following, we assume A~% = (A*)™* =0, for i = 1,2,... Hence, for all [ > 0,
we can write

¢ i-l-1

G =AM+ Y AT, 1<i<N

k=0 j=0
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We have

m g i—l-1

chfz z—ZClA’ G+ Y D CATITID

1=0 k=0 7=0

m g i-l-k-1

= ZC;A’ GHEY DT ST GATITERIDL,

=0 k=0 j=-k

m g

= zClAl DY Z CLATI 1Dy g

1=0 k=0 j=—k

m i—1

= EC’lA‘ G+ CATITIIDy f;

=0 j=0

q -1 m q i—1

+ l‘; Z Z ClAi~j~l~k-1Dk¢j+z Z ZClAi——j-—l—k——lefj
0

=0 k=1 j=—k 1=0 k=1 j=0

qg i-1
= a; + iZZC,Ai‘j‘l‘k“lefj, 1<i<N

{=0 k=0 j=0

q
where a; = ZC;A’ ’§0+ZZ Z Ci ATk 1D;,¢>J 1<i<N.
1=0 k=1 j=—k
Without loss of generality, we assume that a; = 0, 1 < ¢ < N. (If a; #0
for some 7 € {1,...,N}, we can consider the observation y; — a;). Introduce the
following operator:

Q: (fiocicn-1 € F¥ +— (yi)1<icn € YN

where (y;)i<i<n is the observation corresponding to the input (f;)o<i<n—1. The
operator () can be.written in the matrix form as

CoDy 0 0

mo g
> > ClAYIEDE CoDy
=0 k=0

m g m q
Z ZClAN—z—k—le ZZClAl—l"“Dk CoDy

=0 k=0 =0 k=0
It is easy to check that @ is linear and bounded. Its adjoint is given by

Q* : (yi)i<i<n € YN = (fiocicn—1 € FN
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where

m q N
=D 3" > Di(A*y T EICry;, 0<i<N -1

=0 k=0 j=i+1

e

or in the matrix form

m q
DECE e e ZD’:(A*)N—Z—IC—ICI*
=0 k=0
0
Q" =

The main result in this subsection is given by

Proposition 1. Consider the system (4) with the output equation (2). If the operator
Q s injective, then every input (fi)o<i<n—1 can be reconstructed.

Proof. We have Q*Q(fi)o<i<N—1 = Q*(yi)1<i<n- The operator Q*Q is positive
definite, since @ is injective, and hence it is invertible. Therefore the sequence
(fi)o<i<n—1 is given by

(Ffi)ocisn-1 = (Q*Q) ' Q" (Y <ign

To check if the operator @ is injective, one can use the following characterization:

Proposition 2. The following statements are equivalent:
(a) the operator Q is injective,
(b) the mapping CoDy is injective.

Proof.

(a) = (b) Assume that there exists f € F such that CoDof = 0. Set f; = 0 for
1=0,...,N—2 and fy-1 = f. We obtain Q(fi)0§i§N~1 =0 and hence f = 0.
(b) = (&) Let (fi)OSiSN—l € FN such that Q(fi)OSiSN-—l = (yi)lsiSN = 0. We have
e 0=y; =CoDofo and hence fy = 0.

e Assume that f; =0 for j=0,...,i— 1, where i € {1,...,N —1}. Then

31—l m g m g
O0=yipa = z Z z CL A=k Dy fi + E Z CiA™"*Dy fi = CoDo fi
7=0 1=0 k=0 =0 k=0

Thus f; = 0 and therefore (fi)OgiSN—l 0. ]
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Assume that Q is injective. To reconstruct an input (fi)o<i<n-1, it is not
necessary to invert the operator Q*Q as it is seemingly suggested in the proof of
Proposition 1. Instead, we can proceed as follows. Write Qo = CoDo. The operator
Qo is linear and bounded and its adjoint is given by Qf = D3C;. In addition, Qo is
injective and so is Q{Qo. Furthermore,

o We have Qofo =y1 and so fo = (Q¢Q0) ' Q51
e Assume that the f;, j = 0,...,i — 1, where ¢ € {1,...,N — 1}, have been
calculated. We have

i—-1 m q

Yirl = Z Z Z CLA™I kD + Qofi

§=0 1=0 k=0
Hence QFQofi = @52i+1, where
i—-1 m q
il
i =yiyr = 33 ) GATTTEDS,
j=01=0 k=0

Therefore f; = (Q3Q0) 1 Q}zit1.

Example 1. As an illustration of the above result, consider the following hyperbolic
system:

(0% ,

ﬁz =Az+ Xﬂl (x)fl(t) + XQz (x)f2(t) + Xﬂa (:L')fl(t - h’)a ("E’ t) E]Oa 1[2
2(z,0) = %z(az,O) =0, z€]0,1{

z(0,t) = 2(1,t) =0, t€]0,1]

| f1(0) =0, 6€[-h,0], h=0.25

where Q1 =]0,1/3[, Q2 =]2/3,1[, 3 =]1/3,2/3[ and X, denotes the characteristic
function of the interval ;.

We assume that the observation is given by

(z(', t)’ XQ4>
y(t) = (6)
<%Z(‘,t), X95>

where Q4 =]0,1/4[, 5 =]3/4,1[ and (-,-) denotes the inner product in the Hilbert
space L2(]0,1]).

Let X = H}(0,1) x L?(0,1), & = (2(-,t),0z(-,t)/0t) € X and define the opera-
tors

a -0 a 0
Ey ER — eX, Ep: ER — ex
0 (b) ((IXQI—I-()XQz) ! <b) aXa,
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The system (5)—(6) can then be written in a state-equation form as follows:

£(t) = ®E(t) + Eof(t) + B f(t — h) -
6(0) = 09 f(a) = 07 0 e [—'h70[
y(t) = C&(t) (8)

where

_ fl(t) 2 _ 0 I _ ('7XQ4>
fm"(hw>€R’¢_(A0>’C‘(m%9)

and I is the identity mapping in L2(]0,1[). The operator & is the infinitesimal
generator of the strongly-continuous semigroup S(t);>o defined by

Z {cos(mrt) (1, bn) + %Sin(mrt) (z2, bn)] by,
S(t) ( i ) =| =
T2

Z [— sin(n7t) (z1, by) + cos(nwt) (z2, bn)] by
n=1
where b, = v/2sin(nzt), n > 1.

Let § = l/N, where N = 1,2,..., t; = i), i € Z, f(t) = fi, t E]ti,ti+1[,
Jj=E(h/d), Ao = S(8), & = 2(t;) and y; = y(¢;). The system (7)—(8) can then be
described by the following discrete system:

§iv1 = Aoli + Dofi + Djfij+ Djy1fij—1, 0<i<N-1 )
, ©

f() = 0, fk = 0, k<0
yi=0&, 1<i<N (10)

where Do, D; and Dj,1 € L(R?,X) are given by

s (7+1)8 h+é
Do = / S(t)Eo dt, DJ' = / S(t - h)El dt, Dj_|_1 = / S(t - h)El dt
0 h (3+1)8
If the system (5) is perturbed by the input f(¢) = (exp(—t),sin(nt/2)), then
one can check by a direct computation that the observation is given by y(t) =
(y1(£),y2(t)), where

) yZ(t)
yi2(t) if A<t<1

y11(t) if 0<t<h y2,1(¢) if 0<t<h
yi(t) = =
ya(t) if h<t<1
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y1,1(t) = Z (nﬁ [ T 12 5 [ sin(nt) — nm cos(nat) + nw exp(—t)] (l—cos (n_37£))

+ ﬁ (sm(mrt) —~ 2nsin (7;15)) (cos (MTW) - COS(””))]
(1 ()

y12(t) = y11(t) + ZZ(sin(mr(t — h)) — nwcos(nm(t — h)) +nwexp(h — t))
n>1

X (cos (—T—?—) — Cos (?)) %
Y2,1(t) = ; mr)2 [ﬁ(cos(nﬂt) + nmsin(nwt) — exp(—t)) (1 — cos (%))

+ ;r—(i—?TnZ) <cos(mrt) — €OS (%)) (cos (2%1) — cos(nw))]
X (cos(3n7r4 — cos (%))

y2.2(t) = y2,1(8) + Z?(cos(mr(t — h)) + nwsin(na(t — h)) —exp(h — t))
n>1

X (cos (n?vr) — cOos (%TW)) (cos (?::)/24&)1:_(::75?;/4))

If we take as the output the sequence (y(t;))1<i<n—1, then we will obtain the
numerical results given in Table 1. In the second column, we give the exact values of
fi(-) and fo(+) fordifferent points in [0,1]. In the others columns, we present some
approximations of the values of fi(-) and f3(-) corresponding to different values
of N. Figures 1 and 2 represent the results in graphical form. ¢

Example 2. Consider the diffusion system described by the following parabolic
equation:

( E%Z — Az = Xo, f(t) + Xa, f(t - h), (z,t) €]0,1[x]0,1]
) 2(z,0) =0, =z€]0,1] )

z(0,t) = z(1,t) =0, t€]0,1]

| f(8)=0, 6¢€[-h,0, h=0.25
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Table 1. Approximation of f1(-) and fa(').

N=100 | N=200 | N=400 | N =600 | N =800 | N = 1000

f1(0) 1 0.966719 | 0.998335 | 0.999167 | 0.999445 | 0.999583 | 0.999667
f2(0) 0 0.007874 | 0.003929 | 0.001964 | 0.001309 | 0.000981 | 0.000785
f1(0.1) | 0.904837 | 0.901983 | 0.903410 | 0.904123 | 0.904361 | 0.904481 | 0.904552
£2(0.1) | 0.156434 | 0.164293 | 0.160338 | 0.158380 | 0.157730 | 0.157406 | 0.157211
f1(0.2) | 0.818731 | 0.816306 | 0.817518 | 0.818124 | 0.818326 | 0.818426 | 0.818485
f2(0.2) | 0.309017 | 0.316649 | 0.312791 | 0.310894 | 0.310266 | 0.309953 | 0.309765
f1(0.3) | 0.740818 | 0.738784 | 0.739800 | 0.740309 | 0.740477 | 0.740568 | 0.740013
£2(0.3) | 0453990 | 0.461194 | 0.457539 | 0.455752 | 0.455162 | 0.454868 | 0.454692
f1(0.4) | 0.670320 | 0.668635 | 0.669478 | 0.669898 | 0.670039 | 0.670112 | 0.670157
f2(0.4) | 0.587785 | 0.594347 | 0.591013 | 0.589386 | 0.588850 | 0.588583 | 0.588423
f1(0.5) | 0.606531 | 0.605116 | 0.605836 | 0.606186 | 0.606301 | 0.606363 | 0.606409
£2(0.5) | 0.707107 | 0.712886 | 0.709939 | 0.708509 | 0.708038 | 0.707804 | 0.707664
£1(0.6) | 0.548812 | 0.547623 | 0.548246 | 0.548533 | 0.548632 | 0.548674 | 0.548729
f2(0.6) | 0.809017 | 0.813882 | 0.811386 | 0.810186 | 0.809793 | 0.809560 | 0.809481
f1(0.7) | 0.496585 | 0.495610 | 0.496139 | 0.496371 | 0.496451 | 0.496495 | 0.496554
£2(0.7) | 0.891006 | 0.894819 | 0.892850 | 0.891913 | 0.891607 | 0.891456 | 0.891365
1(0.8) | 0.449329 | 0.448573 | 0.448995 | 0.449172 | 0.449228 | 0.449256 | 0.449306
£2(0.8) | 0.951056 | 0.953732 | 0.952331 | 0.951678 | 0.951468 | 0.951364 | 0.951302
1(0.9) | 0.406570 | 0.406064 | 0.406351 | 0.406467 | 0.406520 | 0.406527 | 0.406616
£2(0.9) | 0.987688 | 0.989185 | 0.988369 | 0.988011 | 0.987900 | 0.987846 | 0.987814

where o =]0,1/2[, Q; =]1/2,1[. The observation is given by

n=1
The system (11) can be written in a state-equation form as follows:
2(t) = Az(t) + Eof(t) + E1f(t — h)
2(0)=0, f(6)=0, 6¢€[-h0]
where 2(t) € X = L2(]0,1]), Eo and E; € L(R, X) are given by
Ei:aeR+—akh, € X, i€{0,1}

The laplacian A is the infinitesimal generator of the strongly-continuous semi-
group S(t);>0 defined by

o]

Sz =3 e ™" (z,b,) by,

n=1
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Fig. 1. Approximation of fi(-).
eeee0 N=3
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Fig. 2. Approximation of fa().
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Using the same technique as in the previous example, we can rewrite the system
(11)—(12) in the following discrete form:

§it1 = Ao& + Dofi + Djfij + Djt1fiej1, 0<i<N -1 ”
14
=0, fr=0, k<0
b= 3% (b (13
n r¥n
n=1
where Do, D; and Dji1 € L(R,X) are given by
g (+1)s h+d
Do = / S(t)Eedt, D;= / S(t—R)Eydt, Djsr = / S(t — h)Ey dt
0 h (+1)8

As a numerical example, consider

§t) f 0<t<h
9(t) if h<t<l1

<

() = g (Wzte_"zt +i Wl—l)e_n%% (e"z(”Ll“ - 1) (1 — cos (%)))
n=2

i) = g 2 (1 1 (e ge-ee0)

Sty ) - ()
+ e~ (t=h) (ewz(nz—l)(t—h) _ 1) (cos (%E) - cos(mr)))]

The results are gathered in Table 2. In the second column, we give the exact values of
f(-) for different points in [0,1]. In the other columns, we present some approxima-
tions of the values of f(:) corresponding to different values of N. The same results
are also visualized graphically in Fig. 3. ¢
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Table 2. Approximation of f(-).

N=100 [ N=200 | N=400 | N=600 | N =800 | N = 1000

£(0) 1 0.949890 | 0.974938 | 0.987498 | 0.991680 | 0.993768 | 0.995020
£(0.1) | 0.372708 | 0.354572 | 0.363575 | 0.368125 | 0.369649 | 0.370413 | 0.370871
£(0.2) | 0.138911 | 0.132166 | 0.135511 | 0.137204 | 0.137771 | 0.138056 | 0.138227
#(0.3) | 0.051773 | 0.049636 | 0.050607 | 0.051164 | 0.051360 | 0.051461 | 0.051523
#(0.4) | 0.019296 | 0.018394 | 0.018833 | 0.190616 | 0.019139 | 0.019178 | 0.019202
#(0.5) | 0.007192 | 0.064378 | 0.006898 | 0.007067 | 0.007115 | 0.007136 | 0.007149
#(0.6) | 0.002680 | 0.002398 | 0.002574 | 0.002637 | 0.002654 | 0.002661 | 0.002666
£(0.7) | 0.000999 | 0.000931 | 0.000969 | 0.000985 | 0.000990 | 0.000993 | 0.000994
£(0.8) | 0.000372 | 0.000597 | 0.000427 | 0.000384 | 0.000377 | 0.000374 | 0.000373
£(0.9) | 0.000139 | 0.000205 | 0.000155 | 0.000142 | 0.000140 | 0.000139 | 0.000139

BEEEEIExact solut ton
Aatatofoh, Ned

sk Nt
GOTRN=10
6460 N0
ok N=1 00

Fig. 3. Approximation of f(-).

The assumption that @ is injective is not always verified, especially if the space
F is of an infinite dimension. Define then the operator

Q: mogiqu € FY/ker@Q — Qfidoci<cn—1 = Q(fi)ocicn-1 € YN

where moqu_l = (fi)o<i<n—1 + ker Q. The operator Q is linear, bounded and
injective. Therefore, to each (y;)1<i<ny € An := Im(Q) will correspond a unique
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element (fi)o<;cy_; € FV/ker@ such that

GWOS@M = Q(fi)o<icn—-1 = (Yi)i<i<N

To reconstruct (fi)g<;<n_;, it is sufficient to find a sequence (ff)o<i<n—1 € FN
such that Q(f)o<i<nv—1 = (¥i)1<i<N, because we then have

(Fo<icn—1 = (ffo<i<n-1 + ker @
Therefore the idea is to search for an input ( f#)o<i<n-1 of minimal norm which

satisfies Q(f)o<i<n-1 = (¥i)1<i<n. The existence and uniqueness result is given by

Proposition 3. If (yi)icicv € An, then there exists a unique sequence
(fHo<i<n—1 € FN of minimal norm such that Q(f)o<icN—1 = (¥s)1<i<n-

Proof. The set

Faa = {(fi)ogicn-1 € FY JQ(F:)o<icn-1 = (Ui)1<i<n )

is non-empty by the hypotheses and, since @ is bounded, it is closed. In addition,
one can easily check that F,4 is convex. Hence, by the projection principle, there
exists a unique element (f)o<i<n—1 € Faaq such that

1(fo<isn-1l = (v,-)os.-i;}vf_lefad H(vi)o<i<n-1]|

In order to present a method to calculate the sequence ( f#)o<i<n—1, we introduce
the operator

A iicicn € YN +— QQ* (i) 1<i<n = (2zi)1<icy €YY
with

i-1 N m
2= 3 % zq: Cr A Ik=1=1 D D2 (A)e=i=1=A=1 0y

7=0 a=3+11,8=0k,y=0

Lemma 1. Consider the set Ay and the operator A. We have

AN =Im (A)

Proof. It is readily verified that ker(Q*) = ker(QQ*). Moreover, since Y is a finite-
dimensional space, we have

Ay =Im (Q) = (ker(Q"))" = (ker(QQ"))" = Im (QQ*) = Im (A)
| ]
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Proposition 4. Let (yi)i1<i<n € An. The sequence (ff)o<i<n—1 15 given by

(ffo<isn—1 = Q" (Mi)1<i<n

where (n:)1<i<n € YN is such that
A(m)lgigN = (Yi)1<i<N
Proof. Since (y;)1<i<n € An, by Lemma 1 there exists (n;)1<i<n € YN such that
AMi)1<i<n = (Ui)1<i<n. Set (ff)o<i<n—1 = @*(m:)1<i<n. Then we have
e Q(fNo<i<n—1 = QRQ* (M) i<i<n = A(mi)1<i<n = (Yi)1<i<n-
e Let (v;)o<i<n—1 be a sequence in FV such that (y:)i1<i<n = Q(vi)o<i<n—1.
We have
0 = (Q((fo<icN-1 — (Vi)o<i<n—1), (Mi)1<i<n)
= (

(fHo<i<cn-1 — (vi)o<i<n—1, @ (M) 1<i<N))
(fHogisn-1 = (vi)ogisn-1, (f{ Jo<i<n—1)

Hence
H(fi*)QSiSN—1H2 = ((fo<icN—1, (Vi)o<i<n-1)
< N(Fo<ign—1ll I(vi)o<i<n-1]]
and so [|(f¥)ocicn-1ll < [|(vi)o<icn-1]]- L]

2.2. The General Case (System with Delays in the State, Input
and Output)

Consider again the system (3) with the output equation (2). If we set
— T — yp+l q ;
m’i_(gi:--'ag’i—pafi——l;---:fi—q) EX=X XFa OSlSN
then (3) reduces to the difference system

Tiy1 = Az + Df;, 0<i<N-1

g € X
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where
Ag Ay -+ o Ay Dy - - oo Dy Do
Iy 0 -+ v 0 0 v e o0 0
0 .
0 0 I 0 O 0 0
4=1 9 .0 0 > D=1
Ip 0
0
0O -+ «+ -« 0 0 - 0 Ir © 0

with Iy and Ir being the identity mappings on X' and F, respectively. Moreover,
if we define

C=(CoCy - Cpm 00 - 00) € L(X,Y)

p+g—m times

then the output equation (3) can be written as
yi=Czi, 1<i<N (17)

By this transformation, it is possible to tackle the detection problem for the system
(2)-(3) using the difference equations (16)-(17). Remark that the system (16)—(17) is
a particular case of (2)—(4) (with ¢ = m = 0). Therefore, al} the results presented in
the precedent section are still applicable. In the sequel, we give a concise formulation
of these results and the proofs will be omitted.

Without loss of generality, we assume that zo = (€o,...,é—p,¢—1,...,6—4)T = 0.
The operators () and A are in this case of the form

Q: (fi)o<i<n—1 € FN —s (yi)1<icy €YV

i—1
yi=» CA=I-1Df;

j=0
CD 0 .. 0
CAD CD

CAN-1D ... CAD CD
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and

Ayi)1<icn € YN — QQ*((yi)1<i<n) = (2i)1<i<v €YV

i—1 N
2= Z Z CAi—j—lDD*(A*)k—j—lcf*yk
570 k=j+1

Let Ay = {(yi)lgigN € YN/3(fi)o<i<n-1 € FN: Q(fio<icn-1 = (yi)1§i§N}-

Proposition 5. (a) If (yi)i<i<ny € Ay, then there ezists a unique sequence

(fi*)USiSN—l e FN of minimal norm such that é(fi*)OSiSN—l = (yi)lfiSN' It is
given by

(f)o<icn-1 = Q(mi)1<i<N
K(ﬂihgiglv = (yi)lgigN
(b) Moreover, we have the following results:

e The operator @ is injective if and only if CD = CyDy is one-to-one.

o If @ is injective, then every input can be reconstructed. It is given by
(fo<icn—1 = (@*Q)*Q* (yi)r<i<n

Remark 1. In the case where the operator Cj is one-to-one, we can use the method
presented in the precedent section to reconstruct the unknown input.

3. Regulation Problem

As can be seen in the previous section, it is always possible to reduce a hereditary
system to difference equations by rewriting the delayed system in an appropriate
product space. This transformation permits us to consider in this section, without
loss of generality, only discrete systems of difference equations. For example, the
system (1)—(2) can be reduced as follows. Set

I;= (5i,---a£i~1—‘l:fi—17-"7fi—q:ui—17--'>ui——7')T eX = A‘)p+1 x F? x UT: 1 2 0
It is easily verified that the sequence (z;);>o satisfies
zit1 = Az, + Dfi + Bu;, i>0
g € X
and

Y = Cmi, 1 > 1 (19)
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where the operators A € £(X), D € L(F,X), Be L(U,X) and C € L(X,Y) are
respectively given by

Ao Ay -+ -~ Ay Dy -+ -+« -« Dy By -+ --- ... B,
Iy 0 -« -« 0 0 v «+ ==+ 0 0 v v o D
. . . )
0 0 Iy 0 0 -+« v «ov 0 0 «ov oo oo 0
0 O 1 N N ¢ NN N
Ip :
A= 0

0 0 0 0 Ir 0 0 0
0 0 0 e 00 0

o

0
0 -+ «++ =« 0 0 ++ v oo 0 0 - 0 Iy O

D=(Dy 0 0Ir 0--0 )", B=(Bo0--0Iy0---0)"

p times g+r—1 times p+q times r—1 times

and

C = (Co Cy - Cp 0---0 )
p+g+r—m times

If the system (18)-(19) is not perturbed ((fi); = 0) and not controlled ((u;); = 0),
then the output is given by y; = CA'zg, i > 1. We recall that the problem considered
in this section is as follows:

Find, at every instant ¢, a control u; which will ensure that the
(P2) . S , :
observation y; is maintained as close as possible to CA%zg.

Set e; = y; — CA’zy. A method to calculate the control (ui)i>o0 is given by

Proposition 6. Assume
(a) dimU =dimY < oo,
(b) CB and CD are injective.

Then there exists a control sequence (u;)i>o such that e; = CDfi_y, Yi > 1. In
addition, if f; — 0 as i — 00, then ¢; — 0 as i — oo.
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Proof. Define

Ug = 0
i1 . -1 (20)
ui = ~(CB)™'C | Y D (D*C*CD) ™ D*C*ejy1 + Y A"'Bu;|, i>1
§=0 Jj=0
We have

® Yy = Czr, = CAzg + CDfo, hence e; = Cng
e Assume that e; = CDf;_y for j =1,...,i, where i > 1. Then, by (b),

fi-1=(D*C*CD)™' D*C*e;, j=1,...,i
On the other hand,

mip1 = Aitlzg + Y AIDf; + Y A Buy;

§=0 =0
i—1 i—1

= A"lgo + Dfi + »_A"IDf; + Y A"IBu; + Bu
j=0 7=0

Hence

i—1 i—1
yir1 = CAlgy + CDfi + C [ZAi_jD(D*C*CD)—lD*C*6j+1 + ZAi_jBUj:i
7=0 j=0
i—1 i1
~ CB(CB)™'C |Y_AID(D*C*CD)"'D*C*ejp1 + » A1 Bu;
j=0 7=0
and therefore e;11 = CDf;. [

Example 3. Consider the system (9)-(10) of Example 1. In the product space
X = X x (R?)7*! this system reduces to

Tipr = Az +Df;, 120
(21)
To € X
yi=Cx;y, 121 (22)
where
Ao 0o - 0 Dj Dj+1 D(]
0 0 - 0 I
I 0
A= , D=
0
0 0 0o I 0 0
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and

C=(Co 00---00) € L(X,Y)

j+1 times

Suppose that U = R? and the operator B € L(U, X) is given by
( Olbl )
Bba
«
B ( ) — 0
s :

0

Then one can easily check that the operators CB and CD are one-to-one. Let
fi = (exp(—i/10),0) and zo = 0. In this case e; = (e1,i,€2,i) = ¥i, © > 1. If we apply
the control (u;)i>0 given by (20) to the system (21), we obtain the numerical results
of Table 3. They are also represented graphically in Figs. 4 and 5.

Table 3. Approximation of e; and e2.

[ ] 10 20 30 40 50
e | 4.40242x107* | 1.61956x 107 | 5.95803x107° | 2.19184x107° |8.06330x107°
ez | 1.22236x 1078 | 4.49290x107° | 1.65164x107° | 5.52972 x 107 '° 0

The hypotheses of Proposition 6 are strong. However, Problem (P2) can be
expressed as an optimization one which gives a method to calculate the control (u;)i>o0
with weaker hypotheses. For every ¢ > 0, set

Ji(ui) = lleitr = CDfill® + Judl® (23)
(P2) can be considered as equivalent to the problem of finding, at every instant i, a
control u} € U that minimizes the criterion J; given by (23). ¢

Proposition 7. Assume that the operator CD is injective. Then the control (uf)i>o
is given by the following recurrence relations:

ug =10
fo = (D*C*CD) ™' D*C*e;

i—1 i—1

uf = (I +B*C*CB) ™' B*C* | Y _CAIDf; + Y CA™Bu;
=0 =0
i-1 i

fi=(D*C*CD)™ D*C” | esp1 — 3_CA™Df; = 3 CA™IBu; |, ix1
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Fig. 4. Approximation of e;.

Fig. 5. Approximation of es.
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Proof. We have
y1 = CAzo + CD fy + CBug (24)

Hence Jo(uo) = |luol|? + ||CBuol/? and therefore u} = 0. By (24), CDfy = e; and
hence fo = (D*C*CD)™" D*C*e;.

Assume that u} and f;, j=0,...,4— 1 have been calculated. We have
‘ -1 -1
Tip1 = A'H-l:l:o +Df; + ZAi—Jij + ZAl_JBu;- + Bu;
Hence
i-1 i1
eis1 —CDfi =Y CA™Df; + > CA™IBu} + CBu; (25)
§=0 §=0
Therefore

2
+(({ + B*C*CB) u;,u;)

i—1 =1
Ji(ui) = H;OCAZ’—J'D fi +§OCA1‘—J'Bu;

i—1 i—1
+2 <B*C* ( CA™IDf; + Zcﬁ—f&;) ,ui>

The minimum u} of J; satisfies

=0 §=0

i—1 1—1
(I +B*C*CB)u; = -B*C* (Z CA*™IDf;+» CA™I Bu;)
Hence

i—1 i—1
u,{ - _ (I+B*C*CB)—1 B*C* (ZCAi-ijj + ZCAi—jBU;)

=0 =0
and, by (25), we have

j=0 j=0

i—1 i
fi = (D*C*CD)™' D*C* (em ~ D CA™IDf; =" CA™Y BU§)

Example 4. The system (14)—(15) of Example 2 can be rewritten in the product
space X = L2(]0,1]) x RI*t! as follows:

{ Tiy1 = Az; + Dfi, >0

9 € X

yi=Cmzi, i>1 (27)
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where
AO 0o - 0 Dj Dj+1 DO
0o o0 - 0 I
I 0
A= . , D=
0
0 0 0 I 0 0
and

C=(Cy 00---00)

741 times

Let U = R? and assume that the input operator B € L(U, X) is given by
ab1
0
B: “ — .
g :
0

It is easy to check that the operator C'D is one-to-one. As a numerical application we
assume that f; = e~ %1% and z = 0. In Table 4 we give different values of the error
e; obtained when the system is excited by the control (u}); given in Proposition 7.
Figure 6 shows the same results graphically. ¢

Table 4. Approximation of e;.

i 10 20 40 80 120 140
e; || 0.086648 | 0.032527 | 0.004403 | 0.000806 | 0.000001 | 0.000000

4, Conclusion

In this work, we have investigated the problems of detection and regulation for
discrete-time delayed systems in Hilbert spaces. In all the presented results we have
assumed that the involved operators are linear. We think that it will be interesting
to study the detection and regulation problems for nonlinear systems. Such systems
require different approaches from those used in this work. We think that the fixed-
point technique can be a useful tool to resolve the detection and regulation problems
for nonlinear systems. This possibility is now under investigation.
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Fig. 6. Approximation of e;.
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