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VARIATIONAL ANALYSIS OF A FRICTIONAL
CONTACT PROBLEM FOR THE BINGHAM FLUID

Bassam AWBI*, Lynpa SELMANTI**
MIRCEA SOFONEA*

We consider a mathematical model which describes the flow of a Bingham fluid
with friction. "We assume a stationary flow and we model the contact with
damped response and a local version of Coulomb’s law of friction. The problem
leads to a quasi-variational inequality for the velocity field. We establish the
existence of a weak solution and, under additional assumptions, its uniqueness.
"The proofs are based on a new result obtained in (Motreanu and Sofonea, 1999).
We also establish the continuous dependence of the solution with respect to the
contact conditions.
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variational inequality, weak solution.

1. Introduction

The constitutive law of the Bingham fluid has been used in various publications in
order to model the flow of metals in a die. Such situations abound in industry,
for example the wire-drawing process. Because of the importance of this process, a
considerable effort has been made in its modeling and numerical simulations, and the
engineering literature concerning this topic is rather extensive, see e.g. (Cristescu,
1976; 1980) and references therein.

Variational analysis including the existence of weak solutions to evolution or sta-
tionary problems involving the Bingham model can be found in (Duvaut and Lions,
1970; 1972), in the case of adherence boundary conditions and in (Ionescu, 1985;
Ionescu and Sofonea, 1993) in the case of contact conditions with non-local fric-
tion. The blocking phenomenon in the study of the Bingham model was analyzed in
(Ionescu and Sofonea, 1986) while a numerical analysis of problems with the Bingham
fluid can be found in (Fortin, 1972; Glowinski et al., 1976) and references therein. A
practical application of the Bingham model in the study of wire-drawing through a
conical die was considered in (Ionescu and Vernescu, 1988). There, numerical compu-
tations were provided, using a velocity variational formulation and the finite-element
method.
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The stationary flow of a Bingham fluid in the presence of a deformable obstacle
was recently considered in (Awbi et al., 1999). There, a general relation between the
normal stress and the normal velocity on the contact boundary, governed by a non-
negative function p,, was assumed. The friction was modelled by a non-local version
of Coulomb’s law, involving a friction bound function p. and a smoothing operator.
The introduction of this non-local smoothing operator was mode for technical reasons,
since the trace of the stress tensor on the boundary is too rough. A velocity variational
formulation for the process was derived and the existence of a weak solution was
established by using classical results for elliptic variational inequalities and fixed-point
arguments.

The present paper parallels (Awbi et al., 1999). Here we consider the same
physical setting and we use the same normal contact condition in order to model the
reaction of the obstacle to penetration. The novelty consists in the fact that here
we model the friction by a local version of Coulomb’s law which avoids the use of
smoothing operators. We derive a variational formulation of the problem for which
we obtain an existence result. We also provide conditions on the contact functions p,
and p, in order to have the uniqueness of the solution and its Lipschitz continuous
dependence with respect to the data. The proofs use a different functional method and
are based on a recent result on quasi-variational inequalities obtained in (Motreanu
and Sofonea, 1999). We complete our results with the study of the dependence of the
solution on the contact boundary conditions.

The paper is structured as follows. In Section 2, the mechanical problem is
stated and the frictional contact conditions are discussed. In Section 3, we propose
a variational formulation of the model and state our main existence and uniqueness
result, Theorem 1. The proof is established in Section 5, and it is based on an abstract
result that we recall in Section 4. In Section 6, we study the dependence of the weak
solution on the contact boundary conditions and we establish a convergence result.
Finally, in Section 7, we present some concluding remarks.

2. Problem Statement

In this section, we describe a model for the process and we discuss the boundary
conditions. The physical setting is the following. We consider the flow of a Bingham
fluid in a domain Q C R? (d = 2,3) with a regular boundary I'. We assume that T
is divided into three disjoint measurable parts 'y, T's and I's such that measT'; > 0.
The fluid is supposed to be incompressible and the velocity is known on I'i. Given
body forces of density f, are acting on £ and given surface tractions of density
f, are acting on I';. On I's we impose frictional contact conditions which we now
describe. We assume that the normal stress o, satisfies a general damped response
condition of the form

-0y = py(uy) (1)

where p,, is a prescribed nonnegative function and wu, represents the normal velocity.
As a concrete example, we may consider

p(r) =kry (2)
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where k£ > 0 and r. = max{0,7}. This condition shows that the contact pressure
is proportional to the normal velocity, but only under compression. It was already
considered in (Rochdi et al., 1998a), in the study of a quasi-static viscoelastic contact
problem with friction.

The tangential stress o, is related to the tangential velocity u, by the relation

|0.T| SpT (uV)
lor| < pr (uy) = ur =0 (3)
|Ur|:pr (UU)Z>O'T:—A'U.T, A>0

This represents a version of Coulomb’s law of friction in which p, is a non-negative
function, the so-called friction bound. The friction law (3) was used in various papers
to study quasi-static elastic or viscoelastic problems, see e.g. (Rochdi et al., 1998b).
It states that the tangential shear cannot exceed the maximal frictional resistance p, .
When inequality holds, there is adherence of the fluid on I's and the fluid is in the
so-called stick state. When equality holds, there is relative sliding, the so-called slip
state. A choice of the function p, is given by

Pr = ppy (4)

where p > 0 is a coeficient of friction. Plugging (4) in (3) leads to the classical
Coulomb law of friction, used e.g. in (Duvaut and Lions, 1972). Recently, a new
version of Coulomb’s law was derived in (Strémberg, 1995; Strémberg et al., 1996),
based on thermodynamic considerations. It consists in using in (3) the friction bound

pr = ppy(1—ap,)+ (5)

where « is a small positive coefficient related to the wear and hardness of the contact
surface.

Throughout the paper the indices i and j run from 1 to d, the summation con-
vention over repeated indices is implied and the index that follows a comma indicates
a partial derivative. We use Sy to represent the space of second-order symmetric ten-
sors on R? or, equivalently, the space of symmetric matrices of order d. We define
the inner product and corresponding norm on R¢ and S; by

K[

UV = u;, v = (v-v)? Vu,veRe

=

o T = 04T, [rl=(r-7)2 Vo,7 €8y
We denote by w = (u;) : @ — R? the velocity field and by o = (0;) : @ — S4
the stress field. The constitutive law of the Bingham fluid is given by

D(u)

| Dw)]
lo'l<g if |D(u)|=0

o =2D(u) +g

(6)
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Here 1 > 0 is the coefficient of viscosity, g > 0 is the yield limit, D(u) denotes the

rate deformation tensor defined by
1
D(u) = (Dij(w), Dij(u) = 5(uij + uj,)

and o is the deviator of o given by

’ ’ 1 Okk
o = (0y), 0; =0y —— 0

The Bingham model (6) has been considered by many authors in order to model
real materials like pastes, metals, etc. Various details and mechanical interpretation
on this model can be found e.g. in (Cristescu and Suliciu, 1982).

With these assumption, the classical formulation of the mechanical problem is

the following.

Problem P: Find a velocity field u = (u;) : @ — R? and a stress field o : Q —

Sy such that

o = 20D (w) + g &3; it [D(u)| #0

lo'| <g if |D(u)|=0
Dive + f, =0 in 0

divu =0 in Q

u=U on I'y

ov=f, on I'y

—oy =py (W), |or| <pr(uw)

lor| < pr(u,) = ur =0 on T3

|UT|:pT(“u):>UT:—/\UT, A>0

in Q

(7)

(8)
(9)

(10)

Here (8) represents the equilibrium equation in which Dive = (o0y;;) and (9) is
the incompressibility condition in which divu = wu;;. Finally, (10) is the velocity
condition in which U is given and (11) represents the traction boundary condition.

3. Variational Formulation

In this section, we set the mechanical problem (7)—(12) into a variational formulation,
list the assumption on the data and state our main existence and uniqueness result.
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To this end, we need some additional notation. We use the classical notation for
L? and Sobolev spaces. If X represents a real Hilbert space endowed with the inner
product (-,-)x and norm |- |x, we denote by X¢ and X2*¢ the spaces

Xd

{z=(z) |z eX, i=12,...,d}

X = {@= (o) |y =25 € X, 1,j=1,2,...,d}
endowed with the inner products

(@, Y)xe = (i, yi)x, (T, Y) xaxe = (Ti5, i) x

respectively. The associated norms on X¢ and X¢*¢ will be denoted by | -|x« and
| - | xaxa, respectively.

For every vector field v € H!(Q)¢, we write v for the trace of v on I' and use
the symbols v, and v, to denote the normal and tangential components of v on
the boundary given by

Vy =V -V, VUr=7v—UV

respectively. We use the notation div and D for the divergence and rate deformation
operators, respectively, defined by

divy = (‘Ui!@)

D(v) = (Dij(v)), Dij(v) = =(vij + vj4)

DN | =

for all v € H}(Q)4.
We consider in the sequel the closed subspace of H(2)¢ given by

V={veH(Q)?|divo=0in ©, v=00n I} }
Since meas I'; > 0, Korn’s inequality holds:
[v] 1y < CkID(’U)ILZ(Q)fxd YoeV (13)

where C}, is a strictly positive constant depending on Q and I';. A proof of Korn’s
inequality can be found in (Necas and Hlavagek, 1981, p.79). From (13) we see that

(u,v)y = (D(u),D(v))Lz(Q)ded (14)

is an inner product on V' and the corresponding norm |-|y is equivalent to the norm
|- |a1(@)e on V. Moreover, by the Sobolev trace theorem, (13) and (14), we have a
constant Cp depending only on the domain €, I'y and I's such that

[|garyye < Colvly Yo eV (15)
We define the set of admissible kinematic velocity fields to be
K={veH' Q)" |divo=0in Q, v=U on Iy}
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We suppose that the boundary data U is such that
K+#0 (16)
and the forces and tractions have respectively the regularity

fo€ (@)% fy € L*(T3)° (17)

We also assume that the contact functions p, : T3 x R — Ry (r = v, 7) satisfy
the following conditions:

(a) there exists L, > 0 such that

|p,(:1:,u1) —p,.(w,uz)‘ < Lplur —ua| Yur,uz € R, ae. zels; as)
18
(b) =+ p.(x,u) is Lebesgue measurable on I';, for all u € §;

(c) zr—p(z,u)=0 if u<0, aexzel;

We observe that the assumptions (18) on the functions p, and p;, are pretty general.
The most severe restriction comes from condition (a) which requires the functions to
grow at most linearly. Certainly, the function defined in (2) satisfies condition (18a).
We also observe that if the functions p, and p, are related by (4) or (5) and p,
satisfies condition (18a), then p, also satisfies condition (18a) with L, = puL,. Con-
dition (18c) shows that when there is no compression (i.e. u, < 0), then the tractions
vanish (o, = 0, o, = 0). Clearly, this condition is satisfied for the function given
by (2). We also observe that if the functions p, and p, are related by (4) or (5) and
p, satisfies condition (18c), then p, also satisfies condition (18c).

Next, we introduce the following notation:

a: HH(Q) x H'(Q)? — R, vaﬁﬂ@/DW}D@Nm (19)
Q

e H' Q) — R, o) = g/ ‘D(v)l dz (20)
Q

¢ HY () x HY(Q)! — R,

o(u,v) = /p., (u,,)]vu|da+/p, (uy)|v,|da (21)
I's T's
F:HI(Q)d—HR, Fw)= [ fo-vdz+ [ fy-vda (22)
[#ree]

where da represents a surface element. Using conditions (18) and the regularities (17),
it follows that the integrals in (21) and (22) are well-defined.
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Lemma 1. Let (16)—~(18) hold. If {u,o} are suficiently regular functions satisfying
(7)—(12), then

u €K, a(u,v-—u)+p)—p(u)+é(u,v)-¢(u,u) > Flv—u) Yoe K (23)

Proof. Let {u,0} be smooth functions satisfying (7)~(12) and let v € K. Using (9)
and (7), we have

/cr . (D(v) - D(u)) dz < a(u,v — u) + p(v) — p(u) (24)

Q

Moreover, integrating by parts and using (8), (10)—(11) yields

/o--(D(v)—D(u))da: = /fo-(v—u)da:+/f2-(v—u)da
Q T'a

Q

+/au-(v-u)da

T3
and by (22) it follows that
/a’- (D(v)—-D(u)) dx=F(v—u)+/aV~(v—u)da (25)
Q Is

Using now the contact conditions (12) we obtain

/au (v ~u)da 2/p,,(u,,)([u,,|—|v,,|) da +/pf(uu)(|u,|—|vr|) da

I3 I's I's

and by (21) we find

/au (v —u)da > ¢(u,u) — ¢(u,v) (26)

T3

Inequality (23) is now a consequence of (24)—(26). m

Lemma, 1 leads to the following variational formulation of the mechanical Prob-
lem P:

Problem Q: Find a velocity field u : § — R? such that u is a solution to the
variational inequality (23).

Our main existence and uniqueness result which we establish in the next section,
is as follows:

Theorem 1. Let (16)-(18) hold. Then:
(1) Problem Q has at least a solution u € K.
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(2) There exist Lo >0 depending only on Q, T'1, I's and n such that if L, + L, <
Lo then Problem Q has a unique solution u € K and the map (fy,f2) — u
is Lipschitz continuous from L?(Q)¢ x L*(T3)¢ to H(Q)<.

We conclude that, under the assumptions of Theorem 1, there exists a velocity
field w which can be interpreted as a weak solution to the mechanical problem (7)-
(12). Moreover, by Theorem 1 (2) it follows that this solution is unique if the Lipschitz
constants L, and L. are small enough. As it follows from the proof of this theorem,
the critical value Lo depends neither on the material constant g nor on the external
forces f, and f,, nor on the imposed velocity U.

The proof of Theorem 1 can be obtained in much the same way as in (Ionescu,
1985; Ionescu and Sofonea, 1993), based on abstract results on Ky-Fan’s inequal-
ity. It can also be proved using the Schauder-Tychonoff fixed-point theorem and the
method employed in (Awbi et al., 1999). Here we present a different functional argu-
ment in solving the variational Problem @, based on a recent abstract existence and
uniqueness result for elliptic quasi-variational inequalities that we present in the next
section.

4. An Abstract Existence and Uniqueness Result

Throughout this section V' will represent a real Hilbert space endowed with the inner
product {-,-)yv and the associated norm |- |y. We denote by ‘=’ weak convergence
in V. Let A:V — V be a non-linear operator, j : VxV — R and f € V. With
these data we consider the following quasi-variational inequality: Find w € V' such
that

(Au,v —u)y +j(u,v) - j(u,u) 2 (v —wy VveV (27)

In order to solve (27), we assume that A is strongly monotone and Lipschitz
contiunous, i.e.

(a) There exists m > 0 such that
(Au — Av,u —v)y > mlu—vf Vu,veV

. (28)
(b) There exists M > 0 such that
|Au — Avly < M|u—v|ly Vu,veV
The function j fulfils the requirement
j(&, ) : v — R is a convex functional on V,forall§ € V (29)

Keeping in mind (29), it is well-known that the directional derivative

36 uv) =lim 3 [i€u+20) i€ w] Ve uwveV (30)
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exists. We now formulate additional conditions on the function j:

[ For every sequence {u,} C V with |u,|y — oo

{ and every sequence {t,} C [0,1], one has (31)
. . 1 -1 .

| l1nn_1)101(1)f [mh(tnun,un, ——un)] <m

For every sequence {u,} C V with |u,|y — oo

{ and every bounded sequence {£,,} C V, one has (32)

L. 1
| il [ € s —u] <om

For all sequences {u,} C V and {£,} C V such that u, =~ u €V,

¢ &, — £ €V and for every v € V, one has (33)
lim sup [.7( n,’U) - j(&n’un)} S ](s:v) - ](gau)
\ n—oo

(34)

j('u.,v) °j(uuu) +j(vau) hj(’vav) Sﬂlu_’vl%/ Vuav € V)
for some 8 € R with 8 < m

In the study of the quasi-variational inequality (27) we have the following result:

Theorem 2. Let (28)-(29) hold. Then:

(1) Under assumptions (31)—(33) there exists a least one element w € V which
solves (27).

(2) Under assumptions (31)~(34), problem (27) has a unigque solution u = uy which
depends Lipschitz continuously on f with the Lipschitz constant (m — B8)~L.

Theorem 2 has been obtained recently (Motreanu and Sofonea, 1999) and there-
fore we do not provide here the details of the proof. We just specify that the proof is
obtained in several steps and it is based on standard arguments of elliptic variational
inequalities and topological degree theory. A trait of novelty of Theorem 2 consists,
to the best of our knowledge, in considering conditions (31) and (32), formulated in
terms of the directional derivative of the functional j.

5. Proof of Theorem 1

We turn now to the proof of Theorem 1 which will be carried out in several steps. We
assume in the sequel that (16)—(18) hold. In the first step we shall obtain homogenuous
boundary conditions. To this end, let ug € K (see (16)). Since

K:V+U0 (35)
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it is easy to see that u is a solution of the variational inequality (23) if and only if
i = u — ug is a solution of the variational inequality
@€V, a(@+ug,v—1a)+ @(v+ug) — (@ + ug)

+ ¢(@ + ug,v + up) — (@t + ug, & +ug) > Flv —) YaeV (36)

Moreover, using the Riesz representation theorem, we may consider the operator
A:V — V defined by

(Au,v)y = a(u +ug,v) Yu,v eV (37)
Let now j:V x V — V' be the functional given by
j(u,v) = (v +ug) + ¢(u + ug,v +ug) Vu,v €V (38)
Next, keeping in mind (17), it follows that F' is a continuous linear functional
on V. Therefore, by using again the Riesz representation theorem, there exists f € V
such that
(Fov)y =F(v) YveV (39)

Summarizing, from (35)-(39) we find the following result:

Lemma 2. The element u € K is a solution to Problem Q if and only if the
element @ = u — ug is a solution to the quasi-variational inequality

weV, (Ad,v-a)y+j(@,v)—j@a) > (ffv-—a)yy YveV (40)

In the next step we investigate the properties of the functional j defined by (38).
Clearly, j satisfies (29). Moreover, we have the following results:

Lemma 3. The functional j satisfies assumptions (31) and (32).

Proof. Let & u € V and X €]0,1]. Using (38), (20) and (21), after some algebra
we obtain

(€ u— ) — (€ u) < Ag f |D(uo)|dz — Ag / | D + uo) | dz
Q Q

+2 [ pol€, +ow)luoy| da — A / o (& + 100 [y + 0| da
I's I's

+ )\/ (& + uoy) |uor| da — /\/pr(&, + uoy)|ur +uo-| da
T3 I's
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and, since g > 0, p,, p; > 0 a.e. on '3, we deduce that

J(&u = Au) - j(§,u)

< Ag / |D(uo)|dz + A / Pu(€y + o) o] da + A / pr(&, + o) uor | da
Q I's

I

Using now (30), (18) and (15) in the previous inequality, it follows that

Jo (€, u; —u) < 9/ |D(uo)|dz+C3(Ly+L,)|é+uoly uoly VE, ueV (41
Q

Lemma 3 is now a consequence of (41). ®
Lemma 4. The functional j satisfies assumption (33).

Proof. Let {un,} CV and {€,} C V be two sequences such that u, — u € V,
€, >~ €€ V,and let v € V. From the compactness property of the trace map
and (18) it follows that

Pr(&ny +uow) — pr(& +uoy) in L*(T3) (r=v,7)
Uny — Uy,  |Unr| — |u,] in L?(T3)
Therefore, by (21) we obtain

(&, + w0, v + up) — P(€ + uo,v + uo) (42)

(&r + w0, un +ug) — G(& + o, u + uo) (43)

Moreover, since the functional ¢ defined by (20) is a convex lower semi-continuous
functional, we find

lim inf p(u, 4+ uwo) > w(u + ug) (44)
n
Condition (33) results now from (38) and (42)-(44). ®
Lemma 5. The functional j satisfies the inequality

J(u,0) = j(u,u) +j(v,u) ~ j(v,v) < CY(Ly + L )lu—vf}, Yu,weV (45)
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Proof. Let u,v € V. Using (38), (20) and (21), we get

j(u,v) - ](U,U) +j(v,u) —j(’U,'U)

[ ot + 0 = o+ 10)) (] = s + 1)
T3 . '

+ / (pr(uy +ugy) — pr(vy + uoy)) (Jvr + uow| — |ur + uoy|) da
T3

IN

Ll,/lu,, —u[?da+ LT/l'uV — v |os —urlda < (L, +LT)/|u — v[?da
Pg Fa FS

Using now (15) in the previous inequality, we obtain (45). W

We have now all the ingredients to prove the theorem.

Proof of Theorem 1.
(1) Using (37), (19) and (14) we find
{Au — Av,u— vy = 2nlu — v}, (Au-— Av,w)y = 2n(u —v,w)y

for all u, v, w € V. From these inequalities it is straightforward to see that
the operator A satisfies conditions (28) with m = M = 2. We recall that the
functional j given by (38) satisfies (29) and by Lemmas 3 and 4 it follows that
j also satisfies conditions (31)—(33). Therefore, using Theorem 2 (1) we deduce
that the quasi-variational inequality (40) has at least one solution @ € V. The
existence part of Theorem 1 follows now from Lemma 2.

(2) Let Lo = 2n/Og.'CIear1y, Lo depends only on €2, T'1, I's and 5. Let now assume
that L, + L, < Lo. Then there exists 8 € R such that C3(L, + L,) < 8 < 2.
Using (45), we obtain

j(u’v) —j(u,u) +j('U,U) —j(’l),’U) Sﬂlu_vi%/ ‘V"LL,’U ev

We conclude that the functional j satisfies condition (34) and, using Theo-
rem 2 (2), we deduce that.(40) has a unique solution % € V which depends
Lipschitz continuously on f. The uniqueness part of Theorem 1 follows now
from Lemma 2. Using now (39) and (22) we see that the map (f,, f,) — f
is Lipschitz continuous from L?(2)¢ x L2(I'3)% to V. Therefore, since the maps
fr—oa:V-—Vadavr— u=1-u:V — H(Q)? are Lipschitz
continuous, we find that (fq, f2) — u : L*(Q)? x L?(T'3)¢ — H(Q)? is also
a Lipschitz continuous map, which concludes the proof. ™

6. A Continuous Dependence Result

In this section, we study the dependence of the solution to Problem @ on the pertur-
bations of the contact functions p, and p,. To this end, let us suppose in the sequel
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that (16)-(18) hold and L, + L, < L. Using Theorem 1 we deduce that Problem Q
has a unique solution v € K. Next, for-every a > 0, let p& be a perturbation of
pr which satisfies (18) with Lipschitz constant L (r = v, 7). Let also introduce the
functionals ¢* which are obtained by replacing p, and p; by p% and p® in (21).

We consider now the following problem:
Problem Q%: For a > 0, find a velocity field u® : @ — R? such that
u* €K, a(u®v-u®)+ o) - pu®)
+ ¢%(u®,v) — ¢*(u*,u*) > Flv—u®) Yve K (46)

Clearly, Q* represents the variational formulation of the problem (7)-(12) in
which p, and p, are replaced by p% and pZ, respectively.

We suppose now that the contact functions satisfy the following assumption:
There exists 0 > 0 and 6, : Ry — R (r = v, 7) such that

(a) |p$(m7u) —pr(:z:,u)] <br(a)lul YueR, ae xzels
®) Jim br(e) =0 )
() L¥+L¥+6< Lo

for all & > 0. Under this assumption, using again Theorem 1 we deduce that for each
a > 0, Problem Q“ has a unique solution u® € K. Moreover, we have the following
convergence result:

Theorem 3. The solution u® to Problem Q% converges in H(9)? to the solution
u to Problem Q as o — 0.

In addition to the mathematical interest in this result, it is of importance in
applications, as it indicates that small inaccuracies in the contact conditions lead to
small inaccuracies in the solutions.

Proof of Theorem 3. In what follows, we denote by C a strictly positive constant
which may depend on 2, I'y, I's,  and wu, but does not depend on «, and whose
value may change from line to line. Let a > 0. Taking v = u in (46), v = u®
in (23) and adding the resulting inequalities yields

a(u® —u,u® —u) < ¢*(u® u) — ¢*(u®, u®) + ¢(u,u®) — ¢(u,u)  (48)
Using (21) we have
9% (u® u) — % (u® u®) + ¢(u, u®) — (u,u)

< (!P?(U,‘f) _pV(U’V)|L2(I‘3) + |p$(u,‘j‘) - pT(uV)ILz(Pa)) [u® — U|L2(I‘3) (49)
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Now, (47a) implies
'pg(u(;) _pr(uu)|L2(p3) < Lﬂua - 'UIILZ(rs) + ar(a”ule(rs) (r=v, T)

and plugging this inequality in (49) yields

¢%(u®,u) — ¢%(u®,u%) + ¢(u,u”) — ¢p(u,u)
< (Lg + Lf.‘)lua - u|2L2(F3) + (9,,(01) + 9.,-(01)) |u|Lz(p3)|u°‘ - UILz(I’s)

Using (35), we remark that u®—w € V. Thus, plugging (47¢) and (15) in the previous
inequality, we obtain

¢%(u*,u) — ¢%(u®,u%) + ¢(u, u®) — ¢(u,u)
< C§(Lo = 8)u® — ufy + €5 (6u (@) + 0-(a)) lulv [u® —uly  (50)
Moreover, by (19) and (14) we deduce that
au® — u,u® — u) = 2fu® — uf} (51)
Therefore, from (51), (48) and (50), keeping in mind that Lo = 2n/CZ, we obtain
6u® — uly < (8,(c) + 8- () Julv (52)

Theorem 3 follows now from (52), (47b) and Korn’s inequality (13).

7. Conclusion

In this paper, we have studied a mathematical model which describes the flow of a
Bingham fluid with friction. Such types of problems arise in metal forming, e.g. in
the wire-drawing process. The purpose of this paper was to present the variational
analysis of the model in order to lay the necessary groundwork for numerical ap-
proximations and practical applications. The main novel contribution of this paper
consists in considering new contact boundary conditions which lead to a nonstandard
mathematical model. Thus, rather than the adherence condition and nonlocal friction
laws, we described the contact with a general relation between the normal stress and
the normal velocity on the contact boundary and a version of the local Coulomb’s law
of friction. We presented a velocity variational formulation of the mechanical problem
and we obtained a new existence and uniqueness result, Theorem 1. We proved The-
orem 1 using as a key argument an abstract result on quasi-variational inequalities
obtained recently in (Motreanu and Sofonea, 1999). We also studied the continuous
dependence of the solution with respect to the contact boundary conditions and we
proved a convergence result, Theorem 3. '



Variational analysis of a frictional contact problem for the Bingham fluid 385

References

Awbi B., Shillor M. and Sofonea M. (1999): A contact problem for Bingham fluid with
friction. — Applicable Analysis, (to appear).

Cristescu N. (1976): Drawing through conical dies—An analysis compared with ezperiments.
— Int. J. Mech. Sci., Vol.18, No.1, pp.45-49.

Cristescu N. (1980): On the optimum die angle in fast wire drawing. — J. Mech. Work.
Tech., Vol.3, No.3-4, pp.275-287.

Cristescu N. and Suliciu I. (1982): Viscoplasticity. — Bucarest: Martius Nijhoff Publ.,
Editura Tehnica.

Duvaut G. and Lions J.L. (1970): Ecoulement d’un fluide rigide-viscoplastique incompress-
ible. — Comptes Rendus de ’Académie des Sciences de Paris, Vol.270, pp.58-61.

Duvaut G. and Lions J.L. (1972): Les inéquations en mécanique et en physique. — Paris:
Dunod.

Fortin M. (1972): Calcul numérique des écoulements des fluides de Bingham et des fluides
newtoniens incompressibles par la méthode des elements finis. — Paris: Ph.D. Thesis,
University of Paris VI.

Glowinski R., Lions J.L. and Trémoliéres R. (1976): Analyse numérique des inéquations
variationnelles, Tome II. — Paris: Dunod.

Tonescu L.R. (1985): A boundary value problem with a non-local viscoplastic friction law for
the Bingham fluid. — Studii si Cercetari Matematice, Vol.37, No.1, pp.60-65.

Ionescu L.R. and Sofonea M. (1986): The blocking property in the study of the Bingham
fluid. — Int. J. Eng. Sci., Vol.24, No.3, pp.289-297.

Tonescu L.R. and Sofonea M. (1993): Functional and numerical methods in viscoplasticity.
— Oxford: Oxford University Press.

Tonescu LR. and Vernescu B. (1988): A numerical method for a viscoplastic problem. An
application to wire drawing. — Int. J. Eng. Sci., Vol.26, No.6, pp.627-633.

Motreanu D. and Sofonea M. (1999): Quasi-variational inequalities and applications in

frictional contact problems with normal compliance. — Advances in Mathematical
Sciences and Applications, (to appear).

Netas J. and Hlavadek I. (1981): Mathematical theory of elastic and elastoplastic bodies:
an introduction. — Amsterdam: Elsevier.

Rochdi M., Shillor M. and Sofonea M. (1998a): A quasistatic contact problem with direc-
tional friction and damped response. — Appl. Anal., Vol.68, No.3~4, pp.409-421.

Rochdi M., Shillor M. and Sofonea M. (1998b): Qﬁasistatic viscoelastic contact with normal
compliance and friction.— J. Elasticity, Vol.51, pp.105-126.

Strémberg N. (1995): Continuum thermodynamics of contact, friction and wear. — Ph.D.
Thesis, Linkdping University, Sweden.

Strémberg N., Johansson L. and Klarbring A. (1996): Deriation and analysis of a gener-
olized standard model for contact friction and wear. — Int. J. Sol. Struct., Vol.33,
No.13, pp.1817-1836.

Received: 26 January 1999
Revised: 7 April 1999





