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ARTIFICIAL INTELLIGENCE APPROACHES TO FAULT
DIAGNOSIS FOR DYNAMIC SYSTEMS

RonN J. PATTON*, Carros J. LOPEZ-TORIBIO*
FaiseL J. UPPAL*

Recent approaches to fault detection and isolation (FDI) for dynamic systems
using methods of integrating quantitative and qualitative model information,
based upon artificial intelligence (AI) techniques are surveyed. In this study,
the use of Al methods is considered an important extension to the quantitative
model-based approach for residual generation in FDI. When quantitative models
are not readily available, a correctly trained artificial neural network (ANN)
can be used as a non-linear dynamic model of the system. However, the neural
network does not easily provide insight into model behaviour; the model is
explicit rather than implicit in form. This main difficulty can be overcome using
qualitative modelling or rule-based inference methods. For example, fuzzy logic
can be used together with state-space models or neural networks to enhance FDI
diagnostic reasoning capabilities. The paper discusses the properties of several
methods of combining quantitative and qualitative system information and their
practical value for fault diagnosis of real process systems.

" Keywords: artificial intelligence methods, fault-diagnosis, residual generation,
fuzzy modelling, neuro-fuzzy systems.

1. Introduction

There is an increasing demand for man-made dynamical systems to become safer and
more reliable. These requirements extend beyond normally accepted safety-critical
systems of nuclear reactors, chemical plants or aircraft, to new systems such as au-
tonomous vehicles or fast rail systems. The early detection of faults can help avoid
system shut-down, breakdown and even catastrophes involving human fatalities and
material damage. A system which includes the capacity of detecting, isolating, iden-
tifying or classifying faults is called a fault diagnosis system. During the last two
decades many investigations have been made using analytical approaches, based on
quantitative models. The idea is to generate signals that reflect inconsistencies be-
tween nominal and faulty system operation. Such signals, termed residuals, are usu-
ally generated using analytical approaches, such as observers (Chen and Patton, 1999),
parameter estimation (Isermann, 1994a) or parity equations (Gertler, 1998) based on
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analytical (or functional) redundancy. Considerable attention has been given to both
research and application studies of real processes, using analytical redundancy as
this is a powerful alternative to the use of repeated hardware (hardware or software
redundancy).

The monitoring of faults in feedback control system components has come to be
known as fault detection and isolation (FDI). The procedure of generating control
action which has a low dependency on the presence of certain faults is known as
fault-tolerant control. Figure 1 shows the general schematic arrangement appropriate
to many fault-tolerant control systems with four main components: the plant itself
(including sensors and actuators), the FDI unit, the feedback/feed-forward controller,
and the supervision system.
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Fig. 1. Scheme of a fault-tolerant control system.

The solid line represents the signal flow, and the dashed line represents adaptation
(tuning, scheduling, reconfiguration or restructure). The plant is considered to have
potential faults in sensors, actuators (or other components). The FDI unit provides
the supervision system with information about the onset, location and severity of any
faults. Based on system inputs and outputs together with fault decision information
from the FDI unit, the supervision system will reconfigure the sensor set and/or
actuators to isolate the faults, and tune or adapt the controller to accommodate the
fault effects.

Early detection and isolation of small, incipient (rather difficult to detect) faults
can be achieved using model-based processing of all measured variables, using either
qualitative or quantitative modelling. Neural networks and fuzzy logic techniques are
now being investigated as powerful modelling and decision making tools, along with
the more traditional use of non-linear and robust observers, parity space methods and
hypothesis-testing theory.

Requirements for a precise and accurate analytical model imply that any resulting
modelling error will affect the performance of the resulting FDI scheme. This is
particularly true for non-linear systems, which represent the majority of real processes.
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To circumvent this precision problem (at least in part), more abstract models,
based on qualitative physics (de Kleer and Williams, 1987; Kuipers, 1994; Lunze and
Schiller, 1999; Shen and Leitch, 1993) may be used. Alternatively, fuzzy-logic rules
may be developed to either assist or replace the use of a model for diagnosis (Dexter,
1995). The key advantage of fuzzy logic is that it enables the system behaviour to be
described by if-then relations. This can provide valuable information for the operator
to understand the causes of faults. This is an attractive feature of fuzzy logic but it
also has major limitations. In many applications the knowledge that describes the
system behaviour is contained in data sets. The designer then has to derive if-then
rules from the data sets manually, which imposes a major effort with large data sets.

Some research has been based upon neural networks which can be trained to
reproduce a specified system behaviour from the data sets alone. Neural networks can,
indeed, provide an excellent framework for dealing with non-linear systems (Leonard
and Kramer, 1993; Naidu et al, 1990). The main feature of neural networks is
their ability to model any non-linear functions, given suitable weighting factors and
an appropriate architecture. There has been a substantial body of work in recent
years describing the use of neural networks for fault diagnosis of non-linear systems
(Hennerberger et al., 1993; Hoskins and Himmelblau, 1988; Lane et al., 1992; Patton
and Chen, 1996; Patton et al., 1994; Wang et al., 1994).

However, whilst such a configuration can be well trained on numerical data,
heuristic knowledge from experts cannot easily be incorporated. It is also argued
that, due to their ‘black-box’ characteristics, conventional neural networks do not
give an insight into the behaviour of the system which is sufficiently comprehensible
by the operator. Another drawback of substituting the operator’s ‘intelligence’ by an
automated analytical approach is that the operator’s expertise, built up over several
years, is simply not used. This is mainly due to the inability of analytical methods
to represent symbolic information.

In the authors’ opinion, a robust FDI system should combine both numerical
(quantitative) and symbolic (qualitative) information. Some investigators tackled
this problem by combining parameter estimation or observers with fuzzy logic (Frank
and Kuipel, 1993; Isermann, 1994b). The main idea has been to generate residuals
using either parameter estimation or observers, and allocate the decision-making to
a fuzzy-logic inference engine. In so doing, it has been possible to include symbolic
knowledge with the quantitative information and, thereby, minimise the false alarm
rate. Indeed, the key benefit of fuzzy-logic is that it lets the operator describe the
system behaviour or the fault-symptom relationship with simple if-then rules.

This paper gives an outline of AI methods which are considered a powerful exten-
sion to quantitative/analytical approaches to fault detection and isolation (FDI) for
dynamic systems. '

One approach is to use a fuzzy rule-base to select the dynamic model which is
most appropriate for a particular operating point (Tanaka et al., 1996; Wang et al.,
1995). This is the so-called fuzzy inference multiple-model approach. The idea has
been borrowed from recent control research and applied to FDI problems by Lopez-
Toribio et al. (1998).
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In another approach, it is important to be able to structure a gquantitative model
in a way that qualitative knowledge about the process could be included as well
as extracted. The underlying concept is to structure a neural network, which can
model highly non-linear systems efficiently, in a fuzzy-logic format; the network could
therefore be trained more rapidly and will also provide a linguistic description about
the causes of faults. Expert knowledge could also be included in the same framework.
The B-spline network can be a suitable network architecture for this problem due to
an interesting equivalence relation with the function of fuzzy rule sets (Brown and
Harris, 1994a). The difficulty with this approach is the rapidly increasing complexity
of the rule base with the system order and complexity.

There are many neuro-fuzzy structures designed to combine the advantages of
both neural networks and fuzzy logic. These structures have been successfully ap-
plied to a wide range of applications from industrial processes to financial systems,
because of the ease of rule base design, linguistic modelling, application to complex
and uncertain systems, inherent non-linear nature, learning abilities, parallel process-
ing and fault tolerance abilities (Ayoubi, 1995). However, successful implementation
depends heavily on prior knowledge of the system and the training data. There are
three common methods of combining neural networks with fuzzy logic:

1. Fuzzification of the inputs or outputs of the neural networks.
2. Fuzzification of the interconnections of conventional neural networks.

3. Using neural networks in fuzzy models where neurons provide the necessary mem-
bership functions and rule base.

These approaches are either very complex or not adequate enough to provide approxi-
mation power and qualitative knowledge. Recent research focuses on neural networks,
for example B-spline neural networks, which can be used to identify the process using
a neural network architecture and also extract some qualitative knowledge of the sys-
tem. This paper presents an application of B-spline neural networks to integrate the
approximation techniques of neural networks and qualitative approach of fuzzy logic.
The network is used to identify different parts of a sugar factory evaporation plant.
The operator can also include any heuristic knowledge about the plant. Unlike many
other neuro-fuzzy approaches, the B-spline network offers a simple and easy-to-build
framework.

2. Principles of Model-Based Fault Diagnosis

The aim of a quantitative model-based fault diagnosis is to generate information about
the location and timing of a fault in a system, using the measurements available in that
system, as well as the precise mathematical relationships that relate them. Figure 2
illustrates the conceptual structure of a model-based fault diagnosis system, which
comprises the following main stages.

Residual signal:

7(s) = Huyu(s) + Hyy(s) 1)
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Fig. 2. A model-based fault diagnosis structure.

Objectives: Choose H, and H, so that

r(s) =0 when no fault occurs
r(s) # 0 when a fault occurs

1. Residual generation: This is an algorithm which processes the measurable inputs
and outputs of the system to generate the residual signal. It uses the model,
describing the relationship between those variables in exact mathematical terms,
and any inconsistency in this relationship will indicate a fault in the system.
The residual must, therefore, be different from zero when a fault occurs and zero
otherwise.

2. Decision making: The residuals are then examined for the likelihood of faults, and
a decision rule is then applied to determine if any fault has occurred. The decision
process may be based on a simple threshold test, on the instantaneous values
or moving averages of the residuals, or it may consist of methods of statistical
decision theory, e.g. likelihood ratio testing or sequential probability testing. The
successful detection of a fault is followed by the fault isolation procedure whose aim
is to locate the fault. A single residual signal is sufficient to detect the occurrence
of a fault but a set of residuals is required for fault isolation. From the various
approaches used for the design of model-based residual generators, three separate
classes can be identified:

o Observers: The underlying idea is to estimate the system outputs from the
available inputs and outputs of that system (Patton, 1997). The residual will
then be a weighted difference between the estimated and actual outputs. The
flexibility in selecting the observer gain has been fully exploited in the observer,
yielding a rich variety of fault detection schemes.

e Parity relations: They are based either on a technique of direct redundancy,
making use of static algebraic relations between sensor and actuator signals
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or alternatively, upon temporal redundancy, when dynamic relations between
inputs and outputs are used.

e Parameter estimation: This approach makes use of the fact that component
faults of a dynamic system can be thought of as reflected in the physical param-
eters as e.g. friction or mass velocity resistance. It detects faults through the
estimation or identification of model parameters, using non-parametric models.

The main assumption made when using the above methods is that a precise
mathematical model of the plant is required. This makes quantitative model-based
approaches very difficult to use in real systems, since any unmodelled dynamics can
affect the performance of the FDI scheme. A way to overcome this is to design robust
algorithms where the effects of disturbances on the residual are minimised and the
sensitivity to faults maximised. A large number of approaches had been developed
including unknown input observers and eigenstructure assignment observers (Chen
and Patton, 1999), frequency domain techniques for robust FDI filters such as H
(Edelmeyer et al., 1994; 1997) and the minimisation of multi-objective functions (Chen
et al., 1997a).

To isolate faults, the residual signal has to be classified further, to indicate which
system component has failed. One commonly accepted approach to fault isolation is
to generate a set of structured signals. The aim is to have each residual sensitive to
certain groups of faults and insensitive to others (Chen et al. 1996). The relationship
between faults and residuals, however, can be non-linear such as with multiplicative
faults, thereby making the fault very difficult to isolate.

3. Fault Diagnosis via Neural Networks

To overcome some of the difficulties of using mathematical models and make FDI
algorithms more applicable to real systems, neural networks can be used both to gen-
erate residuals and to isolate a fault (Chen and Patton, 1999). A neural network is
a processing system that consists of a number of highly interconnected units called
neurons. A single neuron is very simple in construction, but a number of neurons
connected together in a highly parallel way give high processing power. The neurons
are interconnected by a large number of ‘weighted links’. Each neuron can be consid-
ered as a mathematical function that maps the input and output spaces with several
inputs. The inputs are connected to either the inputs of the system or the outputs
of other neurons in the system. The output of one neuron affects the outputs of
other neurons and all the neurons connected together can perform complex processes.
There are a number of neural network architectures with different types of neurons
and connections. Artificial neural networks are inspired from the investigations of
neuro-biologists, psychologists and physicists, who have been studying the function of
the human brain for several centuries. Details of the development of artificial neural
networks can be found in many texts (Hagan et al., 1996; Haykin, 1994). Some of the
most common architectures used for fault diagnosis are discussed in later sections.

Indeed, one of the main features of neural networks is their ability to learn from
examples. Hence, neural networks can be trained to represent relationships between



Artificial intelligence approaches to fault diagnosis for dynamic systems 477

past values of residual data (generated by another neural network) and those identified
with some known fault conditions. The configuration used by Chen and Patton (1999)
involved a multi-layer feed-forward network configuration. Whilst such a configuration
can be extremely well trained on numerical data once the output is known, symbolic
knowledge from experts cannot easily be incorporated.
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— Faults —_—
¥ Y y
Input: Actuators —> D;::rr:ltics » Sensors Outpgt

Fault

l ~ Information
Qualitative i
Information | Symbolic
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Fig. 3. Neural networks scheme for FDI.

The approximation abilities of neural networks show a great promise in non-
linear control systems as they can approximate any non-linear function, given suitable
weighting factors and architecture. Traditional methods for dealing with non-linear
systems depend on generating a linear model of the system at some operating point.
No linearisation is required for the neural networks, although the mathematical model
used in traditional methods is very sensitive to modelling errors, parameter variation,
noise and disturbance. In fact, no mathematical model of the system is needed to
implement a neural network. On-line training makes it possible to change the FDI
system easily in the cases where changes are made in the physical process, control
system or parameters. A suitably trained neural network can generalise when pre-
sented with inputs not appearing in the training data. Neural networks have the
ability to inake intelligent decisions in the cases of noisy or corrupted data. They
also have a highly parallel structure which is expected to achieve a higher degree of
fault-tolerance than conventional schemes (Hunt et al., 1992). Neural networks can
operate simultaneously on qualitative and quantitative data and they are readily ap-
plicable to multivariable systems. Neural networks use a ‘black-box approach’, which
can be suitable for FDI of complex systems, where the internal knowledge is not fully
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known. Neural networks can also be applied for process condition monitoring, where
the focus is on small irreversible changes in the process which develop into bigger
faults. Yin (1993) demonstrated the application of MLP and Kohonen self-organising
feature map (KFM) to the predictive maintenance or condition-based maintenance of
electrical drives, particularly induction motors. The first method utilises supervised
learning and the other unsupervised.

Application studies. Neural networks have been successfully employed in many ap-
plications, including fault diagnosis of non-linear dynamic systems (Dong and McAvoy,
1996; Wang et al., 1994). Multi-layer perceptron (MLP) networks are used to detect
leakages in electro-hydraulic cylinder drive in a fluid power system (Stewart, 1995;
Watton and Pham, 1997). Ilott and Griffiths (1997) applied artificial neural networks
to the fault diagnosis of pumping machinery. They showed that maintenance infor-
mation can be obtained from the monitored data using a neural network instead of a
human operator. Crowther et al. (1998), applied a neural network to fault diagnosis
of hydraulic actuators. They showed that experimental faults can be diagnosed using
neural networks trained only on simulation data. Neural networks are used to detect
an internal leakage in the control valves and motor faults in process plants (Sharif
and Grosvenor, 1998). They have also been applied to the problem of joint faults in
robots, using pattern recognition. The joint-backlash of robots is diagnosed by mon-
itoring its vibration response during normal operation (Pan et al., 1998). James and
Yu (1995) used a neural network for the condition monitoring and fault diagnosis of
a high-pressure air compressor valve. The neural network-based FDI scheme can also
appear when further increases in fault levels might be likely, thus giving the operator
time to take necessary action (Boucherma, 1995).

Neural networks have been found to give more information with regard to
multiple-fault conditions than some other methods (steady-state position error, time
series analysis). Dynamical neural networks are applied to on-line fault detection of
power systems, particularly dynamic feed-forward networks, time delay and modified
Elman neural networks (Carley, 1997). Neural networks have also been considered
for fault detection, isolation and reconfiguration (FDIR) of aircraft systems, which
are highly non-linear complex and require a high performance (Chiang, 1996). Neu-
ral network-based fault diagnosis and process-monitoring methods can be applied to
safety critical and highly non-linear processes such as chemical plants (Calado and
Sa da Costa, 1999) and nuclear reactors. Marseguerra et al. (1996) demonstrated an
application of a neural network to the fault detection in a pressurised water reactor
pressuriser.

Strategies for fault diagnosis. It is clear that neural networks can be applied
to fault diagnosis in two different approaches: the pattern recognition approach and
residual generation-decision making. The second approach is generally more suitable
for dynamic systems and comprises residual generation and decision making stages
in just the manner outlined in Section 2. In the first stage, a residual vector r is
determined in order to characterise each fault. Ideally, neural network models identify
all classes of system behaviour. The second stage, decision making, or classification,
processes the residual vector r to determine the location and occurrence time of
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the faults. A neural network can be used for classification in conjunction with other
residual generating methods, e.g. non-linear observers.

Taxonomy of neural networks. There is a large number of neural network archi-
tectures. Some of the most frequently used structures for fault diagnosis are listed
in Fig. 4. Other networks used in recent applications include dynamic backpropaga-
tion networks (Narendra, 1998), Adaptive Resonance Theory (ART) networks (Lin
and Wang, 1993) and Cerebellar Model Articulation Controller (CMAC) networks
(Brown and Harris, 1994b; Leonhardt et al., 1995). Each of these architectures of-
fers different characteristics to suit different applications. Recent research focuses on
networks which can optimise their structure during training. Ren and Chen (1999)
proposed a new type of neural network in which the dynamical error feedback is used
to modify the inputs of the network. Xiong et al. (1999) proposed multiple neural
networks cascaded together instead of a single optimal network, for improved predic-
tions. Tan and Saif (1999) proposed a new method called the dynamic gain matriz
technique used with a neural network to isolate the sources of sensor faults. These
can be located by comparing the dynamic gains of the system model in healthy and
faulty situations.

Neural Networks for Fault Diagnosis in Dynamic Systems

!

l 1

Neural Networks for Residual Generation Neural Networks for Classification

Feed-forward Networks

with NARX configuration Multi-Layer Perceptron Networks (MLP)

Recurrent Neural Networks;

Elman Network Competitive Neural Networks

Radial Basis Neural Networks .
with NARX configuration Probabilitic Neural Networks

Fuzzy Neural Networks

with NARX configuration Radial Basis Network

B-Spline Networks

with tapped delay lines Fuzzy Neural Networks

Dynamic Neural Networks

Fig. 4. Neural network architectures.

There are two basic applications of neural networks to fault diagnosis, e.g. mod-
elling and classification. Modelling includes identification of the system under normal
and/or different operating conditions. As outlined above, this capability is used to
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generate residuals comparing the model states or outputs with those of the actual sys-
tem. Typical architectures chosen for this purpose are feed-forward networks, Radial
Basis Function (RBF) networks and dynamic neural networks because of their pow-
erful approximation and generalising abilities. Many researchers concentrate on the
identification or modelling capabilities of neural networks (Brown and Harris, 1994c;
Hunt et al., 1992; Levin and Narendra, 1996).

The second useful function is classification which is used to detect and isolate
each fault. Given suitable training data for all fault conditions, different neural archi-
tectures can be trained to classify each fault. This can be achieved in two ways. The
first approach, which follows the traditional FDI scheme consists in modelling the sys-
tem, generating residuals using a neural network and using a second neural network to
classify each fault. Chen and Patton (1999) also showed that a single neural network
is capable of performing both the tasks simultaneously, with increased training time
and complexity. Fault isolation requires that the training data be available for all
expected faults in terms of residual values or system measurements.

For identification of dynamic systems, neural networks also need to have some
dynamics involved in the structure (Hunt et al., 1992). Dynamic or recurrent networks
have dynamic elements within their structure. For networks without internal dynamic
elements the most common way of identification is to use tapped delay lines such as
Non-linear Auto Regressive eXogenous training structure (NARX model), (Billings
and Leontaritis, 1985; Doherty et al., 1994) for its ease of implementation. Narendra
(1998) discussed different approximate models for non-linear systems, which are suit-
able for different applications. The basis of the NARX model is the assumption that
the non-linear system dynamics can be represented by the equation

ynn(t) = f(u(t—k),...,u(t— k—mn,+1),y(t— 1),...,y(t—ny)) +e(t) (2)

where y is the process output, u is the process input, u is the error, f is the non-
linear function represented by the neural network, n, = n, = n is the order of the
model and k > 1 is the model dead-time.

3.1. Feed-Forward Neural Networks with Back-Propagation

Feed-forward neural networks have a simple architecture and can be used for both
residual generation and classification. Feed-forward networks as shown in Fig. 5
are used for identification or residual generation because they do not have internal
dynamic elements. This type of simple network is not efficient when modelling non-
linear dynamic systems, but the ease of implementation makes it ideal for the cases
where the transient error is less important. Each neuron outputs only to the neurons
of the next layer (Caudill and Butler, 1992). The input layer acts as a fan-out of the
input signal pattern. The hidden layer neurons act as feature detectors which encode
in their weights the features present in the input patterns. These features are then
used by the output layer to determine the correct output. More than one hidden layer
is possible depending on the complexity of the system.

The net input for each of the neurons in each layer is calculated by I; =
Z?;l w; X, where w; is the weight connecting the i-th and the j-th neuron and
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Input Layer Output Layer
Hidden Layer

Fig. 5. Feed-forward neural networks.

z; is the output of the j-th neuron of the previous layer. The sigmoid function is
most commonly used as the activation function, i.e.

B 1
S l4eh
To train the network, input patterns are applied at the inputs in turn, the error of
the output layer neurons is calculated directly by comparing these with the desired
outputs and is back-propagated from the output layer and multiplied by the derivative
of the middle-layer neurons activity to determine the error for the previous layer
neurons. The weight change equation is given by

Awij = BEf(I) + alwd " (4)

(4]

y = f(I;) for i=1,...,n (3)

where f is the learning coefficient, E is the error for that particular neuron and «
is the momentum coeflicient.

The error E is determined by the following equations:

E;')utput — y;_lesired _ y;}ctual (5)
iddley ™
first/hidden __ df(I'ml ) t
E; = D wi By (6)
j=1

For each pattern applied the weight is updated and the whole set of patterns is
repeated until the network reaches a desired ‘sum-square-error goal.” Simple feed-
forward neural networks cannot be applied to dynamic problems involved in the fault
diagnosis because they are basically static networks.

3.2. Recurrent Networks

Recurrent neural networks (Fig. 6) can model dynamic systems much better and
they do not require tapped delay lines, as is the case of feed-forward networks, and
employ much more computational power for training and implementation because
past values of the signals within the network are also used. However, because of



482 R.J. Patton, C.J. Lopez-Toribio and F.J. Uppal

Input Output

Y

1

x
| I
| |
3 i i
| | 1
| (. |
' ] I
Lo IS J |
- |
B SRR - |
I I
} L j
Lo

Fig. 6. Recurrent networks.

greater computational requirements, these are not usually used for the classification
purpose. In recurrent networks (Caudill and Butler, 1992) each input activity pattern
passes through the network more than once before it generates an output.

Recurrent back-propagation networks are the most commonly used networks in
which recurrent neurons are added in to handle the feedback from the next layers
neurons as shown in Fig. 6. The weights on the connections leading to recurrent
neurons are usually fixed to unity. The activity equation includes the previous activ-
ity. Similarly, the weight change equation also depends on the previous activity and
weights, thus this type of training is also called back-propagation through time. The
following equations compute the activity for each neuron from time ¢t =1 to ¢t = N:

3 2
I(t);pid — Z w}x;—midy(t)in + Z wg]jid——midy(t _ 1)1].1:1id (7)
k=1

i=1

2 3
I(t)?ut _ szr_;ld—outy(tﬁmd + Z wz;t—outy(t _ l)zut (8)
k=1

i=1
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Starting with the error at ¢ = N, the backward error is propagated for each layer
from t=N to t=1:

i df(I(N))
out _ desired __ actual
BN)™ = (y(anydesred — y(gemmat) S ©)
. 3 df( ( )mld)
mid __ mid—out out
B(N)Pd = (;w” E(N) )——dI (10)
The backward error propagation for all times prior to ¢t = N starts with
' df(1(1);)
out _ out—out out J
Bt = (e t)—i—Zw B(t+1)7") = (11)

where £(N)%Ut = (y(N)jesired — y(N)3act2!), and continues with

3 1 i
mi mid—ou ou mid—mi mi df(I(t)mld)
B = (o wi e BOR £ Y ut B + DE) = (1)
k=1

i=1

The weight change law for non-recurrent weights is

A'U)( )m mid/in—out ﬂE(t)iy(t)j (13)
whereas the weight change law for recurrent weights is
Aw(t):x;ud mid/out—out — ,BE( )ly(t _ l)j (14)

Catfolis (1996) pointed out that recurrent neural networks have the drawback
that temporal knowledge about the process is difficult to use. The RTRL (Real Time
Recurrent Learning) algorithm is suggested so that the temporal knowledge can be
used in network training. Moreover, this results in reduced training times for RTRL
networks.

3.3. Dynamic Neural Networks

Hunt et al. (1992) suggested a general structure for implementing a number of both
dynamic and non-dynamic neural networks. The dynamic neural networks utilise
neurons with dynamic elements as shown in Fig. 7. The dynamic elements give the
network power to represent dynamic systems, when used for identification or residual
generation. This type of network is more efficient than recurrent networks, especially
when the number of inputs and outputs is large. The greater computational require-
ments mean that these networks are not generally used for classification. Recent
research considers a wider class of dynamic networks both for identification and for
diagnosis (Korbicz et al., 1998; Patan and Korbicz, 1996).

The weighted summation gives the output

M

N
t) = Zaijyj (t) + Z bikuk(t) + w; (15)
=1

k=1
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Fig. 7. General structure for dynamic neural networks.

where y; are the outputs of all neurons, uj are the external inputs, w; are biasing
factors and a;j, by, are weighting coefficients. The linear dynamics can be described
by the function X;(s) = H(s)Vi(s), where X (s) is the Laplace transform of z(t),
V(s) is the Laplace transform of v(t) and H(s) is the transfer function. In the time
domain the above equation becomes z;(t) = fjoo h(t — t')v(t')dt’. A non-dynamic
non-linear function can be represented by y; = g(x;) where g is a function upon z.
To train such a network, the dynamic backpropagation method is commonly used.

3.4. Radial Basis Function (RBF) Networks

Radial basis function networks are single-hidden-layer feed-forward networks. They
are concerned with the data clusters rather than data boundaries as in multi-layer
perceptron networks, as discussed by Wilson (1998). For each input the distance
between the input vector and vector of centres is calculated rather than the input
itself and passed through the neuron activation function. RBF networks (see Fig. 8)
are capable of approximating any function with arbitrary accuracy.

An RBF network can be represented by y = Zfil w; f (|l —¢i||) where z is the
input vector and ¢ is the vector of centres. The Gaussian function of the form

f =exp [ - 2] (16)

where o denotes a smoothing factor (width), is the most commonly used although dif-
ferent non-linear functions are also applied in practice. The specific type of non-linear
function is not very important to the performance of an RBF network (Narendra,
1998). :
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Fig. 8. Structure of RBF networks.

Temporal instability of MLP networks can be avoided without the excessive
parametrisation required by B-spline networks (Wilson, 1998). The network is trained
to minimise the cost function which is the sum-squared-error

T=Y (vi—9:)° (17)

A typical network with m inputs and r neurons has the following parameters to
optimise: r weights (wy,...,w,), Rm centres and r widths. If weights and widths
are pre-allocated, then the optimisation of weights constitutes a linear least-squares
problem. Hence, a global minimum can be found with relatively little computational
effort. This gives a huge advantage over MLPs in terms of the training time and
avoidance of local minima. On-line training is possible if recursive least-squares (RLS)
algorithms are adopted. Pre-determined parameters reduce the number of degrees of
freedom available to the network. The following methods of training can be applied
for RBF networks:

1. The centres are distributed randomly across the input space with a single width
value. The network is quick to train and the results fit reasonably well, but the
output function is not smooth. If the centres are distributed uniformly, they will
be forced into regions with few or no data points. This is a less efficient method
and to work reasonably, a large number of neurons is required. Moreover, the
results can be improved by selecting the centres as a random subset of the input
space.

2. The centres are distributed such that their distribution mirrors that of the training
data, which implies implementation of a type of vector quantisation or a clustering
algorithm, K-means clustering. (Moody and Darken, 1989; Wilson, 1998)

RBF networks overcome some of the disadvantages of MLPs by using non-monotonic
transfer functions based on the Gaussian density function (Dalmi et al., 1999). More-

over, the RBF network produces more robust decision surfaces and the training is
faster than for the MLP.
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Fig. 9. Architecture of a B-spline network with one input and two outputs.

3.5. B-Spline Neural Network

A B-spline neural network is another single-hidden-layer neural network similar to the
RBF network, using B-spline basis functions and can be divided into the following
stages:
o A space of all possible inputs, which comprises the measurable inputs and outputs
of the system being monitored.

¢ Basis functions: they are associative cells defined in the input space and joined at
breakpoints, referred to as knots. These functions perform a non-linear transfor-
mation of the input into the interval [0,1]. Their shape, size and overlap determine
the modelling capabilities of the resulting network.

o Weight vector w;: these are linear coeflicients which are adjusted in the training
phase of the algorithm.

The structure of B-spline neural network is shown in Fig. 9. It is defined by its
order n, number of B-spline functions p, weight matrix w and the normalised space
of possible inputs. Parameters n and p define the basis functions which specify the
shape, size and overlap of the functions. The weight matrix w consists of linear
coefficients, adjusted during the learning process. These parameters determine the
modelling capabilities of the network (Ahlberg et al., 1967; Sard and Weintraub,
1971). '

‘The 4-th output of a network can be represented as a linear combination of its
basis function B, ;(z):

P
yi(k) =) wi; Bnj(z) (18)
=1

where n denotes the order of the basis functions, wj; (weight) is the parameter
associated with the j-th basis function and the i-th output, and P is the number of
B-spline functions for each input. To construct B-spline functions of any order, the
following recurrent relationship can be used:

By, j(z) = (/\x#) Bn,j-1(z) + <

j—1 = )\j——n

)\j —Z
>‘J’ - /\j—n+1

) Borse) 19
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where

1if z € Ij
0 otherwise

By ;(z) = {

and j is the B-spline index ascribed to the region of local support Aj;_n) <z < Agj.
Figure 10 shows different orders and partitions for B-spline functions.
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Fig. 10. Different orders and numbers of B-spline functions.

After selecting the B-spline function parameters, the training of the network
consists in finding weight coefficients w; that minimise the cost function,

N
J+ % Z (7(t) — r(8)* (20)

where N denotes the number of training sets, 7(t) stands for the target signal and
7(t) is the network’s outputs.
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To find an optimal set of weights, different methods can be used including off-line
least-squares, on-line recursive least-squares, and back-propagation of feed-forward
networks.

Multi-dimensional B-spline models are used for multiple-input multiple-output
systems. The equivalent basis functions are determined as a product of one-
dimensional models,

B(z) = [ By(zp) (1)
=1

3.6. Design Issues of Applying Neural Networks for Fault Diagnosis

1. As discussed earlier, neural networks present a ‘black box’ which does not show
the rules governing the operation. This does not enable the user to understand
the system and predict its behaviour in uncertain situations. As discussed in the
following sections, B-spline neural networks can be used not only for identification
and classification, but also to extract and include some heuristic knowledge about
the system.

2. The training time required for a specific application and the complexity of the
training algorithm present another limitation. The earlier back-propagation algo-
rithm used to train MLPs takes a long time to train and is generally an off-line
method for training. RBF networks are capable of on-line adaptive training if re-
quired (Wilson, 1998) but use a large number of neurons if the I/O space is large.
B-spline networks are suitable for systems with a smaller number of variables be-
cause the computational effort required to train such networks is an exponential
function of the number of inputs to the network. To accelerate convergence, state
variables with additional terms can be used in training (Watton and Pham, 1997).

3. Neural networks tend to approximate the exact training data including noise,
if a more complex network architecture is used than the original system. This
is called an ‘over-parametrised network.” Similarly, if the network architecture
chosen is not adequate enough, it will ‘under-fit’ the system behaviour. This is
called an ‘under parametrised network.” Over-trained networks and under-trained
networks also show the same phenomena. To overcome these difficulties, training
data are filtered for noise and the training parameters such as ‘sum-squared-error’
and ‘number of epochs’ are selected carefully. James and Yu (1995) showed that
algorithms can be developed which do not require initial guesses of weights and
the number of neurons in the hidden layer. Keenan (1998) proposed artificial
evolution of the neural network to eliminate the trial and error usually associated
with ANNs. The evolution procedure produces varying objects derived from a
base class, out of which better objects are selected on some predefined performance
index. These methods have many limitations for the time being.

4. Neural networks which use neurons as membership functions, e.g. RBF and B-
spline networks, do not generalise well when presented with data outside the train-
ing I/O space. For example, B-spline networks will generate the zero output if
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the data is presented outside the I/O space. Other neural network architectures
as MLP and fuzzy-logic based systems tend to generalise in a better way. On-line
training should be used to update such networks (Wilson, 1998).

5. If some unknown fault conditions appear, the neural classifier is no longer valid
because it is not trained to classify this type of fault. Adaptive training algorithms
should be used with systems requiring on-line training. However, on-line training
must be done carefully, otherwise the network might learn faulty instead of healthy
system behaviour. The network will no longer be able to classify the fault.

6. Neural networks are often not suitable for real-world application problems because
of their complexity. Many other techniques have been combined with neural net-
works, including fuzzy logic, genetic algorithms, adaptive modelling, etc. These
combinations enhance the power of the neural network for solving complex prob-
lems.

7. Neural-network-based FDI methods usually require pre-processing or signal con-
ditioning algorithms to reduce the effect of noise and disturbance and to enhance
the fault features. Franckin et al. (1999) proposed a fault detection scheme using
a neural network with fuzzy input pre-processor. The fuzzification of the inputs to
the network enriches the information, making it easier for the network to diagnose
and isolate faults.

8. It is not usually possible to acquire all the faulty data for neural network training.
It might be very dangerous or impossible to acquire faulty data from the process.
Thus unsupervised training is necessary in order to classify the faults not known
a priori. There are two basic types of unsupervised learning schemes for neural
networks: the Kohonen network and the Counter-Propagation Network (CPN)
(Dalmi et al., 1999).

4. Fault Diagnosis via Fuzzy Logic

Since 1965 when Zadeh introduced the theory of the fuzzy sets manipulating data that
were not precise but rather ‘fuzzy’ and since the work of Mamdani (1974), industrial
application studies using fuzzy logic controllers have reached a major position in sys-
tems engineering. Application areas include the process industry, electromechanical
systems, traffic and avionics control and biomedical systems.

Fuzzy systems are useful in any situation in which the measurements taken are
imprecise or their interpretation depends strongly on the context or on human opinion.
The architecture for the knowledge-based model of a controller consists of three blocks
(see Fig. 11). The fuzzification interface maps the input value to a suitable domain
and converts it into a linguistic term or into a fuzzy set. The knowledge base contains
information about the boundaries, possible transformations of the domains, and the
fuzzy sets with their corresponding linguistic terms. This information represents the
data base. In addition, the knowledge base contains a rule base consisting of linguistic
control rules. The decision logic represents the processing unit which determines the
corresponding output value from the measured input according to the knowledge
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Fig. 11. Knowledge-based model of a controller.

base and the de-fuzzification interface determines a crisp output and carries out a
transformation of the output value into the appropriate domain (Kruse et al., 1994).

Although fuzzy systems theory is often applied to an industrial process, the
applications often do not work well. Sometimes fuzzy logic designs are completed
without mathematical rigour. The main tasks of finding appropriate membership
functions and fuzzy rules are often determined simply by ‘trial and error.” The rules
can be obtained by means of optimisation methods. A fuzzy logic controller can
be used to optimise and solve classical problems of PID controller tuning (Ruano
et al., 1999). Alternatively, when information from the system is not available, the
fuzzy rules can then be optimised. Hu et ol (1999) show how fuzzy inference can
be used for tuning controllers by evaluating and examining the functional behaviour
of fuzzy PID-like controllers. The introduction of a convex optimisation method
using LMI (Linear Matrix Inequalities) has facilitated the mixed design of robust
fuzzy control and optimal fuzzy control for non-linear systems (Tanaka et al., 1999).
LMI optimisation has been used in order to design an optimal Takagi-Sugeno (T-
S) observer based on a relaxed stability condition (Patton et al, 1998). Another
main approach to obtain the number, position and type of rules is to apply adaptive
and learning algorithms to fuzzy systems or to apply neural networks to learn the
parameters of the fuzzy system. For control and classification, neuro-fuzzy techniques
are now receiving wide attention. Neuro-fuzzy methods can facilitate the development
of fuzzy systems based on heuristic learning strategies obtained from neural network
theory. Typical neuro-fuzzy approaches are NEFPROX, NEFCON (Niirnberger et
al., 1997), NEFCLASS (Nauck and Kruse, 1998) and ANFIS which combines back-
propagation learning and least-mean-squares estimation (Jang and Sun, 1993).

4.1. Fuzzy Decision-Making

TFuzzy decision-making procedures are most useful when the information available
is subjective, unclear, vague, or imprecise in some other way. Process control is a
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decision problem where a number of actions are available to the controller but only
a set of selected control actions must be performed to achieve the specified control.
The advantage of the fuzzy approach is that it supports, in a natural way, the direct
integration of the human operator into the fault detection and supervision process.
By avoiding an incorrect decision that can cause false alarms, the aim of the FDI
decision making (for fault diagnosis) is to decide whether and where the fault in the
system has occurred (Kuipel and Frank (1997). Fuzzy decision-making objectives are
very similar to expert systems and supervisory control. Expert systems are used to
simulate the problem-solving and decision-making processes of a human expert within
a relatively narrow domain. This is done using special computer packages along with
knowledge, information and databases (Ford, 1991; Tzafestas, 1989).

Formulation of decision-making. A decision can be formulated by a set of vari-
ables (sets, relations and functions) termed a quintuple (S, st, C, m, dc) (Kaymak,
1998; Verbruggen and Babugka, 1999). By using available information, S stands for
the possible actions where a selection of this set is performed. Furthermore, st is the
set of uncontrolled variables but they must be included in the decision making pro-
cess. C signifies the set of consequences, which must be included into a multi-criteria
decision-making. Uncertainties resulting from the identification procedure and inher-
ent uncertainties of the system are included, in part, in the consequences. Moreover,
m is the relation used to obtain the decision-making solutions by mapping the space
S x st into the set consequences as S X st = C. The decision-maker has, a priori,
aims and objectives in a preference ordering. They are taken into account in dc as
a decision function dc : C — R. A number of fuzzy decision-making methods for
control has been applied for more than two decades, for example the formulation by
Bellman and Zadeh (1970). For this approach, there is no distinction between the
aims and constraints; both are included in the membership functions. Another ap-
plication of decision-making for control is the supervisory control described by Sousa
et al. (1998). This takes the form of a higher-level controller using a decision-making
approach for the adaptation process of the available control actions.

Fuzzy sets have been applied to model-based predictive control to obtain a se-
quence of future control actions through cost function minimisation. To simplify the
optimisation method, the receding horizon principle is applied because only the first
control action is important and this is therefore the action applied by the controller to
the process. In order to relate the objectives and constraints in predictive control, a
fuzzy decision-making strategy is applied using multi-criteria (Babugka, 1997; Braake
et al., 1994; Kaymak, 1998; Sousa, 1998).

4.2. Fuzzy Clustering and Fuzzy Identification

For linear systems, identification techniques are well developed and established and are
therefore widely applied. However, for non-linear systems less attention has been paid
to identification procedures due to the complexities involved. To identify complex non-
linear systems it is common to obtain partitions of the available data, and then each
partition or subset is approximated by a simple model. The data can be quantitative
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or qualitative information or a mixture. Clustering algorithms are not only used
for classification and pattern recognition to construct fuzzy models but also for the
simplification and optimisation in modelling.

Isoc (1998) used quasi-linear fuzzy models based on the Sugeno approach (from
experimental measurement data according to the Box-Jenkins data sets). These were
compared with the real system data sets and then with models obtained using other
identification techniques. Various identification techniques to develop fuzzy models
were used, e.g. Mendel-Wang fuzzy reference sets (Wang and Mendel, 1992). The re-
sults obtained were of good quality because a more natural inter-dependence between
the data set and extracted fuzzy sets was defined. A software package for fuzzy identi-
fication and fault detection (based on Mendel-Wang) was developed and is now being
evaluated on a boiler node at the Lublin sugar factory in Poland (see Section 5.2.1 for
description of the plant and modelling problem). In another study, a rule-base suitable
for the evaluation of fuzzy-linguistic models (Mamdani and Assilian, 1975) has been
used to develop an autonomous mobile vehicle (AMV) (Kovacs, Koczy and Bikfalvi,
1998). The application of these models to the FDI problem has been examined using
areal AMYV system. Identification using template-based modelling requires two types
of information. Firstly, a collection of data points relating to the system inputs and
outputs is demanded. Secondly, an expert provides a collection of linguistic values
that form a partitioning of the input and output spaces into fuzzy regions. These
templates are the system’s expert language for describing the environment and the
model. The AMYV project has progressed towards the use of an additive weighted
combination of the rules on the real application (Kovacs, K6czy and Bikfalvi, 1998).
The ability of combining identification algorithms, implementation and evaluation
of fuzzy identifiers with fuzzy logic models (Sugeno models, neuro-fuzzy structures,
evolutionary algorithms of genetic type), appropriate shapes of membership functions
make the fuzzy logic approach one of the main approaches to identify models. Garcia
et al. (1997) used fuzzy implications and reasoning to build fuzzy models for fault
diagnosis purposes. The neuro-fuzzy adaptive identification mechanism is applied to
real system: models.

The fuzzy approach is becoming a powerful alternative to the artificial expert
system approach and may gain more practical importance in the future. The non-
linear system can be identified using a fuzzy multiple model description of the real
system in a parallel and a series model or any combination (series-parallel) (Ballé et
al., 1997) and consequently a number of models are identified. The issue that remains
a challenge is to obtain not only a number of multiple linear models but also the
minimum number of models which describe the non-linear system. This optimisation
is difficult because the identification method using fuzzy logic depends on a large
number of variables. There are various procedures to try to extract learning rules in
combination with other techniques, e.g. using neural networks (Fiissel et al., 1997).

4.3. Fuzzy Techniques in FDI

In recent years, the application of fuzzy logic to model-based fault diagnosis ap-
proaches has gained increasing attention in both fundamental research and applica-
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tions. Symptoms can be generated using observers based on the estimation of the
output from the system. The first methods used fuzzy set theory to express cause-
effects relations in expert systems. The key idea of model-based methods is the gen-
eration of signals, termed residuals. These are usually generated using mathematical
methods (based on state observers, parameter estimation or parity equations). The
models correspond to the monitored system (Chen and Patton, 1999). Residuals are
signals representing inconsistencies between the model and the actual system being
monitored, but the deviation between the model and the plant is influenced not only
by the presence of the fault but also modelling uncertainty. One solution is for the
observer and controller parameters to be tuned via estimation from the real system for
fault isolation and threshold adaptation (Schneider and Frank, 1994). The introduc-
tion of fuzzy logic can improve the decision-making, and in turn will provide reliable
and sufficient FDI, suitable for real industrial applications. However, a difficulty arises
in the training of the algorithm in the inference mechanism where knowledge is hid-
den in large amounts of data and embedded in trained neural networks (Chen et al.,
1997b). A fuzzy feed-forward neural network (FNN) is applied to extract rules from
an existing data base. Frank et al. (Frank 1993; 1994a; 1994b; 1996; Frank and Kuipel,
1993; Frank and Koppen-Seliger, 1997; Schneider and Frank, 1996) use fuzzy logic for
residual evaluation. This can be an important way of taking into account modelling
uncertainty at decision making rather than during the residual generator design. By
applying a fuzzy rule-based approach the fault decision process can be made robust
to the uncertainties so that false and missed alarm rates can be minimised. Consid-
ering supervisory control (Frank and Kuipel, 1993; Linkens and Abbod, 1993) with
tasks such as system management, process monitoring, identification, fault detection,
diagnosis and adaptive capability reduces at a lower level the models for developing
simpler structures for observers and controllers using Takagi-Sugeno models. Several
observers had been proposed for FDI in bilinear systems using either unknown input
observers (Chen and Patton, 1999), or sliding mode observers (Edwards et al., 1997),
or gain-parametrised observers (Bennett et al., 1999). The relationship between the
input-output variables can be described by fuzzy qualitative models, fuzzy relational
models (using parameters identified from the learning data set) and fuzzy functional
models. The Takagi-Sugeno (T-S) fuzzy observers have the advantages of making the
error dynamics independent of the parameters of the system (e.g. the speed of the
rotor). The (T-S) fuzzy models for non-linear dynamic systems are described by a
number of locally-linearised models. In this research, different operating points are
self-selected with an optimisation method based on eigenvalue assignment criteria for
both a fuzzy observer and a fuzzy controller.

5. Fault Diagnosis Based on Integration of Qualitative and
Quantitative Methods

Traditional fault diagnosis and identification methods have limitations, especially
when the system is complex and uncertain and the data are ambiguous and not
rich in information. Intelligent systems are needed for these complex processes, which
can mimic the sensing, generalising, processing, operating and learning abilities of a
human operator.
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As discussed in Section 4, fuzzy logic offers a linguistic model of the system in
which the system can be easily understood by certain rules governing input-output
‘variables. The works (Mamdani and Assilian, 1975; Zadeh, 1965) were pioneering in
this field. Bezdek (1981) gave the following definition describing fuzzy partitions: let
X a finite set, V., the set of real ¢ x n matrices, ¢ an integer, 2 < ¢ < n. Then a
fuzzy c-partition space for X is the set

Mfc = {U S Vcnlu@k € [0,1]\Vl’i,k; Zuik = 1Vk‘;0 < Zuik < 'ILV’IZ} (22)

=1 k=1

Two major classes of knowledge representation in fuzzy modelling are proposed
by Takagi and Sugeno (1985) and Mamdani and Assilian (1976). Fuzzy logic has the
inherent ability to deal with imprecise or noisy data and neural networks have abilities
to learn, generalise and deal with non-linear systems. Here, we propose to integrate
symbolic and quantitative knowledge through a neuro-fuzzy system. This will then
combine the learning ability of ANNs and the explicit knowledge representation of
fuzzy-logic. The application engineer can therefore extract, from the data, a high-
level language description of the system. Heuristic knowledge about the plant can
also be included.

Some other tools like evolutionary algorithms, genetic algorithms or probabilistic
reasoning can also be combined with the above to enhance the parameter tuning,
or to deal with the uncertainty in order to establish the desired intelligent system.
Li and Elbestawi (1996) proposed the following four necessary characteristics of an
intelligent monitoring system to emulate the human monitoring action:

e indirect sensing,

signal conditioning,

parallel processing of information, and

knowledge learning.

5.1. Combining Neural Networks with Fuzzy Logic

There are several possible methods of combining neural networks with fuzzy logic,
the advantages and disadvantages of which depend on the specific application. Some
of these techniques are:

1. fuzzification of the inputs or outputs of the neural networks (see Fig. 12),

2. using neural networks in fuzzy models where neurons provide the necessary mem-
bership functions and rule base, and

3. fuzzification of the interconnections of conventional neural networks.

Simpson (1992; 1993) proposed a structure for combining neural networks with
fuzzy logic, the so-called ‘fuzzy min-max neural networks.” The simplest Fuzzy Neural
Networks use a fuzzifier to combine fuzzy logic and a neural network (Caudill and
Butler 1992). The fuzzifier is a processor that receives input data patterns and con-
verts them to fuzzy categories which are used as inputs to the neural networks. Fuzzy
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Fig. 12. A simple fuzzy neural network.

logic is most useful when the information available is imprecise or noisy. Fuzzy neural
networks can be used for both residual generation and classification.

Many different structures have been established, integrating neural networks with
fuzzy logic in the form of fuzzy neural networks with different training algorithms
(Jang and Sun, 1995; Lin and Lee, 1991; Wang and Mendal, 1992). Farag et al. (1998)
proposed a five-layer fuzzy neural network in which the parameter identification of the
fuzzy model comprises three phases. In the first phase, initial parameters are found
using the Kohonen self-organising feature map algorithm. The second phase consists
of finding linguistic rules. In the third phase, a genetic algorithm is used to tune
the membership functions, called the multi-resolutional dynamic genetic algorithm
(MRD-GA). The neuro-fuzzy network proposed by Farag et al. (1998) consists of
five layers of fuzzy neurons (Fig. 13). The first layer and five neurons are effectively
the input and output neurons, respectively. The second layer together with four
neurons act as membership functions and the neurons of the third layer provide a rule
base. The training process adjusts the mean value and variance of the bell shaped
membership functions represented by Layers 2 and 4, and fuzzy rules by modifying
weights between Layers 3 and 4 as described by the diagram of Fig. 13.

Li and Elbestawi (1996) proposed a multiple principal component (MPC) fuzzy
neural network for clustering (unsupervised classification) which employs fuzzification
of the interconnections of a conventional neural network. This method is used for au-
tomated tool condition monitoring in machining and is based on Li and Elbestawi’s
fuzzy neural networks in which fuzzy membership functions are used for decision
making and the interconnection in the network. Figure 14 shows the corresponding
neuro-fuzzy architecture. The interconnection between different layers is represented
by fuzzy membership functions. The neurons of the hidden layer use fuzzy classifi-
cation. Note that this structure uses partial interconnection, which results in faster
classification.

Neuro-fuzzy methods have been successfully applied to a wide range of appli-
cations from industrial processes to financial systems, due to the ease of the design
of the rule base, linguistic modelling, application to complex and uncertain systems,
inherent non-linear nature, learning abilities, parallel processing and fault tolerance
abilities. However, successful implementation of fuzzy neural networks depends heav-
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ily on the prior knowledge of the system and the training data. Recent research focuses
on neural networks, e.g. B-spline neural networks, which can be used to extract the

qualitative knowledge of the system.
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5.2. B-Spline Neural Networks

Qualitative modelling methods require much less effort, since the requirements for
fault diagnosis can be better achieved by symbolic reasoning. The resulting mod-
elling and mathematical operations can be more ambiguous, and the dimension of
the model greater than that of the equivalent quantitative approach. For this reason,
in order to obtain the advantages of qualitative models, such as effective modelling,
flexibility, imprecise numerical information, a qualitative reasoning technique must be
combined with other types of knowledge (Kuipers, 1994) or applied in the framework
of integration.

By integrating qualitative and quantitative knowledge through a neuro-fuzzy
system it is feasible to combine the learning ability of neural networks with the explicit
knowledge representation of fuzzy logic. The application engineer can extract from
the data a high-level language description of the system and can, if required, include
any heuristic knowledge about the plant.

A way of doing so is to use the B-spline neural-network (Brown and Harris, 1994a;
Lane et al., 1992). A complete description of the B-spline theory can be found in any
general book on spline theory (Ahlberg et al., 1967; Sard and Weintraub, 1971).

B-Spline Residual Generator

As described in Section 3.5, B-spline neural-networks can be used to diagnose faults
in non-linear systems and overcome some of the disadvantages of MLP networks.
The residual generator is similar to the one proposed by Patton et al. (1994). The
measured inputs and outputs of the system are processed through an associative
memory network, as opposed to an MLP network. The underlying concept is to train
the network to recognise the occurrence of a fault and find the optimal function which
maps the system inputs and outputs to a residual signal:

r(t) = F(1(1), 5(t)) (23)

where @(t) = [u(t), u(t—1), ..., u(t—m)]T and §(t) = [y(t), y(t—1), ..., y(t—n)]"
are the input and output of the system over a window time, respectively. The input
of the network includes past as well as current values of the measurements to capture
temporal information.

It is important to note that the aim of the fault detection observer, or residual
generator, is not to estimate the state of the plant but rather to respond promptly to
the occurrence of a fault. Hence, the residual generator should output a value of 1
when a fault develops in the system, and 0 otherwise. In such an approach, it may be
said that the network used is an alternative to the traditional fault detection observer.

An important feature of a neural-network is that it will learn during a training
session made over several training cycles, with training data coming from different
operating points. However, before the training is started, the order of the B-spline
network needs to be chosen. A network with a second-order basis function and two
linear knots is typically chosen. This enables the normalised input space to be divided
into three linguistic variables Small, Medium and Large.
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Once the training is performed, a set of optimal weights w; is used to derive
the corresponding fuzzy description of the residual generator. Moreover, since the
basis functions can be interpreted linguistically, a qualitative model of the residual
generator can be derived. This provides the operator with an explanation about the
cause of the fault which is more understandable to him/her than using crisp neural-
networks.

Fault Isolation Using B-Spline Networks

A B-spline network can be used in general FDI schemes which consist in residual
generation and decision making (classification). In residual generation, the residual
vector r is determined in order to characterise each fault. The residual vector r is
then processed to determine the locations and occurrence times of the faults, which
is called decision making. Ideally, the models identify all classes of system behaviour.

The B-spline network is used to classify faults in the process. The faults are
assumed to be known a priori, and their corresponding data available to the de-
signer. The network will then have as many outputs as classes of behaviour. Hence,
for a system with two classes of faults, the output of the network will be a three-
dimensional vector; this includes the models associated with the two faults as well as
that corresponding to the Healthy one.

For training, the network is decomposed into a set of (M + 1) multi-inputs-
single-output (MIMO) sub-models, where M is the number of faulty classes (the set
of optimal weighting coefficients for each sub-model can be found). When the network
is used to classify a test point (%(t), §(t)), the network’s output Flag is a real vector
of dimension (M +1).

It can be seen from Fig. 16 that each component of that vector, Flag; (I =
1,2,..., M) is identified with a class of behaviour, which can be either Fault I, or
the nominal model. When the system is operating in its nominal condition, all the
network outputs are zero except the last one. However, when a specific fault develops
in the system, the corresponding output will deviate from zero, whereas the output
Flagry1 becomes zero, confirming that the system is no longer Healthy.

5.2.1. B-Spline Neural Networks Applied to a Sugar Factory Plant

An interesting example of the use of the B-spline network has been the modelling and
diagnosis of some stages of the Lublin sugar factory in Poland. The factory illustrated
in Fig. 17 produces 50,000 thousand tonnes of sugar annualy. It consists of a large
number of evaporation plants, boiler houses, heaters and valves.

For the production of sugar, beets are collected from the planters. Raw syrup
is obtained from thin sliced beets using extractors. After cleaning, decalcifying and
processing the syrup, it contains 14 % of sugar condensed to 70 % solution using the
evaporation station. The waste steam from the steam turbine is used as a heat source
for the complete process. A mixture of granulated sugar and syrup is obtained after
crystallisation process in syrup boilers. The main by-products of this process are the
beet-pulp, used for feeding cattle and the remaining syrup used for manufacturing
alcohol and organic acids. An automatic control system OSA-2 is used to operate and
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monitor the system. The whole process is optimised to consume minimal heat. Steam
is generated by the boiler house, and is composed of four technological complexes.
Each complex consists of a coaling grate furnace having two grates of OSR 32 type,
barrel boiler and initial steam super-heater. The thickness of the coal coat is controlled
in an open-loop manner, via a boiler operator.

The steam pressure in the barrel boiler determines the feed of each grate and the
air inflate through coal in each grate (Wasiewicz, 1999). Real data from the plant
were taken and a B-spline network was applied to identify various sub-parts including
a valve controlling the flow of the juice into the evaporisation plant.

Figures 18 and 19 show the result of applying the B-spline network to the training
and testing data for the identification of the valve mentioned above. Note that the
result when using the training data is much better when compared with the result
using the testing data because it contains different levels of noise and disturbances
and the training is never perfect. The initial large error in the testing result is due
to a wrong initial condition on the predicted output. At the commencement of the
algorithm, the B-spline uses a feedback from its own output value, which does not
match with the output of the actual system. This error reduces quickly as the B-spline
network output converges to that of the system. From Fig. 19 it can also be observed
that the system does not perform well if it operates outside the input-output space
of training data.

06"
047
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0 200 400 600 800 1000 0j 500 1000 1500 2000 2500 3000

black=Target  grey=Fuzzy Model Output black=Target  grey=Fuzzy Model Output

Fig. 18. Result of training data. Fig. 19. Result of testing data.

5.2.2. Extracting Fuzzy Rules from the B-Spline Network

As regards the structural equivalence of B-spline and fuzzy logic, it can be seen
that both have input membership functions and weighted sums of product of these
functions. Consider the following fuzzy rule:

R;j: IF (z is 4;), THEN (r is Bj) (€i5) (24)
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where A; and B; denote fuzzy sets in the input and output partition space, re-
spectively, and ¢;; is the level of confidence in rule R;; being true (Benkhedda and
Patton, 1997).

The output of a continuous fuzzy rule can be described as
P
r(@) =Y pa(z)ws (25)
i=1

where w; = 337_, ¢;jy5. The confidence level of each rule can be obtained from
optimal B-spline network weights (Brown and Harris, 1994a) using the equation

cij = pB; (wi) (26)

Figure 20 shows the linguistic fuzzy rules extracted from the B-spline network
and Fig. 21 shows the confidence level of each rule connecting the i-th input function
with the j-th output function. In fact, the qualitative knowledge about the system in
the form of fuzzy rules is not useful in this form to offer an insight of how the system
works. A graph showing the relation between the output and input of the system at
different operating points is much useful to understand the operation of the model.
For example, Figs. 22 and 23 show the dynamical relation between the output flow
and the two input variables.

Figure 24 shows the relation between the number of inputs in the B-spline network
and the time of learning. This exponential curve means that for a given computational
time, the number of inputs to be used in the B-spline network is limited. In a manner
similar to other neuro-fuzzy structures, the B-spline network suffers from the ‘curse
of dimensionality.” For large numbers of inputs, the number of rules governing the
behaviour of the system also becomes very large and it is very difficult to visualise
the operation of such a system. There is no guarantee of predicting correctly in the
case of data applied outside the input-output space for training (see Fig. 19).

6. Non-Linear FDI via Fuzzy Observers
6.1. Takagi-Sugeno Fuzzy Models: A Connection

It is possible to establish the equivalence of a generalised class of Gaussian RBF
networks and the Takagi-Sugeno model of fuzzy inference. A standard Gaussian RBF
and a restricted form of the T-S model of fuzzy inference are functionally equivalent
(Jang and Sun, 1993). The standard RBF network is functionally equivalent to the
T-S fuzzy inference model under the following conditions:

1. There are some conditions required to make the RBF and the fuzzy inference
system structurally equivalent (Hunt et al., 1996), e.g. the number of RBF units
must be equal to the number of if-then rules, the T-norm being the operator
used to compute each rule’s firing is multiplication and the method to derive
their overal outputs for the RBF network should be the same method for the
T-S model.
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71 (inputl is mi1) and (input2 is mi1) and (inpu3 is mi2) and (inputd is mi3) then (outputl is mf1) (1)
if (inputl is mi2) and (inpul2 is mf2) and (inpul3 is mf1) and (inputd is mi3) then (outputl is mf4) (0.28802)
i (inputl is mf1) and (input? is mf2) and (input3 is Mf2) and (inputd is mit) then (outputl is mfS) (0.24515)
i (input] is mf2) and (input2 is mf2) and (input3 is mf1) and (inputd is mi3) then (outputl is mfS) (0.71136)
i (input! is mf1) and (input2 is m2) and (input3 is mf1) and (inputd is mi1) then (output] is mi6) (0.16753)
i (inputl Is mf1) and (input2 is mi2) and (inputd is mf2) and (Inputd is mf1) then (output] is mi6) (0.75485)
If input! is mf1) and (input2 is mi2) and (input3 is mf1) and (inputd is mf1) then (outputl is mi7) (0.81247)
8. lf (inputl is mf3) and (input2 is mf1) end (input3 is mf1) and (inputd is mf2) then (output] is mi8) (0.48539)
9. If (input1 is mf3) and (input2 is mf) and (input3 is mf1) and (inputd is mf2) then (output1 is MI8) (0.51461)
10. K (inputl is mf3) and (input2 is mf3) and (inputd is mf1) and (inputd is mf1) then (outputl is mf12) (0.68735)
1.1t (inputl is mf3) and (input2 is mf3) and (input3 is m(3) end (inputd is mi2) then (output] is mf12) (0.53261)
12. lf (inputl is mf3) and (input2 is mf3) and (input3 is M3) and (inputd is mf3) then (output! is mi12) (0.57314)
13. l{ inputl is mf2) and (inPUtZ is M) and (input3 is MI2) and (inputd is mf3) then (output] is mi13) (0.2652)
14_ i (input1 is mf3) and (input? is mi2) and (input3 is mi3) and (inputd is mf1) then (output! is mf13) (0.67252)
15, if inputl is mi3) and (input2 is mf3) and (input3 is M) end (inputd is mf1) then (outputl is mMN 3) (0.31265)
16. lf inputl is mf3) and (input? is mi3) and (inpul3 is mi2) and (inputd is Mf2) than (output] is mf13) (0.95235)
17.1f inputl is mf3) end (input2 is mi3) end Gnputd is mf3) and (inputd is mi2) then (outputl is mf13) (0.40739)
18. If (nputl is mf3) and (nputZ is mf3) and (nput3 is M(3) and (inputd is mi3) then (outputl is mf13) (0.42686)
1. If {inputl is mf2) and (input2 is mf1) and (input3 is Mf2) and (inputd is mf3) then (output! is mf14) (0.7348)
20. If (input] is mf2) and (input2 is mf2) and (input3 is mf1) and (inputd is mi1) then (outputl is mf14) (0.93116)
21. is mf3) and (inputZ is mf1) and (input3 is mf2) and (inputd is Mf2) then (outputl is mf1 4) (0.85222)
is mf3) and (input2 is mf2) and (input3 is mf3) and (inputd is mf1) then (cutputl is mf1 4) (0.32748)
is mf3) and (inpul2 is mf3) and (input3 is mf2) and (inputd is mf1) than (outputl is mf 4) (0.071843)
is mf3) and (inpul2 is mf3) and (inputd is mf2) and (inputd is mf2) then (outputl is mf 4) (0.047652)

Fig. 20. Fuzzy rules governing the system.
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Fig. 21. Confidence level of the extracted fuzzy rules for Valve 1 in matrix form.

2. In order to restrict the network to the class of T-S structure some conditions
must be satisfied: The output of each fuzzy if-then rule is a constant and the
membership functions chosen have to be Gaussian with the same width.

For T-S models, stability conditions and a pole assignment in LMI regions are
derived in Lopez-Toribio et al. (1999).
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Fig. 24. Computational time increases exponentially with inputs.

6.2. Adaptive T-S Fuzzy Observers for Non-Linear Systems

The classical model-based fault diagnosis is altered in order to incorporate a new
adaptive scheme. The model-based fault diagnosis (Fig. 25) consists of a parameter
estimation block to estimate unknown measurements. Also, the new scheme incorpo-
rates an adaptive law based on the plant parametric model for tuning the observer.
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Fig. 25. Schematic diagram of an adaptive FDI system.

For a non-linear dynamic system described by the T-S fuzzy model, a fuzzy
observer can be designed to estimate the system state vector. For fuzzy observer
design, it is assumed that the fuzzy system model is locally observable, i.e. all (A, Cy)
pairs (z = 1,...,r) are observable. Using the idea of parallel distributed compensation
(the use of parallel dissimilar feeback paths, each one corresponding to a different
model (Tanaka et al., 1996; Wang et al., 1995)), for a non-linear dynamic system
represented by the T-S fuzzy model a linear time-invariant observer can be associated
with each rule of the fuzzy model:

IF (w(t) is M,) THEN

Z(t) = Agi(t) + Byu(t) + Lo (y(t) — 9(t))

(27)
§(t) = Co2(2)

The overall observer dynamics will then be a weighted sum of individual linear ob-
servers:

E=Y pa(w)[Ae + Bou+ La(y — §)]
y= Z pho(w)Co &
z=1

where gy (w(t)) is the grade of membership of the premise variable, w(t), or the
tensor product of grade of memberships, if w(t) is a vector. The membership grade
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Fig. 26. Schematic diagram of the fuzzy observer.

function p,(w(t)) satisfies the following constraints:

Z,uz(w(t)) =1, Og,ux(w(t)) <1 Vz=12,...,r

The schematic diagram of such an observer is shown in Fig. 26 where it can be
seen that a fuzzy inference engine is used to ‘select’ the appropriate output from those
generated by the r parallel observers. The transition between one model to another
depends on the operating regime defined by w. The estimation error dynamics can
then be shown to be given by the following differential equation:

ét) = D _ a(Ae — Lo Xc)e(t) (29)

If the above error dynamic equation is stable, the state estimation will asymptotically
converge to the real state. An observer with converging state estimation can also be
referred to as a stable observer. It can be proved that the stability of the above error
dynamic equation can be verified by the following theorem.

Theorem 1. The fuzzy observer given by (27) has all its eigenvalues in D if and
only if there exists a symmetric matriz P such that

1) ME(Az;P) = [¢1_7P+9”A1P '|‘91'jf)z‘if]1<i7 j<k < 0

Ay = (Az — L,Cy) for z=1,...,r (30)
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and

2) Mp(Ay, P) = [¢s; P + 0;;A, P + eijPA§]1<i,j<k <0

_ (Ay — LyCy + Ay — L,C,
A, =

5 ><U for z<y<r (31)

Using the results presented in this section, it is possible to derive the conditions
for a stable observer. More than that, it is also possible to assign the eigenvalues of
the observer to a region in the s-plane.

The fuzzy observer given by eqn. (27) can be simplified if there is no uncertainty
and non-linearity involved in the system output equation, ie. C; =Cy =+ - =C, =
C and Y (t) = Cz(t). This is a very common situation in practice because the system
dynamics is not involved in the output equation. The simplified fuzzy observer is given
by

&= to(w)[Asz + Byu+ Ly (y — §)]

=1

§=Ci

(32)

Corollary 1. The simplified fuzzy observer of eqn. (82) has all its eigenvalues in D
if and only if there exists a symmetric matriz P such that

ME(A, — L,Cy, P) = [AUP + pij (Ap — LyCoP) + pi(PAg — LyCy)T

1<i,j<k

for z=1,...,r (33)

For both the full and the simplified observer, a minimum number of models must
be found along with the required operating points w1, wre,..., W, Wwith suitable
widths (Fig. 27), so that a convex optimisation technique involving LMI can be used
to find the optimum set of models (matrices A, B, Cp, D) used in the fuzzy-
observer representation, estimating the parameters of the system for each operating
point. The optimisation method consists in solving the inequalities for each step until
the solution is found. In this stage, the LMI solver goes back and solves for half a
step until it is possible to solve all the inequalities for all the linear models.

The completed adaptive scheme is illustrated in Fig. 28. The supervision block
is required not only because of the decision making but also because the design of
the fuzzy observer must be achieved according to two subtasks: the restriction of the
eigenvalues must be assigned to a specific region to ensure system stability in the
presence of uncertainties. A fast state estimation response is also achieved for a good
response to faults. Once the system parameters are found, the LMI solver calculates
the matrices for each linear model. The model parameters are the matrices used for
the design of the adaptive fuzzy observer.

Qualitative fault diagnosis. Fault diagnosis of dynamic systems can also be based
upon declarative knowledge of the system, which is available in qualitative rather
than quantitative form (Howell, 1994; Leitch 1993; Shen and Leitch, 1993; Zhuang
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Fig. 28. Fuzzy adaptive observer scheme plus adaptive controller.

and Frank 1997). The qualitative approach is based upon the concept of a qualitative
model described by means of fuzzy rules which unlike the quantitative counterpart,
only require declarative (heuristic) information. A fuzzy qualitative observer (Zhuang
and Frank, 1997) can be designed (see Fig. 29) making use of the fuzzy qualitative
simulation in order to produce a residual generator.

The qualitative model of the process can be seen as an observer. Since the model
used to obtain the observations of the process is qualitative, the states (behaviours)
will be qualitative. The qualitative states are obtained via simulation or via observa-
tion.

In order to reduce the ambiguity resulting from qualitative simulation, qualita-
tive observers are used to generate the predictions of the possible qualitative states.
In FDI, the qualitative observer can be used as a substitute when some quantitative
information of the process is not available. A Fuzzy Qualitative Simulator developed
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by Heriot-Watt University, Edinburgh; called FuSim (fuzzy interval-based simulator)
was proposed by Shen and Leitch (1993). This simulator presents a methodology to
integrate knowledge of the common sense and the qualitative simulation of physical
systems by means of fuzzy sets. The use of an amount of fuzzy space facilitates and
allows for a detailed description of the relations between two or more variables. This
method produces a reduction of the set of spurious behaviours by means of tempo-
rary filters, although these behaviours continue to exist for complex systems. Like
Q2, FuSim uses the Taylor-Lagrange formula for temporary calculations, producing
identical problems.

6.3. Robustness of Fuzzy Systems in FDI

Model-based fault diagnosis is based upon the use of mathematical models of the
supervised system. Modelling errors and other uncertainties (e.g. unknown distur-
bances) are inevitable when model-based methods are applied to complex systems.
Hence, there is a need to develop robust fault diagnosis algorithms which take into
account some or all of the uncertainties. The robustness of a fault diagnosis system
means that it must be only sensitive to faults, even in the presence of model-reality
differences (e.g. parameter variations and disturbances). The uncertainty may be
difficult to account for and the design of a fault diagnosis system which is highly
sensitive to faults, whilst insensitive to uncertainty and unmodelled disturbances, re-
mains a real challenge (Chen and Patton, 1999; Frank and Ding, 1997). So far the
robustness problem has been addressed only by an empirical analysis of the results of
selected simulations. A general outcome is that fuzzy systems are very robust against
parameter changes. This observation can be explained by the fact that fuzzy systems
contain strong non-linearities. A systematic theoretical investigation of the robust-
ness of fuzzy systems should be performed. It is difficult to establish and analyse the
sensitivity of the control-loop as a whole. The study can be realised via two main
approaches. The first approach consists in transforming the description of the plant
into a fuzzy model. The other approach is concerned with transforming the controller
into a mathematical description. This method has the advantage of applying existing
methods to the analysis of the system. Klotzek et al. (1998) carried out the approach
of applying sensitivity theory to a fuzzy PI control loop. The entire method used by
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Klotzek et al. (1998) for the application of sensitivity theory to fuzzy logic is divided
into three main tasks (representation of fuzzy systems mathematically, application of
the theory to the mathematical representation, and determination of the sensitivity
with respect to parameter changes of the fuzzy model).

6.4. Evolutionary Algorithms of Genetic Type

Neural networks can be trained to replicate dynamic system behaviour during normal
and abnormal operation. A neural network behaves as an implicit model of the pro-
cess (because a mathematical model of the process is not actually required). In order
to assure a good accuracy of these models, the neural network structures must be
optimised. The research has shown that evolutionary techniques cope efficiently with
this optimisation problem. They can be used in order to implement semi-automatic
procedures, dedicated to the selection of convenient neural network topologies and
parameters. Many papers have focused on the development of evolutionary-based
algorithms for two types of neural network structures. The first one is applied to a
feed-forward network structure and the other is applied to the dynamic multi-layer
perceptron. ‘Near-optimal’ neural network topologies can be obtained by minimising
their complexity order and the corresponding output-squared-error can be computed
for the whole training data set. The proposed procedures are used for an appropriate
construction of neural observer schemes, in order to perform a robust diagnosis (de-
tection and fault isolation) of the process faults. The user must set some parameters
of a genetic algorithm (GA), but this seems to be easier than manually selecting the
neural network topology. An advanced study of network optimisation using evolu-
tionary programming and GA approaches has recently been reported (Obuchowicz
and Korbicz, 1998; Obuchowicz and Patan, 1997).

Genetic algorithms have also been successfully used to optimise the design of
model-based observers for residual generation (Patton et al., 1997). This study used
a multi-objective approach with objectives corresponding to various sensitivity and
robustness design issues to achieve a good residual response to faults and minimise
the effects of disturbance and noise acting at different frequencies. This approach can
be contrasted with the use of GAs for neural-network optimisation.

7. Conclusions

AT approaches to fault diagnosis can be very effective in enhancing the powerful de-
tection and isolation capabilities of quantitative model-based methods. This paper
has focused on a discussion of the integration of qualitative and quantitative strate-
gies to minimise the probability of false-alarms and missed-alarms in fault decision-
making, whilst improving the level of heuristic information available for the human
operator. Residual-based methods for FDI most often use state observers, Kalman
filters, but there is a growing tendency to substitute the use of the model-based ob-
server /estimator by a neural network which needs no explicit model for construction
and training. The neural network is, on the other hand, an implicit or ‘black box’
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model which does not give a simple insight into the sort of system behaviour which
is important for diagnosis.

The main emphasis of the paper has been the simple point that by combining
together a fuzzy rule-based strategy with a neural network some powerful diagnostic
results can be obtained. This is especially true when considering the diagnosis of
complex systems which are hard to model (e.g. the sugar factory evaporisation plant).
The advantage of using fuzzy logic is that it supports, in a natural way, the direct
integration of the human operator into the fault detection and supervision process
using rules which are easy to understand. Fuzzy-logic methods are rapidly becoming
a powerful alternative to the use of artificial expert systems.

The combination of neural networks and fuzzy logic for the purpose of fault
diagnosis is nothing but the integration of quantitative and qualitative methods. The
so-called fuzzy neural network (FNN) takes the advantages of neural networks in
adaptation of knowledge learning, distributed parallel processing of data, associative
memory and distributed storage of diagnosis rules, to overcome the difficulties of
expert systems in the knowledge acquisition bottleneck and the knowledge inference
matching conflict. The FNN also takes the advantage of fuzzy logic in knowledge
fuzzy reasoning to overcome (at least in part) the black box limitation of the neural
network.

Several approaches to FNNs have been outlined and the paper has provided a
limited survey of some world-wide studies. Of key importance in the literature is the
use of the Mendel-Wang and B-spline networks, both of which provide powerful FNN
structures for diagnostic reasoning. Some useful results of the application of B-spline
networks for modelling and diagnosis of the evaporisation plant of a sugar factory
have also been outlined, as a real system example. A part of this research has been
funded by the EC INCO-Copernicus project IQ?*FD (the Integration of Qualitative
and Quantitative Methods for Fault Diagnosis) in which eleven partner groups have
developed, compared and contrasted various methods of integrating qualitative and
quantitative methods for FDI, with a focus on the use of data from the sugar factory.

Finally, the Takagi-Sugeno approach to multiple-model observer design for FDI
has been outlined. This incorporates fuzzy rules, based on easily understood premise
variables, with state space models dependent on the operation point. This power-
ful combination of fuzzy logic and quantitative modelling provides a robust solution
for FDI, minimising false-alarms and missed detection of faults, in the presence of
disturbance and changes in plant operation.
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