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PARAMETER ESTIMATION BASED FAULT DETECTION
AND ISOLATION IN WIENER AND HAMMERSTEIN
SYSTEMS

ANDRZEJ JANCZAK*

Fault detection and isolation in Wiener and Hammerstein systems via genera-
tion and processing of residual sequences is considered. We assume that some
models of the unfaulty Wiener and Hammerstein systems under consideration
are known. For Wiener systems, we also assume that their static nonlinear sub-
systems are invertible. Then, based on a serial-paralle]l definition of the residual
error, new fault detection and isolation methods are proposed. To detect and
identify all the changes in both the Wiener and Hammerstein system parame-
ters, the sequences of residuals are processed by using linear regression methods
or a neural network approach.

Keywords: fault detection, fault isolation, parameter estimation, neural net-
works, nonlinear systems.

1. Introduction

Model-based fault detection and isolation (FDI) has been investigated intensively for
the last two decades. Many different model-based FDI methods have been elaborated
using the following two-step procedure. First, by observing.the actual system and
assuming that its nominal model is known, sequences of residuals are generated and
the fault detection step is performed. Then, if any fault occurs, the residuals are pro-
cessed in the fault isolation step. Note that to isolate a fault, we also need a model of
the faulty system. The model-based approach is one of the most common approaches
to the FDI problem. There are various solutions available including the parity space,
dedicated observer, fault detection filter, and parameter estimation based approaches
(Frank, 1990).

The Wiener and Hammerstein models are two examples of simple nonlinear struc-
tures composed of a linear dynamic system in cascade with a static nonlinear element.
While in the Wiener model the linear dynamic system precedes the static nonlinear
element, in the Hammerstein model the same blocks are connected in reverse order
(Fig. 1). The nonlinear systems that can be modelled as Wiener and Hammerstein
models are widely encountered in different areas including e.g. industry, biology, so-
ciology or psychology. The pH neutralization process is a well-known example of the
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Fig. 1. The SISO Hammerstein (a) and Wiener (b) system.

Wiener system (Kalafatis et al., 1997; Nie and Lee, 1998). Other examples include
systems with nonlinear sensors (Wigren, 1994), optimal control systems, fluid flow
control (Wigren, 1994), or electrical resistance furnaces (Skoczowski, 1998). Some
biological processes can also be considered to be Wiener systems, e.g. a muscle re-
laxation process (Drewelow et al., 1997), see (Hunter and Korenberg, 1986) for more
biological examples. The Hammerstein model (Zi-Qiang, 1994) can describe systems
with nonlinear actuators. Two industrial examples of Hammerstein systems are a
distillation column and a heat exchanger (Eskinat et al., 1991). Due to their simple
block-oriented structure, the models of Wiener and Hammerstein systems are very
useful in engineering practice, particularly in the controller design problem.

Identification of Wiener and Hammerstein systems has been investigated inten-
sively for the past few decades. Several methods that have been developed can be
subdivided into the following four classes:

A. Correlation methods. These methods are based on the theory of separable pro-
cesses (Billings and Fakhouri, 1978; 1982). The correlation approach makes it
possible to separate identification of the linear dynamic system from that of the
nonlinear element. For both Wiener and Hammerstein systems, the first-order
correlation function is proportional to the linear system impulse response. Then,
the linear system impulse response can be parameterized using well-known lin-
ear regression methods. Testing the second-order correlation function provides
valuable information about the system structure. If the second-order correlation
function is equal to the first-order one, up to a constant of proportionality, the
system is of Hammerstein type. For Wiener systems, the second-order correlation
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function is the square of the first-order one, except for a constant of proportion-
ality. Having the linear dynamic system identified, the static nonlinear element
can be identified easily by assuming that it can be expressed as a polynomial of
a finite and known order and using linear regression techniques.

B. Linear regression methods. The linear regression solutions are based on the re-
strictive assumption that the static nonlinear element can be represented by a
series expansion, commonly a polynomial, of a finite and known order. For Ham-
merstein models, Narendra and Gallman (1966) and Chang and Luus (1971) de-
veloped least-squares identification algorithms. Similar algorithms can be used
to identify an inverse Wiener model, but this requires the static nonlinear ele-
ment to be invertible. Another approach presented here is based on a modified
definition of the identification error and the assumption of the invertibility of the
static nonlinear element.

C. Nonparametric regression methods. The class of Wiener and Hammerstein sys-
tems which are identified using the correlation or linear regression methods is
restricted by the assumption that the nonlinear function f(-) of the static non-
linear element is both continuous and can be expressed as a polynomial of a finite
and known order r. This assumption is no longer necessary if we use nonpara-
metric identification methods. For Hammerstein models, the kernel regression
estimate

N-—1
. U — Uj
vk ( N) )

flu) = 5 (1)

%~ ()

where u; and y; are respectively the system input and output, K is a kernel
function, and [(N) is a sequence of positive numbers, converges to f(-) as the
number of observations increases to infinity (Greblicki and Pawlak, 1986). Gre-
blicki (1994; 1997) applied nonparametric regression methods also to the Wiener
system identification.

D. Neural network approach. Neural network models of Wiener and Hammerstein
systems do not require the power series expansion of the function f(-) to be of a
finite order. They consist of a nonlinear multilayer perceptron used as a model of
the static nonlinear element and a single linear node used as a model of the linear
dynamic system (Janczak, 1995; Korbicz and Janczak, 1996). The serial-parallel
models of a feedforward structure can be trained with the computationally effec-
tive static backpropagation algorithm. It can be shown that if a system output is
corrupted by additive white noise, identification of a serial-parallel model results
in correlated residuals. To overcome this, parallel models of recurrent type can
be used. As in this case the static backpropagation fails in computing the true
gradient, other learning algorithms such as the sensitivity method or backprop-
agation through time, see (Janczak, 1997a) for Wiener and (Janczak, 1997b) for
Hammerstein models, should be used. Both Wiener and Hammerstein models
contain a linear dynamic system. Thus, it is also possible to combine the com-
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putationally effective least-squares method with gradient descent algorithms, see
(Janczak, 1998b) for Wiener and (Al-Duwaish et al., 1997; Janczak, 1998a), for
Hammerstein models.

The main idea of this paper is to use known modelling and parameter estimation
techniques of Wiener and Hammerstein systems for the model-based FDI. The fault
is understood here as an unacceptable change in system parameters. The paper is
mainly devoted to parameter estimation based methods. We assume that a perfect
model of the system at its nominal (unfaulty) state is known. This model can be
defined by parametric, non-parametric or neural network representations. It is clear
that faults change the system behaviour. A change of the nonlinear function f()
and changes in the linear sub-system parameters can express this change in behaviour.
The purpose of the paper is to develop fast and reliable estimation methods of system
parameter changes caused by system faults.

The paper is organized as follows. First, in Section 2, the problem formulation is
given. In Section 3, we discuss different identification error definitions and introduce
a modified serial-parallel error definition for Wiener systems. Generation of residual
sequences with parallel and serial-parallel models of Wiener and Hammerstein systems
is discussed in Section 4. In Section 5, a neural network Residual Generator Model
(RGM) is proposed to estimate changes in system parameters. In Section 6, we
present linear regression-based estimation methods of the RGM parameters. Section 7
contains five simulation examples for both Wiener and Hammerstein systems. Finally,
a few concluding remarks are given in Section 8.

2. Problem Formulation

The problem considered here can be stated as follows: Given system input and output
sequences, generate a sequence of residuals using the known model of the unfaulty
Wiener or Hammerstein system, and process this sequence to detect and isolate all
the changes in system parameters caused by any system fault. Both abrupt (step-
like) and incipient (slowly developing) faults are to be considered. Assume that the
models of the Wiener or Hammerstein system defined by a nonlinear functlon 7¢)
and polynomials A(g~!), B(g~!) are known,

Alg ) =14+ag + +a g™ (2)
Blg ") =big '+ bmg ™ (3)

where ¢~! denotes the backward shift operator. These models describe the systems in
their normal operating conditions with no malfunctions (faults). Moreover, assume
that at the time moment ¢ a step-like fault occurred, which caused a change of
mathematical model of the system. This change can be expressed in terms of additive
components of the pulse transfer function polynomials as follows:

AAlg) =g+ +ang™" 4)

AB(g) =Big  + -+ Bmg ™ (5)
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For Hammerstein systems, we assume that the characteristic of the static non-
linear element g(-) can be expressed as

9(ui) = fluwi) + Af(ui) (6)
where Af(-) can be parameterized as follows:
Af(us) =m0 +muf +mauf + - (7)

Note that g(-) is assumed to be properly scaled in such a way that the polynomial
Af(-) has no first-order term, i.e. 7 = 0.

For Wiener systems, it is assumed that both f(-) and g¢(:) are invertible. The
inverse function ¢7!(-) can be written as a sum of the inverse function f7'(-) and
its change (deviation) Af~1(-):

9 M) = f () + AF N (wa) (8)
where
AF 7N y) = Ao + oyl + Asyd + - 9)

Note that Af~1(-) here does not denote the inverse of Af(-) but only a change of
f~(-). It is also assumed that A; = 0 unless the expression (8) can be properly
scaled.

3. Definition of the Identification Error
3.1. Hammerstein Systems

The residual e; is defined as a difference between the output of the system y; and
the output of its nominal model ;,

& =Yi — Ui (10)
The output of the nominal serial-parallel model is given by the following expression:
gi = [L = Alg )]y + Bla™") f(w) (11)

3.2. Wiener Systems

For Wiener systems with an invertible static nonlinear subsystem, the following mod-
ified definition of the residual error is introduced:

ei = f () — fH (@) (12)

where f7!(-) is a known inverse of the static nonlinear function f(-) of the known
nominal Wiener model, §j; denotes its output, and y; is the output of the unknown
Wiener system. The inverse of the static nonlinear function f(-) is given by the
following serial-parallel model:

F7H@) = 1= AW@™D]f ws) + Blg™) (wi) (13)
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We assume that the function f~1(:) can be expressed as a polynomial:
FNys) = yi + 7oyl + - (14)
Moreover, the actual Wiener system can be described by the expression

_ (BlgY)+AB(")
v (A<q—1>+AA<q—l>“>

and the nonlinear function g(-) is assumed to be invertible,

-1 _ B(¢")+AB(g™) ,
9 () = A T AA[ (16)

From (8), (9) and (14) it follows that the inverse function g~(-) can be expressed as
a polynomial

9 ) =Xo+yi+(r+A)yp+- (17)

4. Generation of Residuals
4.1. Hammerstein Systems

The nominal model of the Hammerstein system can be used for generation of residual
sequences. Two basic configurations are shown in Figs. 2 and 3. The first of them uses
a parallel (recurrent) model and the other is based on a serial-parallel (feedforward)
model. For the scheme with the parallel model, the residual equation

o = AlTDAB(™Y) — B(g7)AA(gY) B(g7')+AB(¢™)
' AlgH[A(g™) + AA(g™Y)] Alg=Y) + AA(g™)

has a quite complex recurrent and nonlinear in parameters form. A much simpler
expression can be obtained if we use the feedforward model instead, i.e.

ei = —AA(q )y + AB(¢7") f(ui) + [B(g™") + AB(¢ )] Af(ui) (19)

Neural network models of Wiener and Hammerstein systems are very useful if the
static nonlinear function f(-) cannot be expressed as a polynomial of a finite order.
In this case, the well-known and computationally effective parametric identification
methods that are based on correlation and linear regression cannot be used.

flus) +

Af(us) (18)

4.2. Wiener Systems

Starting with the definitions of the residual error (12) and model (13), and using (8)
and (16) we obtain the following residual equation:

ei = —AA(g)f T (i) + AB(g ui — [Alg™) + AA(GH]AF T (i) (20)

The residual sequence can be generated, as illustrated in Fig. 4, and processed to
estimate deviations of the polynomials A(g~!), B(¢™*) and f~(-).
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Fig. 2. Residual generation using the parallel model of the Hammerstein system.

ACTUAL HAMMERSTEIN SYSTEM

S

), -1 ~1
g@,) Vi JBg)+MBlg)

AgH+M™

v
v =

NOMINAL MODEL

() ¥ B 4?# 1-A(g™)
Y;
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Fig. 4. Residual generation with the modified serial-parallel model of the Wiener system.
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5. Models of the Neural Network Residual Generator

5.1. Hammerstein Systems

One way to identify changes in the Hammerstein system parameters is to use another
Hammerstein-like neural network shown in Fig. 5. This neural network RGM has
three inputs f(u;), 4, ¥4, and is composed of a multilayer perceptron model of the
polynomial Af(-), three tapped delay lines, and a single linear output node. The
training of the neural network RGM can be performed by employing the residual
sequence (19) as a reference signal to the following model:

& =—AA(g )y + AB(g7") f(w) + [Blg™") + AB(g7H)|Af(w) (21)

J(w)

Fig. 5. A neural network model of the residual generator for the Hammerstein system.
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5.2. Wiener Systems

For Wiener systems with nonlinear subsystems where the changes in their inverse
models cannot be modelled by polynomials of a finite and known order, a neural
network model of the residual generator is proposed to estimate the RGM parameters.
As neural network learning usually suffers from a slow convergence rate, methods

based on neural models of the residual generator can be effectively used only in the
case of abrupt faults.

6. Estimation of Residual Generator Parameters
6.1. Hammerstein Systems
Assume that the polynomial Af(-) is of a finite and known order r:

Af(us) = mo +moul +mguf + -+ npul (22)
Then the parametérs of the residual eqn. (19) can be computed by solving a set of
linear equations or estimated with the use of linear regression methods.
6.1.1. Solving a Set of Linear Equations

The residual eqn. (19) can be transformed into a linear-in-parameters form by intro-
ducing parameters dy and d;; as follows:

‘:_Zagyz j+zﬁj (wimyg) —{-dg—{-iid“u% j (23)
k=23
where
do = 1o i(bj + B;) (24)
j=1
dji = n(bj + B;) (25)

For disturbance-free Hammerstein systems, it is possible to compute parameters
aj, Bj, do and dj by solving the following set of M linear equations:

m T m

.=_Za Yie ]+Zﬂj wig)+do+y D djguf_;, i=0,1,...,M=1 (26)

k=2 j=1

where M =m+n+m(r—1)+ 1 is the order of the linear-in-parameter model (23).
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Based on b; and f;, the parameters 79 and 7 can be calculated directly from (24)
and (25):

— dO

o= Yoy (b + Bj) #7)
_ ik

e = m (28)

In this case, no extensive computations are necessary. This results in a fast identifi-
cation procedure but the solution obtained is sensitive to system disturbances.

6.1.2. RLS Parameter Estimation

It is more realistic to assume that the system is noise corrupted. Then, more mea-
surements can be taken into account, i.e. N > M, and the RLS algorithm can be
used to compute parameters of the RGM. The vectors for the parameter estimates
and regression data at time ¢ are respectively defined as follows:

5 s 5 5 5 T
il dig e D]

(29)
‘ , T
T; = [ —Yiw1.-. —Yi-n f(uiﬁl) v f(ui—m) 1 U”L?—l s u'l%~m e "U’g—l v u:——m,]
Parameter estimates of the linear-in-parameters model can be computed on-line using
the well-known RLS algorithm (Eykhoff, 1974):

0;=0;_1 + Pxi(e; ~ 7 0; 1) (30)

P qzzlP;

P, =P, -
‘ ol 1+21TP1‘_1$1;

(31)

6.1.3. RELS Parameter Estimation

Application of feedforward models often results in correlated residuals. For example,
assume that the output of a Hammerstein system is corrupted by additive zero-mean
stationary white noise €;. Then it can be shown that for the feedforward model, the
residual equation has the following form:

e; = —AAQQ )y + AB(g™Y f(w) + [Blg™Y) + AB(g )] Af (wi)
+[A(@™) + AA(@™Y]e (32)

Owing to the correlated noise term [A(g™!) + AA(g71)]e; in the residual eqn. (32),
the least-squares estimation results in biased estimates and correlated residuals. To
overcome this problem, other parameter estimation methods such as the extended
least squares, generalized least squares or instrumental variables can be used (Astrb'm
and Eykhoff, 1971; Séderstrom et al., 1978).
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For the recursive extended least-squares (RELS) method, the vectors of param-
eter estimates and regression data are respectively defined in the following way:

~ ~ - P 535 5 5 5 ~ ~ 1T
61‘: [al...an 181...134,71 do dl,z---dm,Q---d1,1‘-~~d‘m,r Cl...Cn] (33)

Ti = [_yi—l v = Yien fluic) oo f(umm) 1
~ T
ug_l Uzz_m Uj_q--- Ugﬁm €i—1... 611-—71] (34)
e =e; — 113?91—1 (35)

where €; denotes the one-step prediction error. The parameter estimates can be com-
puted using the recursive algorithm given by (30) and (31). For systems with slowly
varying parameters or slowly developing faults, the RLS with exponential forgetting
can be used (Parkum et al., 1992).

6.2. Wiener Systems
Assume that the polynomial Af~!(-) is of a finite and known order r, i.e.
AFTHNy) = Ao+ Ayl + -+ Ayp (36)

Then the parameters of the residual generator model can be computed in a similar
way as for Hammerstein systems, i.e. by solving a set of linear equations or using the
RLS or RELS parameter estimation methods.

6.2.1. RLS Parameter Estimation

To isolate all changes of system parameters, parameters of the ARX (AutoRegressive
with eXogenous input) residual generator model (20) can be estimated using the
least-squares (LS) or recursive least-squares (RLS) identification methods. Then the
regression vector is defined as

o= = ic1) . = T Wien) Wit Uiem 1
r 1T
— Y =Y YL Y] (37)
while the parameter vector is
. . A s s s 5 5 s 1T
Bi = [al RN 8 51 .. .ﬂm do do’z ces dn:g N d()’T ce dn,r] (38)
where
R R n
do=Ho |1+ (a;+ &) (39)
7=1
- ;\k; J=Y k=2, T
djx = (40)
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It can be shown that for the RLS method, unbiased parameter estimates can be
obtained only for disturbance-free systems or systems corrupted by an additive white
noise in the following way:

(B +ABEY) ) |
Mmg(A@4)+AA@4)’+A@”)+AA@*fJ 4D

6.2.2. RELS Parameter Estimation

Assume that a Wiener system is corrupted by an additive white noise £; as follows:

oo (Bl +AB(Y
=9 (T a0+ ) )

Then the residual equation has the form
e = —AA(g) [T (i) + AB(gT ui — [Alg™h) + AA(GH] AT (wi)
+[Alg™) + AA(g™H]e: (43)

Thus, to obtain unbiased parameter estimates, the RELS method can be used. The
regression and parameter vectors are respectively defined as

@ = [— ' Wi1) oo — F Wion) Yic1 . Ui 1

a2 a2 S ¢ T ~. ~.
Yi oo Yiom« - Yi - Yiep €i—1...€i—n

~

Hi: [ézléén Bl-w,ém (io JO,‘Z-'-&H.,‘Z'~~d0,r~--dvz,'r él...én]T (45)

7. Simulation Examples
7.1. Hammerstein System

The nominal Hammerstein model with the following second-order pulse transfer func-
tion was used in Examples 1 and 2:

B(g™)  0.5¢7!—0.3¢"?
A(g™Y)  1-1.5¢"1+40.7¢2

(46)

The static nonlinear element of the nominal model was given by the hyperbolic tangent
function (Fig. 6)

f(u;) = tanh(u;) (47)
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Fig. 6. Nonlinear characteristics of nominal (dashed) and
actual (solid) Hammerstein systems.

The system was driven by a pseudorandom sequence uniformly distributed in the
interval (—1,1). The actual Hammerstein system, i.e. a system in its faulty conditions,
was given by the following expressions:

Bg')+AB(g™')  03¢7'-02¢?
A(g~Y) + AA(g™Y)  1-1.75¢~1 + 0.85¢2

(48)

g(u;) = tanh(u;) —0.25u2 — 0.2 +0.15uf —0.1u +0.05uf — 0.025u] +0.0125u8  (49)

Example 1. Noise-corrupted Hammerstein system — the RLS method

The parameters of the RGM were estimated using the RLS method for sequences of
25000 input and output measurements. The system output was disturbed by additive
noise uniformly distributed in the interval (—0.005, 0.005). The parameter estimates
of the linear system are biased, see the results in Table 1 for comparison with the
true values, and Table 2 for the estimation accuracy. The estimation results are also
illustrated in Figs. 7-9. ¢

Example 2. Noise-corrupted Hammerstein system — the RELS method

Next, using the same input and output sequences, the parameters of the RGM were
estimated with the RELS method. This time the parameter estimates are much more
accurate, see Table 1 for the parameter estimates, and Table 2 and Figs. 10 and 11
for comparison with the RLS. ¢
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Fig. 10. The estimation error of the nonlinear characteristic change of Example 2.
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Fig. 11. The mean sum-squared error of Example 2.

Table 1. Parameter estimates for the RLS and RELS methods.

Parameter | True valuel RLS ' RELS l

o —0.2000 | —0.1998 | —0.1995
o 0.1000 0.1011 0.0994
B —0.2500 | —0.2456 | —0.2499
B2 0.1500 0.1460 0.1498
M2 —0.2500 | —0.2417 | —-0.2414
73 —0.2000 | —0.1955 | —0.2059
4 0.1500 0.0981 0.1087
s —0.1000 | —0.1187 | —0.0925
76 0.0500 0.1420 0.1136
M7 —0.0250 | —0.0103 | —-0.0273
78 0.0125 | —0.0365 | —0.0183
c1 —1.7500 —0.8493
Ca 0.8500 —0.1367
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Table 2. Comparison of the parameter estimation accuracy: the RLS and RELS methods.

RLS RLS noise- | RELS noise-
Performance index disturbance- corrupted corrupted
free
1 28000 )
— = 3.66 x 107° 5.56 x 1078 2.89 x 1073
55000 2 O
8
7 2 =) 1.06 x 10722 | 5.08 x 104 | 2.46 x 10~*
=2
2 . ,
L 1[«g-djﬁ-+(ﬂj-ﬂﬂ2] 4.85% 10716 | 9.26x 107° | 1.69 % 107
‘]:

7.2. Wiener System

The nominal Wiener model composed of the second-order linear subsystem (46) and
the static nonlinear subsystem of the following inverse characteristic:

. 1.

7 w) =i - gul (50)
see Fig. 12, was used in a simulation study. The pulse transfer function of the actual
Wiener system was given by (48) and the nonlinear element was described by the
arctangent function

g(w;) = arctan(w;) (51)

The input to the Wiener system and its nominal model was a pseudo-random sequence
of 25000 values uniformly distributed in the interval (—0.5, 0.5).

Example 3. Noise-free Wiener system — the RLS method

First, the parameters of the RGM were estimated for a noise-free Wiener system
using the RLS method. While the polynomial Af~!(:) was of an infinite order, it
was assumed that its estimate was of the order of 11. Thus it can be noticed, see
Table 3, that the obtained estimates of the \; parameters are biased. ¢

Example 4. Noise-corrupted Wiener system — the RLS method

In Example 4, the parameters of the RGM were estimated for the Wiener system
corrupted by an additive noise, as it is defined by (42). The noise was uniformly
distributed in the interval (—0.005, 0.005). The estimation results shown in Tables 3
and 4 and illustrated in Figs. 13-16, as expected, reveal biased parameter estimates.

¢



728 A. Janczak
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Fig. 12. The inverse function f~!(-) of the nominal Wiener system.
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Fig. 13. The true (dashed) and estimated (solid) inverse functions g(-) of Example 4.
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Fig. 15. The estimation error of the inverse nonlinear characteristic change of Example 4.
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Fig. 16. The mean sum-squared error of Example 4.
Table 3. Parameter estimates for the RLS and RELS methods.
RLS RLS noise- RELS noise-
Parameter | True value | disturbance- corrupted corrupted
free
oq —0.2000 —0.2000 —0.2034 —0.2014
o) 0.1000 0.1000 0.1051 0.1009
B —0.2500 —-0.2499 -0.2270 —0.2493
B2 0.1500 0.1500 0.1338 0.1490
Ao 0.0000 0.0000 —0.0002 —0.0008
A3 0.5000 0.4985 0.2886 0.4126
A 0.0000 0.0000 —0.0115 —0.0014
As 0.1333 0.1394 0.9668 0.4674
Ag 0.0000 0.0003 0.0507 0.0175
A7 0.0540 0.0463 —0.7752 —-0.2736
Ag 0.0000 0.0010 —0.0308 —0.0006
Ag 0.0219 0.0188 —0.3777 —0.1032
Ao 0.0000 0.0013 —0.0592 —0.0100
A1l 0.0089 0.0085 —0.0978 —0.0012
c —1.7500 —1.0949
Co 0.8500 0.1145
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Table 4. Comparison of the parameter estimation accuracy: the RLS and RELS methods.

RLS RLS noise- | RELS noise-
Performance index disturbance- corrupted corrupted
free
L0 4.45x 1077 | 445x107% | 1.97 x 107°
_ H . - 4o x 107 97 X -
25000 & ° 8
1 11 R
— 3 (A = Ay)? 111x107% | 1.61 x 1071 | 2.43 x 1072
10 i=2
2 ~
L3 oy — a2 + (85— 4)?] | 112x107° | 207x 107 | 1.05 % 107
Jj=1

Example 5. Noise-corrupted Wiener system the RELS method

Finally, the parameters of the RGM were estimated using the RELS method. It can
be seen from Tables 3 and 4, and Figs. 17-20 that, in comparison with the previous
example, a higher estimation accuracy of both the linear dynamic and nonlinear static

sub-models was achieved. $é
15
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Fig.

0.8

17. The true (dashed) and estimated (solid) inverse functions g(-) of Example 5.
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Fig. 18. The true (dashed) and estimated (solid) changes of the function g(-) of Example 5.
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Fig. 19. The estimation error of the inverse nonlinear characteristic change of Example 5.
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Fig. 20. The mean sum-squared error of Example 5.

8. Conclusions

The model-based FDI methods presented here use the RGM to estimate parameter
deviations of Wiener and Hammerstein systems. These methods are suitable for
both disturbance-free and noise-corrupted systems. The methods make it possible to
detect and isolate all the changes in the system parameters quickly and reliably. For
the linear regression based approach, no extensive computations are necessary. It is
also possible to use these methods in the case of slowly varying parameters or slowly
developing faults.
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