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AN APPLICATION OF OPTIMAL CONTROL
THEORY TO THE DESIGN OF THEORETICAL
SCHEDULES OF ANTICANCER DRUGS

Josg L. BOLDRINTI*, MicHEL I.S. COSTA**

A system of differential equations for the control of tumor growth cells in a cycle
non-specific chemotherapy is analyzed. Spontaneously acqnired drug resistance
is taken into account by means of a mutation rate non-decreasingly dependent
on time and the drug kill rate is supposed to depend on the growth rate of sen-
sitive cells. For general tumor growth and drug kill rates the optimal treatment
consists in maximizing the allowable drug concentration throughout.
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1. Introduction

The modelling of the onset, development and treatment of tumors containing drug
resistant cells can be mathematically addressed by several means. One kind of study
is based on probabilistic models like in Coldman and Goldie (1983, 1986), Harnevo
and Agur (1992), Kimmel and Axelrod (1990), Kimmel et al. (1992). However, this
approach usually engenders models that are rather difficult to analyze. Thus, when
it is intended to study the average behavior of the erratic nature of tumor cell growth
and to have a qualitative understanding of the phenomena involved in chemother-
apeutic protocols, a deterministic approach, which is usually easier to analyze, can
serve as a guide to determine the relevant aspects captured by the model. Besides,
when confronted with experimental results, it can suggest possible corrections of some
aspects on a qualitative basis.

In this paper, we will employ this approach to study certain questions concern-
ing the design of chemotherapeutic protocols. More specifically, we will apply the
deterministic optimal control theory to examine theoretical models dealing with the
continuous delivery of a cycle nonspecific anticancer drug in a setting to be described
next. !

The first important aspect to be considered is the modelling of the drug effect on

tumor growth. This is usually handled with by means of a perturbation term which is
added to the differential equation describing the evolution of tumor cells, and in many
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cases this effect is conveyed by the product of the drug concentration and the number
of tumor cells. However, Norton and Simon (1977; 1986) observed that “clinical
experience suggests that some tumors may be less sensitive to therapy when they are
very small or very large than when they are of intermediate size” (Norton and Simon,
1977, p.1307). Backed up by this clinical evidence, they proposed an alternative way
of describing drug induced mortality, relying on the fact that the growth-inhibiting
effect of treatment in those tumors can be proportional to the tumor growth rate
instead of just being proportional to the tumor population level. This proposal will
be one of the major hypotheses in our analysis.

The second aspect relevant to the design of chemotherapeutic protocols is the
phenomenon of spontaneously acquired drug resistance (Coldman and Goldie, 1983).
This can be handled by considering a compartmental model where one of the vari-
ables is associated with the drug resistant cells, with an influx mediated by a certain
mutation rate. In several works this mutation rate is taken to be constant in time.
However, as evidenced in clinical practice (Tan, 1989, p.146), the mutation rate can
actually increase with time. Our analysis will encompass this situation.

The third important aspect is drug toxicity (Vietti, 1980). There are several
possibilities of modelling this item in the context of optimal control theory (each one
with its own advantages and drawbacks from the clinical point of view), but in this
work we will consider the simplest instance and model toxicity just as a cumulative
term in the performance index.

Needless to say, the interplay among all those three factors already makes the
design of appropriate protocols a difficult task. There is, however, a fourth aspect to
be considered in an optimal control approach: the choice of the final-time of treatment.
In this study, we chose to analyze a free final-time optimal control problem, i.e. the
final time must also be found to minimize the performance index. Certainly, in order
to possibly carry over the results of such an analysis to clinical practice, they should
be subjected to scrutiny, especially concerning the practicability of the calculated final
time of treatment and total cumulative toxicity. However, previous analyses led us
to argue that this approach is reasonable and can sometimes yield better theoretical
results than those obtained by optimal control problems with ad hoc fixed final-time
of therapies. .

Briefly, in this work we analyze the mathematical problem of designing optimal
chemotherapeutic protocols using a rather simple model that retains all the above
aspects, namely, toxicity, the fact that the mutation rate to drug resistance is nonde-
creasingly dependent on time, and the assumption that the growth-inhibiting effect
of treatment is proportional to the growth rate of sensitive cells.

The work is outlined as follows. In the next section, we present a mathematical
model which describes a possible dynamics of tumor cells under drug action and
poses the related optimal control problem. A subsection is entirely devoted to the
derivation of the optimal protocol, where we only formulate the lemmas pertaining to
the mathematical analysis and briefly comment on the results so as to highlight their
biological significance. A discussion of the results follows and lastly, technical proofs
are deferred to the Appendix.
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2. Optimal Chemotherapy
2.1. Problem Statement

In order to carry out the analysis of tumor growth subjected to chemotherapy, the
following assumptions are taken:

a) The tumor will be viewed as a cell population undergoing a spatially homoge-
neous growth, i.e. it does not depend on the cell position within the tumor.

b) The tumor will also consist of drug-resistant cells whose growth rate depends
not only on the size of its own population, but also on the size of the sensi-
tive cells. This latter dependence is due to a randomly spontaneous mutation
during mitosis towards drug resistance, which will occur according to a time
increasing rate. In this way, no sensitive cell becomes drug resistant during its
life time; only their daughter cells may acquire drug resistance by spontaneous
mutation during mitosis. A biological validation of this kind of drug resistance
was performed by ‘in vitro’ experiments with the T'-cell lymphoblastic cell line
CCRF-CEM. A description of these experiments can be found in (Vendite,
1988). (The importance of drug resistance in designing chemotherapeutic pro-
tocols is emphasized in (Skipper, 1983).)

c) The kill rate of the drug (number of killed cells/unit drug concentration) will
be considered as a function of the growth rate of the sensitive cells population.

This is in accordance with clinical observations as pointed out by Norton and
Simon (1977; 1986).

d) The mutation rate from sensitive tumor cells to resistant cells is modeled as a
nondecreasing function of time, since it is evidenced that “as cancer progresses,
the tumor cells show increased genetic instability and the tumor cell popula-
tion becomes more heterogeneous. This implies that the mutation rates from
sensitive tumor cells to resistant mutants may increase with time” (Tan, 1989,
p.146).

The following system is a model for the behavior of tumoral cells submitted to
chemotherapy when the assumptions mentioned above are taken into account:

‘ji_j = zf(y) + o) f(y)(y — @)
%th = yf(y) —u®)f(¥)9(y — z) M

z(0) = =0, y(0)=yo

Here t > 0 represents the elapsed time, y(¢) € R stands for the total number of
tumor cells at time ¢, while z(¢) € R stands for the number of drug-resistant cells
within the tumor. Clearly, any initial condition (o, yo) is such that zo < yo; f(y) is
a specific growth rate for the tumor cells; a(t) is the fraction per unit of time of the
drug sensitive cells that mutate into drug resistant cells; 0 < u(t) < u,, is the drug
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concentration at the tumor site (assumed to be limited, i.e., u, < +00); f(y)g(y — z)
gives the kill rate of the drug per unit of drug concentration, and can represent,
amongst others, the growth rate of the drug-sensitive cells (take e.g. g(y —z) =y —z),
as considered by Norton and Simon (1977; 1986). The technical conditions required
for the above functions will be described later on.

The objective function to be minimized is as follows:
. ty
Tu,t;) = y(ts) + c/ wdt @)
0

The first term of (2) represents the final tumor level and the second one, the drug
accumulation in the patient’s body, where ¢ > 0 is introduced to take care of the
physical dimensionalization of the problem and also serves as a penalization factor.

In the light of the cell dynamics described by (1), the factors that make up the
objective function J (2) are contradictory. Indeed, the action of the drug to minimize
the overall cell population y increases concomitantly the amount of toxicity, defined
here as the accumulated drug in the body. On the other hand, the periods of the
absence of drug concentration (u = 0) allow for a tumor growth, although toxicity
(considered as a cumulative process) remains constant during the same period.

We will be interested in studying questions associated with the following Free
Final-Time Optimal Control Problem related to (1), (2):

Inﬁmum{J(u,tf), 0<ty<+4o0, uE€ A(tf)} ®3)

where A(ty) = {u € BV([0,t}): 0 < u(t) < upm for 0 < ¢ < ¢5}. The notation
BV(0,t}) signifies the set of functions w: [0,t}) — R such that for any 0 < 7 < 1;
the restriction of u to [0,7] is in BVI0,7], i.e., u is of bounded variation on the
interval [0,7]. The functional J is defined as in (2).

As regards the functions f,g that appear in (1), we will consider the following
natural assumptions:

f,9 € C°[0,00) N C*(0, 00)
g(0)=0, g(s)>0, g(s)>0whens>0 @
and
there exists ¥, > 0 such that f(y,) =0and f(y) >0for0<y <ym (5)

or

f(y) > 0fory >0, and g is globally Lipschitz (6)

In (4) the second expression indicates that the drug effect is strictly related to
the existence of sensitive cells and the third one states that a part of the drug effect
increases as the level of sensitive cells increases. In (5) it is stated that the tumor
exhibits a density dependent growth, where y,, is the maximum attainable level of
tumor cells. ’
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Remark 1. In this case, when the tumor achieves its maximum size, the drug will
have no more effect, which simulates the clinical evidence (Norton and Simon, 1977)
that certain large tumors are much less sensitive to the drug effect than medium size
ones. It is important to stress that condition (5) together with the term w(t)g(y — z)
in the second equation of (1) conveys the insensitivity of large tumors as opposed to
their sensitivity in the same situation under a logkill hypothesis (that is, the drug kill
rate linearly proportional to the tumor cells populational level).

In (6) it is assumed that there is no maximum attainable level of tumor cells
and that the relative increment of the part of the kill rate per unit concentration
dependent on the sensitive cells population is bounded.

As for the conditions on «(t), we will assume:
. 1 . . . da(t)
a(-) is a C* function satisfying 0 < a(t) < 1 and 3 >0 (7N
This last condition is in accordance with observations in (Tan, 1989).

The behavior of the system (1) without drug concentration for all ¢ (u(t) =
0, V¢ > 0) is similar to the dynamics obtained in (Goldie and Coldman, 1979,
p.1732) describing the evolution of resistant cells in relation to the number of tumoral
cells.

2.2. Derivation of the Optimal Strategy

In the sequel, we formulate some lemmas and a theorem that establish a mathematical
analysis. For those which are not purely technical, we give a brief explanation of their
significance.

First, we present a lemma that states, in particular, the positivity of the popu-
lations involved, thus, ensuring the biological consistency of the model.

Consider the following open set Q in R?:

) Q={(z,y)eR: 0<2z, 0<y, z<y}
if assumptions (4) and (6) hold

i) Q={(z,y) eR?: 0<z, 0<y<ym, =<y}
if assumptions (4) and (5) hold

Lemma 1. Consider u(t) > 0 a function of bounded variation. The trajectories cor-
responding to the solution (z(t),y(t)), t > 0, of (1) with initial conditions (x¢,yo) € Q
do not cross the boundary of Q in finite time.

For further use, we stress that this lemma implies in particular that for initial
conditions in £, 0 < z(t) < y(¢) for all finite times ¢ > 0.

Now we proceed with the analysis of the optimal control problem itself.
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According to the optimal control theory (Sage, 1968) we define the Hamiltonian
as

H(z,y,t, A1, Ae,u) = M (zf(y) + () f(y)(y — z))
+ X (yf(y) —uf(y)gly — ) +cu (8)

where A; and Ap are the adjoint variables.

In turn, the adjoint variables are given by the following differential equations
with their respective final conditions:

(= =G0 =~ [Mf) (1 - a®) + deuf W'y ~ )]

o= -5 = ~[MerG)+aOf W - ) + W)

o+ X (yf () + F) - w{f Wely - 2) + F¥)g'(y - m)))]

(9)

L Au(ty) =0, Xofty) =1

We remark that throughout this work ¢’ and ‘d/d¢’ will be used interchangeably.
Also, for simplicity of notation, we will denote the values of the Hamiltonian along a
fixed optimal trajectory, that is, the values of H(z(t),y(t),t, A1(t), A2(t), u(t)), simply
by H(t).

Since we have a free final-time problem, it is known that on an optimal trajectory
the Hamiltonian is zero at the final time t; (Sage, 1968):

H(t;) =0 (10)
However, the Hamiltonian is not necessarily identically zero along optimal trajectories
because our system is not necessarily autonomous (i.e., it may depend on time).

Thus, we will have to obtain more information on the behavior of H(t) in order to
accomplish our analysis.

Since the Hamiltonian is linear in u, we find the following Optimal Control Law:
0 if c—Azf(y)g(y;w) >0

w={ um i c— A f(y)gly - ) <O (11)
undetermined if c¢— A2 f(y)gly—z) =0

The next lemma states that optimal treatments must end up with the application
of the maximum drug concentration.
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Lemma 2. Any optimal trajectory must end up with u,,.

The next three lemmas are technical and deal with the determination of the signs
" of the adjoint variables and the Hamiltonian.

Lemma 3. In any optimal strategy Ai(t) > 0 for all t € [0,%5).
Lemma 4. In any optimal strategy Az(t) > 0 for all t € [0,1f].

Lemma 5. For any t € [0,t5], H(t) <O0.

The following lemma rules out any optimal strategy whose drug concentration
may depend on the level of the cells (that is to say, the existence of singular controls
is ruled out). Moreover, it does not allow for abrupt interruption or a start of the
effect of drug concentration.

Lemma 6. In any optimal strategy singular controls cannot exist. Moreover, switch-
ings from u = 0 to u,, or vice-versa are not allowed.

As a consequence of the above lemmas, we will now show that any optimal strat-
egy consists in the administration of the maximum drug concentration throughout
the whole treatment.

Theorem 1. In an optimal strategy u(t) = uy, for all t.

Proof. It follows immediately from the previous lemmas, since an optimal strategy
must end up with u,,;, and can have neither switchings nor a singular control. n

The importance of this theorem is mainly related to the independence of the
optimal strategy with respect to the cell growth and drug kill rates.

Remark 2. The mathematical analysis remains valid for the case of a constant
mutation rate (i.e., & = 0), wherein the proofs could be simplified.

3. Discussion

A dynamical model of spontaneously acquired drug resistance has been presented in
order to describe the evolution of a heterogeneous tumor. The growth-inhibiting effect
of the treatment has been modeled according to the assumption made by Norton and
Simon (1977; 1986), which presupposes that the cell loss due to the cytotoxic action of
the drug is directly proportional to the growth kinetics of the tumor. In addition, the
mutation rate to drug resistance is supposed to be nondecreasing with time according
to clinical observations (Tan, 1989). The objective of the treatment has been set to
minimize a sum of the final tumor level and the cumulative toxicity (modeled as an
integral of the drug concentration at the tumor site, see eqn. (2)) incurred from the
therapy. Within this context, the optimal strategy against a general tumor growth
consists in administering a maximum drug concentration throughout the protocol.
Regarding this result, some comments are in required. As argued in (Boldrini and
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Costa, 1997) (the setup of a time varying mutation rate and a growth-inhibiting
effect of the treatment directly proportional to the number of sensitive cells, that
is, in eqns. (1), ¥ = yf(y) — u(t)gly — z), with g(y — z) = y — z), the mutation
rate is nondecreasing with time, so the resistant cells grow faster and the lack of
controllability of the overall cell population increases. Moreover, the components
of the objective function (minimization of the final tumor level and toxicity) are
conflicting by virtue of the dynamical model equations. These points, in their own
right, might indicate that alternation between rest periods and variable levels of the
drug could form an optimal protocol. To corroborate this possible scenario, there
still exists the fact that the drug kill rate proposed in this work does not change
monotonically with the tumor size. To wit, e.g. in a Gompertzian growth, the influence
of the therapy on the tumors with sensitive cells significantly above the ‘inflection
point’ level (corresponding to 37% of the maximum tumor size) is markedly lessened.
It might then be expected that the optimal strategy would take this feature into
account (at least for the initial sensitive cells levels above the ‘inflection point’) and
vary accordingly the amount of the drug to be injected, since the maximum drug
concentration {which, in terms of the proposed objective function, increases most
rapidly the incurred toxicity) would not prove useful in this instance. As regards this
speculation of a possible drug schedule, it is worthwhile to mention that variations
in drug administration can be found in (Norton and Simon, 1977) where, under the
proposed growth-inhibiting effect of treatment, a successful strategy for eradicating a
single homogeneous tumor obeying a Gompertzian growth (without drug resistance)
consists in a therapy level sufficient to maintain a steady volume regression, and
applying an intensive schedule of an anticancer agent towards the end of the protocol.

At this stage, it is worthwhile to recall that the mathematical analysis presented
in this work is also valid for the instance of a constant mutation rate (i.e., a =constant
in eqns. (1)). Therefore, the above discussion remains in force in view of the fact
that the corresponding model with a constant mutation rate and a growth-inhibiting
effect linearly proportional to the number of sensitive cells, yields a maximum drug
concentration throughout as an optimal strategy (Costa et al., 1992).

Hence, in the face of the previous arguments, the result found in this work is
unexpected to some extent, since variations of the drug schedule along time may prove
effective as shown in (Norton and Simon, 1977), although without drug resistance.

Several conjectures could be raised. The maximum drug concentration through-
out as an optimal strategy may be due to the free final-time formulation of the optimal
control problem. In fact, previous works suggested this drug regimen, but there re-
mains some evidence that the defective modeling of other aspects of the phenomenon,
such as the acquired drug resistance mechanism, toxicity (Costa et al., 1992; 1995),
as well as the drug kill rate (Costa et al., 1994) might have significantly contributed
to the derivation of the protocol with that structure. On the other hand, when con-
sidering a certain recuperation mechanism from toxicity effects in the setting of a free
final-time (Costa and Boldrini, 1997), it is proved that there are instances where the
corresponding optimal strategy consisted of the maximum drug concentration inter-
spersed with rest periods, rather than the maximum drug concentration throughout.
Although, in general terms, one could wonder whether the free final-time setup for
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optimal chemotherapy fits in the clinical context, we argue that it can yield useful
information. In fact, in specific situations, the final-time t7, which represents the
length of the optimal treatment, can be calculated numerically, just by recalling from
optimal control theory that it is given by the relation H(¢7) = 0, thus implying
dy(t})/dt = —cus, (in the exponential cell growth case an analytical expression for
t; can be easily obtained). With such an estimate for t7, one could assess the dura-
tion of the treatment, the cumulated toxicity (proportional to umt}), as well as the
corresponding value of the performance index, and then check them with the accept-
ably required standard values. In the case of a failure of such a procedure, one could
resort to therapies derived by ad hoc fixed final-time optimal control problems. In
other words, the free final-time setup could be employed as a first step in a tuning
process in the derivation of theoretical optimal protocols. As a matter of fact, results
obtained in (Boldrini and Costa, 1998), where the above process was implemented
(although in models without drug resistance), showed that in most cases the simple
optimal strategy obtained by the free final-time optimal control setup had a shorter
duration and a lower value for the performance index than those values correspond-
ing to the complex, tumor size dependent optimal strategies given by fixed ad hoc
final-time optimal control schedules.

Another conjecture to explain the prevalence of the maximum drug concentration
as the optimal protocol in our settings is the possibility of defectively modeling the
drug resistance mechanism. The result seems to indicate that with this model of drug
resistance, the recruitment of resistant cells is so intense that it makes any strategy
of drug administration other than the maximum drug concentration, superfluous.
One could think that a mechanism like back-mutation could lead to different results.
However, our previous analysis could easily be extended to simple forms of modeling
back-mutation (for instance, the inclusion of the term —3(¢) f(y)z in the first equation
of (1), where f§(t) is the time varying back-mutation rate and satisfies 0 < f(t) <
a(t)), leading exactly to the same conclusions. Thus, if back-mutation has led to
different optimal strategies, it would probably have not been modeled in such a simple
way. In a more general context, the inclusion in the model of an acquired drug
sensitivity (Usher and Henderson, 1996) could generate optimal strategies other than
maximum drug concentration throughout.

Finally, in our opinion, one of the main reasons for the prevalence of the maximum
drug concentration as an optimal strategy, in the presence of drug resistance and
free final-time setting, may be ascribed to the lack of an appropriate modeling of
toxicity. However, as mentioned in (Costa et al., 1995), in the same frame of drug
resistance and free final-time optimal control problems, exchanging the cumulative
criterion of toxicity used above for a noncumulative one, like, say, a required minimum
level of normal cells (which themselves are mathematically described by a dynamical
equation), did not modify the structure of the optimal drug regimen with respect to
the regimen found in this work.

In conclusion, this analysis showed the role that some aspects can play in the
modeling of sensitive and resistant tumor cells under drug action. It is hoped that the
above speculations may shed some light on the processes involved so as to give some
alternative ways that lead to more refined models of chemotherapeutic protocols.
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Appendices

A. Proof of Lemma 1

First, we will prove that the referred trajectories cannot touch the boundary of Q
corresponding to z = y in finite time (and in fact that the set given by z = y is
invariant). Suppose by contradiction that this is not so, and consider the first positive
time 7 such that z(7) = y(r). Then y(t) > z(¢) for all ¢t € [0,7). On the other hand,
it is easy to observe that z(t) = y(t) = w(t) with w(t) satisfying dw/dt = wf(w)
and w(r) = z(7) is also a solution to (1) passing through (z(7),y(7)). Since we have
conditions for the uniqueness of the solutions to initial value problems for (1), we
obtain a contradiction that proves that the trajectories starting inside {2 never touch
the line £ = y in finite time. Thus the referred solution satisfies y(t) > z(t) for all
finite times ¢.

Now, using the previously obtained information, we conclude that the right-hand
side of the first equation in (1) is positive for z > 0. Thus, for initial conditions inside
€, the solutions (z(t),y(t)) have increasing z(t), and therefore z(t) > 0 for all ¢ > 0
and the referred trajectories never touch the line z = 0.

If we are in Case (i) of 2, the above results imply the statement of the lemma.
If we are in Case (ii), we have to verify that the trajectories starting inside @ do
not touch the line ¥ = y,,. When w = 0, this is done by contradiction with the
uniqueness of the solutions to the initial value problem as in the first part, just by
observing that (z,y.) is also a solution to (1). Therefore in Case (ii) for u = 0 the
trajectories of (1) remain in Q for a finite time ¢.

As for u > 0, suppose that for an initial condition (xo,yo) there is a 7 such
that y(7) = ym. We know already that in a finite time g(y(t) — z(¢)) > 0, hence for
t € [0, 7]

dy(t) _

5 = V@O (W®) —u®f W) (@) - =) <y(0)f (¥(®) (A1)
On the other hand, if (z; (), y1(t)) denotes the solution to (1) with v = 0 and the
same initial conditions, we have for every t € [0, 7]

dys (¢

WO _ )£ (v) (A2)
Thus, by the result of differential inequalities (Hale, 1980, p.30), we conclude that
y(t) < y1(t) for every t € [0,7]. In particular, y, = y(r) < y(r), and so

(z1(7), 351 (7)) € Q. But this yields a contradiction to the fact that the trajectories for
v =0 in Case (ii) remain in © for a finite time ¢.
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B. Proof of Lemma 2

Suppose that either u(ty) = 0 or u(t) is singular. Then, at t7, the Hamiltonian
reduces to H(ty) = y(ts) f(y(ty)) = 0 (from (10)). Since from Lemma 1 y(ty) > 0,
(5) or (6) guarantee that f(y(ts)) > 0, and we have a contradiction. So the only
possibility is u(tf) = um.

C. Proof of Lemma 3

From (9) and Lemmas 1 and 2, we observe that X; (t7) < 0. Thus, in a left neigh-

borhood of t¢, A; is positive. Suppose, by contradiction, that there exists # such
that A;(f) = 0 for the first time going backwards from ty (ie, 0 < i< ty). Now,
we observe that after some algebraic manipulations it holds H = M\a@®)f(y)(y — )
(Sage, 1968); as A (t) > 0 for t € (£,ty), we then conclude that H > 0 for ¢t € (i, ).
Since H(ts) = 0, this implies that H(t) <0 for t € [£,t;].

Now we prove that in the interval [f,t;], X2(t) > 0. Since Ay(t;) = 1, the
continuity of () implies that A, is positive in a left neighborhood of t;. Suppose,
by contradiction, that A2(t) is not positive on [t,t;]. Then, there exists a first t*
(going backwards from t;) such that { < t* < t; and M(t*) = 0. By the optimal
control law (11), we know that u(t*) = 0, and, since u(ty) = un, there is at least
one t, with ¢t* <% < ty, for which a switching occurs. But at the switching time £,
we have H(f) = M (£)z(E) + Xa(®)y(®) f(y(E)) > 0, since A (Z) > 0 (by the definition
of £) and Ay(f) > 0 (by the definition of the optimal control law (11)). But this
is a contradiction because we had concluded that H(t) < 0 for ¢ € [t,t] and, in
particular, H(t) <0. So X2(t) >0 for t € [f,tf].

Returning to the proof of the main statement of the lemma, we observe that by
calculating the right derivative of A(t) at # (by using (9)), we obtain 0 < X\ (£) =
—[2(FH)u(tt)g' (z(£T) — y(£t))). When wu(f) > 0, the contradiction is immediately
established since the left-hand side of the above expression is negative. On the other
hand, when u(f) = 0, there will be at least one f for which a switching occurs, with
t < T < ty, since u(tf) = up, (by Lemma 2). Hence, at ¢, H(f) = Al(f)m @) +
A2(®)y(®)f(y(?)) > 0. But again, this is a contradiction with H (t) <0 for t € [t,ty].

D. Proof of Lemma 4

The argument is similar to the one used in the proof of the last lemma. We already
know that Ag is positive in a left neighborhood of t¢, since it is continuous and
A2(ts) = 1. Suppose, by contradiction with the statement of the lemma, that there
exists a first ¢* (going backwards from t; and £ < t* < t;) such that A2 (t*) = 0. By
the optimal control law (11), u(t*) = 0 and, since u(ts) = um, there is at least one £,
with t* <t < tf, for which a switching occurs. But at the switching time £, it holds
H(t) = M (D)2(t) + X2 (D)y(£) f((£)) > 0, since A\ (£) > 0 (by Lemma 3) and Ay (£) >
(by the definition of the optimal control law (11)). But this is a contradiction, since
arguing as in the previous lemma we know that H(t) < 0 for t € [f,ty]. Therefore
Ao >0 for t e [O,tf].
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E. Proof of Lemma 5

As in the proof of Lemma 3, we observe that after some computations one obtains
(Sage, 1968) H(t) = \; (t)c(t) f (y(¢)) (y(¢) —(t)). Due to Lemma 3, the condition (7),
either (5) or (6), and Lemma 1, the right-hand side of the above equality is nonnegative
for ¢t € [0,tf]. Since H(ty) = 0, (according to (10)), we conclude that H(t) < 0 for
all ¢ € [0,%y].

F. Proof of Lemma 6

We will prove the first result of Lemma 6 by contradiction. Suppose that there is a
singular control during a certain time interval. Then, according to the optimal control
law (11), we must have ¢ — A2 f(y)g(y — ) = 0 during the same time interval. But
the fact that ¢ > 0 and Lemma 1 (positivity of g(y — z)) imply that Ay > 0 in the
singular control.

Thus, in the singular control interval we have H = A1z + A2y f(y) > 0, since
A2 > 0 and A; > 0 (by Lemmas 3 and 4), in contradiction with the result of Lemma, 5.

Suppose now that there is a switching from « = 0 to 4 = u,, at t = 7. Then, the
continuity in time of the state and adjoint variables and the optimal control law (11)
imply that we must have ¢ — Ay (7)f(y(7))g(y(7) — z(7)) = 0. Again, the fact that
¢ >0 and Lemma 1 (g(y — z) > 0) yield A2(7) > 0. Thus, at the instant of switching
we have H(T) = A(1)&(7) + A2 (7)y(7) f(y()) > 0, since Az(7) >0 and Ai(7) >0
(Lemmas 3 and 4), in contradiction with the result of Lemma 5. The same reasoning
holds for the switching from « = 4., to v = 0.
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