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DEVELOPMENT OF DYNAMIC NEURAL NETWORKS
WITH APPLICATION TO OBSERVER-BASED
FAULT DETECTION AND ISOLATION

TeEoDOR MARCU*, LETITIA MIREA*
PauL M. FRANK**

The paper suggests a neural-network approach to the design of robust fault di-
agnosis systems. The main emphasis is placed upon the development of neural
observer schemes. They are built based on dynamic neural networks, i.e. dy-
namic multi-layer perceptrons with mixed structure. The goal is to achieve an
adequate approximation of process outputs for known classes of the process be-
haviour. The obtained symptoms are then classified by means of static artificial
nets. Appropriate decision mechanisms are designed for each type of observer
schemes. An application to a laboratory process is included. It refers to com-
ponent and instrument fault detection and isolation in a three-tank system.

Keywords: fault diagnosis, dynamic neural networks, system identification,
static neural classifiers, three-tank system.

1. Introduction

The methods of fault diagnosis must enable a condition-based inspection and repair,
in response to the call for fault-tolerance in automatic control systems (Frank and
Koppen-Seliger, 1997). This is due to the increasing demand for safe and reliable
operation of uncertain and complex dynamic systems. Robust methods of diagnosis
are therefore required, in the face of existing measurement uncertainty, disturbances
and incomplete knowledge (Patton, 1994). This implies the maximisation of the
detectability and isolability of faults under the constraint of minimisation of the false
alarm rate.

A fault diagnosis system has to perform two tasks, namely fault detection and
fault isolation. The purpose of the former is to determine that a fault has occurred in
the process. The latter has the purpose of locating the fault. In order to accomplish
these tasks, information that reflects a change from the normal behaviour of the
process has to be obtained. This is generally called symptom generation. Secondly,
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a logical decision-making on the time of occurrence and the location of the fault has
to be made. This is generally called symptom evaluation or fault classification.

The techniques applied most frequently to process fault diagnosis are based on
estimation, i.e. parameter identification and observer-based methods (Isermann and
Ballé, 1997). These methods generate analytical symptoms that characterise the
state of the monitored system at a given instant of time. Symptom generation based
on output estimation means to use state or output observers. Different schemes of
estimators have led to successful robust fault diagnosis (Frank, 1994, Wiinnenberg,
1990). However, most approaches are only applicable to linear systems. Robust
nonlinear observers have been developed for particular classes of nonlinear dynamic
systems (Frank et al., 1999; Patton, 1994).

Artificial Neural Networks (ANN’s) have been suggested as a possible technique
to cope with the robustness problem in fault detection and isolation (FDI). A num-
ber of ANN structures and learning strategies were studied (Ayoubi, 1996; Frank
and Képpen-Seliger, 1997; Isermann and Ballé, 1997; Isermann et al., 1997; Kdppen-
Seliger, 1997; Sorsa et al., 1993). ANN’s have been used as both predictors of dynamic
nonlinear models and pattern classifiers. These approaches do not require an accurate
model of the process, but need representative training data. Many problems, espe-
cially that of coping with dynamics are not yet satisfactorily solved and need further
research (Frank and Képpen-Seliger, 1997).

The neural models used most often are the feed-forward perceptron building
multi-layer networks, i.e. the multi-layer perceptron (MLP), and the radial basis func-
tion (RBF) (Cichocki and Unbehauen, 1993; Haykin, 1994; Isermann et al., 1997).
Both the networks are capable of approximating any nonlinear unique static function
to an arbitrary desired accuracy. However, it should be noticed that the MLP with
back-propagation (BP) learning provides a global method for the design of an ANN,
whereas RBF learning provides a local method (Haykin, 1994). In this respect, RBF
could produce better approximations of training data. Conversely, when untrained
data are processed by the identified ANN models, better results are obtained with
MLP/BP. This is due to the fact that the locality of RBF networks means that they
possess good interpolation and bad extrapolation abilities (Liang and ElMaraghy,
1993).

These types of mapping are well-suited for pattern recognition applications,
where both the input vector and the output one represent spatial patterns that are
independent of time (Haykin, 1994). The introduction of explicit dynamics into these
ANN’s requires a spatial representation of time. Time delay units are used to learn a
system’s dynamics. Thus, the network is fed with current and delayed values of the
process inputs and outputs. The number of time delay units requires that the order of
the system’s dynamics must be given beforehand. It must be equal to or greater than
the plant order. Another approach is to provide the mapping network with dynamic
properties that make it responsive to time varying signals, i.e. locally recurrent glob-
ally feed-forward networks (Tsoi and Back, 1994) or neural networks with internal
dynamics (Isermann et al, 1997). A comparison regarding the application of static
and dynamic neural nets to the design of FDI systems is given in a previous paper
(Marcu and Mirea, 1997).
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In this respect, the paper investigates firstly dynamic MLP’s used to approx-
imate nonlinear dynamic models of a plant. Three types of generalised dynamic
ANN’s (Marcu et al., 1997) are properly integrated here in order to obtain the best
approximation of process outputs for known classes of the system behaviour. Neural
schemes are then suggested as alternative approaches to the well-known observer-
based schemes (Frank, 1994; Wiinnenberg, 1990). Neural observers are developed for
component and instrument FDI. In this way, one tries to ensure active robustness
when symptoms are generated. Further on, the passive robustness of the diagnosis
subsystem is ensured, in the stage of decision-making, by means of static ANN’s.
They are used as pattern classifiers that evaluate those symptoms. An application
to a laboratory process is included. Component fault diagnosis (CFD) and instru-
ment fault diagnosis (IFD) of a three-tank system (amira, 1993) are presented in a
comparative study. This demonstrates the effectiveness of the suggested approaches.

2. Dynamic Neural Networks

The approach based on static ANN’s leads to quasi-dynamic models (Ayoubi, 1996).
The used neural net remains a static approximator, all of whose free parameters
have fixed values (Haykin, 1994). The dimension of the input space of the network
increases, depending on the number of available process data and the number of used
past values. Instead, the main characteristic of dynamic ANN’s is that they have
memory. While limited forms of time-varying behaviours can be handled by using
feed-forward networks and tapped delay lines, dynamic networks offer a much richer
set of possibilities for representing the necessary internal states (Williams and Zipser,
1990). Since their internal state representation is adaptive rather than fixed, they
are capable of preserving the state over certain periods of time. Thus, the network
processes multi-inputs and does not require past values of the process measurements.

For fault diagnosis, the goal of ‘best approximation’ means to capture the dy-
namic behaviour of the process by learning the general trend of target values and
filtering the noise. On the other hand, the artificial nets must have a minimal struc-
ture, in order to allow for a fast evaluation in the active stage of symptom generation.
The interconnected or recurrent networks are able to learn time series, but they can-
not represent input-output relations as easily as multi-layer networks do (Yokohama
et al., 1992). Therefore, three typical structures of dynamic MLP’s (DMLP’s) are
considered and briefly described in the sequel. They have been generalised and com-
paratively applied to symptom generation for CFD in (Marcu et al., 1997).

A DMLP with synaptic generalised filters (DMLP _SGF) has each synapse rep-
resented by an auto-regressive moving-average (ARMA) filter with different orders
for denominator, n4, and numerator, mp. It generalises the architecture for which
a finite-duration impulse response filter is used (Haykin, 1994). This generalisa-
tion leads to a DMLP with infinite-duration impulse response (IIR) filters used to
replace the synaptic weights (Back and Tsoi, 1991; 1992), i.e. DMLP with local
synapse feedback (Tsoi and Back, 1994). The DMLP with internal generalised filters
(DMLP _IGF) introduces some dynamics into the transfer functions by integrating an
ARMA filter within the neurons, i.e. before the activation function. It generalises the
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DMLP net (Ayoubi, 1996), where the weighted sum (activation input) correspond-
ing to each neuron acts like an ITR filter with equal orders for denominator, np,
and numerator, mg. This is the DMLP with local activation feedback (Isermann et
al., 1997). Finally, the DMLP with connectionist hidden layer (DMLP_CHL) has a
partially recurrent structure, where only the hidden units are interconnected. It gen-
eralises the net presented in (Yokohama et al., 1992), by accommodating bias terms
for each activation function. This type of DMLP may be interpreted as a network
with partially local output feedback (Tsoi and Back, 1994; Isermann et al., 1997).

2.1. Dynamic MLP with Mixed Structure

The structures described previously are properly integrated into an ANN with mixed
architecture, as illustrated by Fig. 1. The implementation of this structure is achieved
in such a manner that one can select either a basic architecture or a combination of
them. The DMLP with mized structure (DMLP _MIX) and two layers is considered in
the sequel. It is designed to approximate a multi-input single-output (MISO) dynamic
process. The ANN has P inputs uy[k], p =1,..., P, and one output y°[k], where
[k] denotes the sampling time instant k. The fully integrated structure is described in
the following. The superscript/subscript h stands for the first (hidden) layer, and the
superscript/subscript o denotes the second (output) layer. The next binary variables
indicate the presence (value of 1) or absence (value of 0) of a dynamic structure: iggp
for synaptic filters, iigr for internal filters, and icyr for the connectionist hidden
layer.

The hidden layer has S neurons. The generic neuron s, s = 1,...,5 has the
following description:

e inputs: uplk], p=1,...,P;

e synaptic weights:

mpg nA
w"sz,p [k] = bg,p,l]up [k] + iSGF Z b?,p,jup [k - ]] - Z a?,p,iwg,p [k - 7’] (1)
=1 i=1
e weighted input:
P
oy (K] = wh, (k] (2)
p=1
e connectionist input:
s
&y (k] := 2l [K] + icnr § > byl [k - 1] (3)

j=1
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Fig. 1. The dynamic multi-layer perceptron with mixed structure: P inputs, one hidden
layer with S neurons and one output; ¢~' stands for the linear operator of time
shifting, A., B., D. and E. are polynomials.
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e output of internal filter:

Js [k] = es Oms [k] +iar Z €s,5Ts [k - .7 Z ds zys Z]

j=1
e input of activation function with bias term 6%:
25 [K] = g3 [k] + 63
e output (of activation function ):

y2 (k] := yn (20 [K])

The hyperbolic tangent is usually considered as the activation function:

(e —e)
z) =
(2) (e? + e~%)
The derivative of this function is further used in the learning process:
4 2
’Yh(z> = (ez + 672)2 =1- f)/h(z)

The output layer has one neuron and the following description:
e inputs: y2[k], s=1,...,5

e synaptic weights:

w? [k] - bo Oys [k] +isar Z bs jys k -7] Z as zw
j=1

e weighted input:

S
= wilk]

output of internal filter:

np

7° [k] == e§z® [k] + i1gF Z ejz’ [k — j] - Z d7g° [k — 1]
j=1 =1

input of activation function with bias term 6°:

2 [k] = §° [k] + 6°

(10)

(11)
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e output (of activation function ,):

y° [k] = 7o (2° [K]) (13)

The activation function given in (7) can be used in the output layer as well. Another
choice is to consider the linear activation function:

Yo(z) i = 2 (14)

If the synaptic filters are not included, isgr = 0, then eqns. (1) and (9) lead to
constant synaptic weights, respectively:

h

wQ,p (k] = wg,p =bgp0

(15)
wg [k] = wg =

If the internal filters are not included, iigr = 0, then the following relationships are
used, instead of eqns. (4) and (11), respectively:

eto =1, 7 [k] =& [K]
(16)

If the connectionist hidden layer is not considered, icpr = 0, then the connectionist
input given in eqn. (3) coincides with the weighted input from eqn. (2):

i [k = o [K] (17)

Finally, if none of the dynamic structures is considered, isgr = i1gr = tcuyp, = 0, then
a static MLP is obtained.

2.2. Dynamic BP Learning

For a given structure with S hidden neurons, the parameters of the network are the
filters’ coefficients and bias terms. They are determined with an extended, dynamic
back-propagation (BP) algorithm. It represents an adaptation of the exact gradient
following algorithm of temporal supervised learning (Williams and Zipser, 1990). To
describe its basic principle, the following notation is used: yg[k] represents the desired
output of the net, n denotes the parameter of learning rate, and x stands for the
(parameter) states within the dynamic neurons.

Given N input-output data pairs:
{ulk],yalk] }, wl[k]:=[up [k]]p=1,.._,P’ k=1,...,N (18)

each parameter, generally denoted by &, is adapted every learning epoch by the
relationships:

OE [k]

N
€new 1= Cola + AL, AL := Z A€ [k‘] , A€ [k;] =7 5

k=1

(19)
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where E[k] represents the square error function at time k:

BlH] = 4 (valk) — °[4])” (20)

A learning epoch represents an entire pass through all of the input training vec-
tors given in the relationship (18). The parameters are changed at the end of that
epoch, that is the batch learning mode (Demuth and Beale, 1996). While BP uses
the backward propagation to compute the error gradient, the introduction of param-
eters’ states allows for a forward propagation of the activity gradient function. This
represents the approach of real-time recurrent learning (Williams and Zipser, 1990).

The adaptation of parameters starts from the output layer. The following rela-
tionships are used:

001 o= =22 (g -y ) = )

AQ° [k] = né° [k] (21)
If 7:IGF = 1, then

Xas [K] := 8%;£k] = Zdl xae k=1, i=1,...,np

A2 K] = 16° [K] xae [ (22

xeg = L8 — o) S dw I - ), G=0,1 s

Ae? (6 = 18° (K] xes [H (23)

Further on, one computes

0y° [k
X (k] == g[]—eo-}-hgp Ze _Zdeo

If isqgr = 1, then

ow? [k o IR R .
Xag‘i- [k] = 8‘10['] = —Wy, [k_l]_za’s,lxaﬁ‘; [k‘*l], 7 = 17"'1”A
Aag ; [k] = nd6° [k] xgo [k] Xas , [K] (24)
ow? [k ) _
Xbe (k] := 3[)0[ ] __ys zasszo [k—1i, 7=0,1,...,mp
5.7 i=1

2B [] = 16° [k xge [F] X0z , [K] (25)
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else eqn. (25) reduces to
Awg [k] = A o [K] = 18° [k] xzo [k] s [k]

The parameters involved in the hldden layer are adapted according to the follow-
ing formulae

dwg [k} 0 .
Xyh (k] == 6 bs o T iscF Z bs s,j Z ay Xyl

0 14 = = 2t = 8 [ e Dy (1 (<2 )

AG? (k] = ndy k] (26)
If ijqp = 1, then

Xa» , [k] = ag;h?[]:] AL st Xar, =1, i=1...np

Ady; (k] = ndg [K] xan , [K] (27)

8 bt . .
XE?,j[k]: gz[]_ h[k_]] stzXe k——-?,], J:O,l,...,mE

At K] = 6% (K] e K] (28)

8,7

Further on, one computes

0K _on i I ~
Xgh [k] = EY =e50 T UGF Z s,J Z ds Xyl IV = Z]
s j=1

If icgr = 1, then

| s s
Xq,c’;‘j [k] = ] = Zd],i?’l& (Zi [k - 1]) ng” [k - 1} Xi,ci:‘ [k - 1]

+ 3

q:1,...,S, q;ﬁg

Ozl [k]
Xs,ch . [k] =
5.d dcl
S
= Yl — 10+ Y ek (20 k= 1) xgn [k = Uxgen [k = 1]
g=1

Acy ; [K] = ndg [kl xgn (k] Xs cn , K] (29)

i
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If iy, = 1, then

Pt

Xq,a.h [k} = 8 h

If igqr = 1, one proceeds further by

owh [k e
Xor K] = &I’L[-l = -wg’p[k—i]—za?plxah k=1, i=1,...,n4
Spi dal . ; L o0
oz} [k] ‘
Xs,ar, . [k] = Bal L Xeha []
5
+ icHL {Z CagVh (236 = 1)) xgp [k — Uxgar [k - 1]}
g=1
Aa® s 1K) = 18" [k g [F) e 1] (30)

If icur, = 1, then

6‘%2 [k] d h 1 h
Xq»b’:,p,j [k] = 55 = Z <t (Zl' [k — 1]) Xt [k — 1] Xl,bi‘,p,j [k — 1]
$,P,] =1

g=1,...,5 q#s

Further on, one proceeds by

owh k] < L
Xb_};pj [k] = BI)T’ZJ_ = Up [k _.7] - Za‘g,p,iXb:‘pj [k—"’]v J= 0,1,---,7713
o 5,0, i=1 v
oz [K]
Xs,bh k] = ;sl = xpr_ . [K]
EN N abs,p,j ER Y
S
+ icHL {Z coh (2g [k —10) xgn [k — Uxgun [k~ 1]}
g=1
AB, 5 TH) = 08" [kl (6o ] (31)

The learning algorithm starts with small random values for the net parameters,
except for the filter coefficients of denominators. They are initialised to zeros to
support a stable learning. The internal states x are initialised to zeros. To implement
this approach, new functions for the Neural Network Toolbox (Demuth and Beale,
1996) have been developed, for both determination of network parameters and for net
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evaluation. In addition, the mechanisms of variable parameter of learning rate and
momentum term have been considered (Cichocki and Unbehauen, 1993).

The former mechanism attempts to keep the learning step size as large as possible,
while maintaining a stable learning. When the learning rate is too high to guarantee
a decrease in the error, it gets decreased until stable learning resumes. The latter
mechanism makes parameter changes equal to the sum of a fraction of the last epoch
change and the new one achieved by the rule given by eqn. (19). This allows the
network to respond not only to the local gradient, but also to recent trends in the
error surface.

3. Neural Design of the FDI System

For the generation of symptoms, neural networks replace the analytical model that
describes the process (Frank and Koppen-Seliger, 1997). Instead of a multi-input
multi-output structure, an ANN model for each system output is identified (Sorsa
et al., 1993). Since the closed loop of the control system tends to hide the faults,
both inputs and outputs of the process are used as inputs of the ANN. Thus, several
small ANN models are identified for a known class of process behaviour. These
models are used for the separate estimation of process output signals in an observer-
like arrangement. It should, however, be noticed that for FDI purposes, one needs
representative models of the plant. This means that one needs only that part of the
model that reflects the faults of interest and, with respect to robustness, it is not
or only weakly affected by disturbances and modelling uncertainty. In this way, the
models for FDI can be simpler than those for control (Frank et al., 1997).

The next stage of decision-making can be seen as a classification problem. For
fault diagnosis, this means to match each pattern of the symptom vector with one
of the pre-assigned classes of faulty behaviour, if available, and the fault-free class,
respectively (Frank and Kdppen-Seliger, 1997). The decision is usually based on the
prediction error between the process measurements and the predicted outputs, i.e. the
residual signals. Fixed and/or adaptive thresholds are then used inside the detection
logic. A more robust decision is achieved by using an ANN as the pattern classifier
(Marcu and Mirea, 1997). It has as inputs the residual signals and must produce
a pre-assigned outputs characteristic to each known class of process behaviour. The
uncertainty in the classification of patterns may arise here from the overlapping nature
of various classes. For fault diagnosis this is a realistic assumption, especially when
incipient faults have to be detected and isolated.

3.1. Symptom Generation

The goal of observer schemes used in FDI is to generate structured sets of residuals
that enable a unique fault diagnosis. The general Fault Detection Observer scheme
consists of a number of observers. Each must be sensitive to different faults or set
of faults that have to be detected and isolated (Wiinnenberg, 1990). This may be
accomplished by driving the observers by different sets of inputs and outputs of the
process (Frank, 1994). Neural approaches to classical observer-based schemes are
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introduced in the sequel. One considers a process with I inputs g¢;[k], i =1,...,1

and O outputs h;[k], 1 =1,...,0, all known at sampling time k.

The neural simplified observer scheme (NSOS) consists of a number of MISO
neural networks. Each of them is driven by all inputs and outputs of the process.
Each net estimates one output h;[k] of the system:

h; [k] == fusos, (g[k],h[k—1]), j=1,...,0 (32)
gkl = [alkl],_, , hIE-1=[hk-1]_,

The resulted bank of ANN’s approximates all outputs of the process. The training
of the nets is based on the system data corresponding to the normal behaviour. The
following residuals are then generated:

¢j[k] := hy (k] = h;[k], j=1,...,0 (33)

If appropriate data are available for different classes of faulty behaviour, the
principle of NSOS is extended to them as well. In this way, a neural multiple observer
scheme (NMOS) results. The following approximations are therefore performed:

he [k] = fanos; . (€elk], helk — 1) (34)

where ¢ denotes a particular class of behaviour, ¢ = 1,...,C, and j denotes a
process output, 7 = 1,...,0. The basic concept is that the c-th set out of the C
groups of residuals is designated to be sensitive to all but the c-th fault, since the
corresponding observer is designed to reproduce the c-th class of system behaviour.
Here, C' represents the number of classes of process behaviour that are taken into
consideration. This scheme is especially designed for the diagnosis of the system’s
components (Marcu and Mirea, 1997; Marcu et al., 1997). The obtained residuals are
then given by:

€clk]:=hi[k] —hi.[k], §=1,...,0, ¢=1,...,C (35)

Moreover, some of the ANN inputs may be removed, in order to generate residuals
that allow for the isolation of a specific fault. In this way, neural approaches to the
well-known dedicated observer scheme (DOS) and generalised observer scheme (GOS)
(Frank, 1994; Wiinnenberg, 1990) can be developed. The neural variants are described
in the sequel.

For the neural dedicated observer scheme (NDOS), an observer is dedicated to
each instrument or component of a plant. It is driven by the process inputs and the
output of the unit to be supervised. The observer estimates as many output signals
as possible. The neural implementation of each observer of DOS is based on a number
of MISO nets. Each net estimates one output of the system:

hj’l[k:] 3:fNDOSj,1(Q[k],hl[k_1]); i=1,...,0, l:l,...,O (36)

where the first index, j, refers to the approximated output, and the second index,
l, stands for the driving output signal, i.e. it counts for the index of NDOS. This
is done for all sensors/components. The training of the nets is based on the process
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data, corresponding to the normal behaviour. The following residual signals are then
computed:

~

Cj,l[k]ZZhj[k]—-hj,l{k], j:l,...,O, l:].,...,O (37)

The neural generalised observer scheme (NGOS) consists of as many observers
as process outputs are available. Each observer is driven by the process inputs and
all outputs but the output of the unit to be supervised:

hnaos, [k — 1] = [h; [k - 1]]j=1,...,O; Al (38)

The observer estimates as many output signals as possible. The neural implementa-
tion of each observer of GOS is based on a number of MISO nets. Each net estimates
one output of the system:

hii (k] := fncos;, (alk], bncos, [k = 1)), j=1,...,0, I=1,...,0  (39)

where the first index, j, refers to the approximated output, and the second index, I,
counts for the index of NDOS. The training of the nets is based on the process data
corresponding to the normal behaviour. Finally, the residuals are obtained, as given
by eqn. (37).

3.2. Symptom Evaluation

The successive layers of a static MLP with sigmoid neurons

1
1(2) = g e

(40)

and BP rule of learning carry out a sequence of mappings. This happens until one
finds a representation in a suitable space, where the desired separation is possible.
Such an ANN is a non-parametric nonlinear classifier. It maps the patterns from the
feature space into a decision space. The patterns belonging to a class are made to
cluster there around a pre-selected point, optimally chosen (Marcu, 1996). In this
way, the decision regions determined by the ANN classifier in the feature space are
complex, including those that are linearly inseparable, non-convex and disconnected.
Such a classifier is to be used to cope with the problem of passive robustness in fault
diagnosis.

In the approach, one uses one static ANN as the pattern classifier. It has as inputs
all signals obtained by subtracting the neural approximations of all observers from
the corresponding process measurements, i.e. the residuals given by one of eqns. (33),
(35) and (37). It is therefore referred to as the fully connected classifier (FCC). A
common choice of the vectors of decision space is based on the set of vertices of
Euclidean vectors. An optimised choice of the target vectors is suggested in (Marcu,
1996; Marcu and Mirea, 1997). This approach can be applied to all neural schemes
that have been introduced. When FCC processes the residuals given by NMOS, one
selects the best fitting group of prediction models for either normal operation or one
of the learnt faulty situations.
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Another approach is suggested for the evaluation of residuals obtained from
NDOS and NGOS, designed for IFD for instance. A static ANN is associated to
each neural observer. Such a network is a binary classifier. Its target output has a
low value, e.g. 0.1, when the corresponding residuals are not influenced by a sensor
fault. A high value, e.g. 0.9, must be obtained otherwise. A bank of binary classifiers
results. It is referred to as the partially connected classifier (PCC). Its outputs con-
stitute a vector characteristic to each class of known behaviour. The decision vector
associated to NDOS must have all components equal to 0.1 but the j-th component,
when a fault occurs in sensor j:

t;=1[01 - 01 09 0.1 --- 0.1]

The decision vector of NGOS must have all components equal to 0.9 but the j-th
component, when a fault occurs in sensor j:

t;=1[09 - 09 0.10.9 --- 0.9]

Irrespective of the neural scheme used, the decision vector must have all components
equal to 0.1 in the fault-free case.

A fault is detected and isolated, if an unknown input pattern is mapped closest
to one of the target vectors. The latter corresponds to the associated learnt class that
reflects a fault. A fault is only detected if the input pattern is mapped far from all
learned classes, that is the concept of reject option (Marcu, 1996).

The last concept is based on the computed distances between an actual output
of the net and the target vectors. If these distances exceed certain threshold values,
the input pattern belongs to an unknown class. The threshold values characterise the
separability between the training classes. They are experimentally chosen based on
the training set of the classifier.

If a fault is only detected, that is a (new) faulty situation, the synthesis of the
classifier must only be reconsidered for further fault diagnosis. The neural observer
schemes remain unchanged, excepting the NMOS for which a new observer might be
added. The latter corresponds to the new (faulty) behaviour of the process.

4. Application

The applicability of suggested methodologies was studied with respect to the design of
two model-based subsystems for monitoring the faults in components and sensors of a
three-tank system. Although the dynamic modelling of the system under investigation
is relatively simple, the resulted nonlinear model is only a limited approximation. This
is evidenced in (Wiinnenberg, 1990). An advanced technique of diagnosis is applied
there, namely the unknown input fault detection observer (UIFDO). For instance,
small leaks in tanks cannot be detected. This type of faults shows exactly the same
response in symptoms as an inaccuracy in the description of the incoming mass flows.
The present study suggests alternative approaches to robust FDI of that process, with
respect to the modelling errors.
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Fig. 2. The three-tank system.

4.1. Process Description

The experimental set-up ‘Three-Tank System’ (amira, 1993) consists of three cylin-
drical tanks with identical cross sections being filled with water, as shown in Fig. 2.
The tanks are interconnected by circular pipes. All the three tanks are equipped with
piezo-tesistive pressure transducers for measuring the level of the liquid.

The system can be modelled conveniently by the mass balances of the tanks.
The model is represented by three nonlinear differential equations of first order. It is
used by an appropriate strategy implemented on a microcomputer. The water inlet
is controlled by two pumps that are driven by an electronic power device. In this
way, the volume flows of lateral tanks (the two process inputs ¢i(t) and g2(t)) are
controlled such that the level in the corresponding tanks (two out of three process
outputs, hj(t) and ho(t)) can be pre-assigned independently. Here, t stands for
the time variable. The third output of the process, that is the level hs(¢) in the
middle tank, is always a signal that is uncontrollable. The control strategy worked at
a sampling rate T = 0.1s.

4.2. Component Fault Diagnosis

The connecting pipes and tanks are additionally equipped with manually adjustable
valves and outlets to simulate clogs and leaks. Seven classes of process behaviour
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were taken into consideration. They are the following:

o (NB): normal behaviour (valves Ci3, C3a, Cao are open, outlets Ly, L3, Ly are
closed);

e (L1): leakage in tank Ty (outlet L is partially open);

(Lg3): leakage in tank Ts (outlet L is partially open);

Ly): leakage in tank Ty (outlet L, is partially open);
g

(C13): clogging in pipe between tanks T; and Ts (valve Cy3 is partially closed);

(Cs2): clogging in pipe between tanks T3 and Ty (valve Csz is partially closed);
o (Cgo): clogging in the outlet of tank Ty (valve Cqp is partially closed).

For the experiments, the reference values of the liquid levels were changed pulse-
wise with different magnitude and duration for each controlled tank. A test period
of 400s was considered. Thirty-five experiments were performed for each class of
behaviour in a period of a month, in order to take into consideration the influence of
the plant environment. The input-output data of the process were sampled at every
Ts = 55 during the test period.

Each of the ANN’s, corresponding to system outputs, was trained with repre-
sentative input-output data for each known class of the process behaviour. Thus, an
NMOS was synthesised. One used the set of process data, among the 35 sets available,
that had the corresponding values for the steady-states closest to the mean values of
each class.

The following ANN models were identified for one-step ahead prediction:
hjc[k] = famos; . (qo k) he 6 — 1)), 5=1,3,2, ¢=1,...,7

where hj,. denotes the estimated value of a liquid level, g. = [1 g2] denotes the
vector of input flow rates, h. := [hy hs ho] denotes the vector of measured liquid
levels, and ¢ stands for one of the considered classes of process behaviour. The process
outputs were known at sampling time ¢ = kT, and the process inputs were known
at sampling time kTs — T¢. The last quantity is differentiated in the above formula
by the normalised sampling time k,. A systematic search for the best approximation
- achieved by the unknown nonlinear functions f was carried out. This involved all
possible dynamic structures, i.e. the basic architectures of generalised dynamic ANN’s
(Marcu et al., 1997) and their combinations. For each structure, one investigated
ANN’s with S =1,2,3 hidden neurons and ARMA filters with orders of denominator
and numerator in the set {0,1,2,3}. The nets had one hidden layer of hyperbolic
tangent neurons, linear/hyperbolic tangent neurons in the output layer, and filters
with variable orders, respectively. In general, the best results were obtained by using
linear neurons in the output layer of DMLP’s. Table 1 presents the structures of
selected neural nets for NMOS.
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Table 1. NMOS for CFD of a three-tank system.

Process | ANN DMLP_MIX Structure
Class | Output | S I nA | mpg } np 1 mg | 1CHL
halk] |11 2 0 | 3| 0 1
(NB) | hslk] |1 31 3 1
holk] [ 2] 0 | 2 1
k] [2] 0| 2 1
(L) | Rhslk] | 2] 0 | 2 1
holk] |1 310 1
hy[k] | 2 1| 2 1
(Ls) | hs[k] |2 1| 2| 1
hotk] 2] 2] 0 ] 0 2 0
hilk] {21210 0| 2 0
(Ly) | hsk] [1] 2] 0 1
holk] |1 1| 2 1
k]l 120 ] 0] 3 1
(Cis) | hs[k] |1 313 | 1
holk] | 1 310 1
hi (k] | 2 1] 2 1
(Csa) | ha[k] [ 1] 2 1
holk) | 2] O 1
mlk] 1] 2] 0] 3710 1
(Cao) | halk] |1 3| 3 1
ho[k] |1 310 1

Generally, the best results were obtained by using ANN’s with mixed structure.
A connectionist hidden layer was involved in almost all combinations. It seemed to
improve the results of approximation due to its (partially) recurrent structure. For
noisy data (e.g. the output hy of the process), the best results were obtained using
the fully involved integrated structure. For smooth data (e.g. the output hs of the
system), the combination of DMLP _CHL with either DMLP_SGF or DMLP _IGF
seemed to produce the best approximation. In all these experiments, a reduced num-
ber of neurons in the hidden layer was sufficient, i.e. S = 1,2. This allowed for a fast
evaluation of the ANN outputs in the active stage of approximation. Figures 3 and 4
illustrate some of the results obtained.

For residual evaluation, one static MLP/BP net with two layers of sigmoid neu-
rons was used. That FCC had 21 inputs, 21 hidden neurons, and an optimised
number of 4 output neurons (Marcu, 1996). In the stage of fault classification, a
global recognition rate around 90% was obtained. This characterised the recognised
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Fig. 3. Output h; of the process (solid line) and of the identified model (dotted line); training
classes: (NB) (a), (b), (L1} (c); actual classes: (NB) (a), (L1} (b), (c).
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Fig. 4. Output hs of the process (solid line) and of the identified model (dotted line); training
classes: (NB) (a), (b), (C20) (c); actual classes: (NB) (a), (Cz0) (b), (c).
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faults corresponding to the 35 sets of input-output data available for each class. This
result indicates an accurate modelling of the fault mode dynamics. The detected
faults corresponded to mass flows of about 10-20ml/s. The approach based on a
bank of UIFDOs detected only faults corresponding to mass flows of about 40ml/s
(Wiinnenberg, 1990). The mechanism of reject option detected simulated faults in
sensors as belonging to an unknown class. Finally, the attempt to use other neural
observer schemes for symptom generation, e.g. either NDOS or NGOS, did not lead
to better results.

4.3. Instrument Fault Diagnosis

Four classes of process behaviour were taken into consideration. They are the normal
behaviour and incipient faults in each of the measuring instruments. The faults were
artificially simulated by 10% reduction of each measured value of the liquid levels.
For the experiments, the reference values of the liquid levels were changed step-wise
with a different magnitude for each controlled tank, respectively. A test period of
300s was considered. The input-output data of the process were sampled at every
Ts = 5s during the test period.

Each of the ANN’s, corresponding to system outputs was trained by using the
process data corresponding to the normal behaviour. The following neural observers
were synthesised: NSOS, NDOS, and NGOS. The same systematic search for the
best approximation was carried out as presented in the previous sub-section of the
paper. The DMLP _MIX produced again the best approximations. The hidden layer
contained hyperbolic tangent neurons and the output layer contained a linear neu-
ron. The best results were obtained using a connectionist hidden layer in almost all
combinations. In all these experiments, a reduced number of neurons in the hidden
layer was sufficient as well. The structures of selected neural networks for NGOS are
presented in Table 2.

Table 2. NGOS for IFD of the three-tank system.

ANN ANN DMLP _MIX Structure

Inputs Output | S 1 nA ] mg ‘ np ’ mg 1 1CHL
NGOS;: ho[k] |1] 0| 2 1
a1 [ku] s a2 [ka], halk] |1 0] 2 | 0| 2 1
holk—1], halk—1] | holk] | 1] 0 | 2 1
NGOS,: hilk] | 1] 0 | 2 1
a1 [ku], @2 [Ku], hslk] |10 | 2 | 0| 2 1
halk—1], holk—1] | holk] | 1] 0 | 2 1
NGOSs3: hilk] | 3] 0| 2 1
q1 [ku], q2 [ku]: ils [k] 1 0 2 1
hilk—1], ha[k—1] | ho[k] | 4 313 1
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Static MLP/BP nets with two layers of sigmoid neurons were used for symp-
tom evaluation. They were trained to discriminate among the above-mentioned four
classes. The residuals corresponding to faulty behaviours were obtained by simulat-
ing the abnormal situations just before the change in process references. FCC’s were
synthesised to classify residuals obtained from all considered neural observer schemes.
PCC’s were synthesised to process residuals obtained from NDOS and NGOS.

Table 3. Overall recognition rates of neural observers for IFD.

Observer/ Training Generalisation

Classifier (dynamic) | (static) l (dynamic)
NSOS /FCC | 98.75% | 81.87% | 98.33 %
NDOS / FCC 100 % 62.63 % | 94.16 %
NDOS / PCC 100 % 78.75 % 95 %
NGOS / FCC 100 % 96.88 % | 95.83 %
NGOS /PCC | 9938% | 73.75% | 9833 %

The robustness of the diagnosing subsystem was tested as well. One used process
data corresponding to faults that were simulated in both the steady state of the process
and the dynamic regime. In the latter case, the abnormal situations were considered
after the change in the system’s input references. Table 3 shows an overview of
the performances obtained. Each recognition rate represents the mean value of those
corresponding to the considered four classes of process behaviour. These experimental
results have led to the choice of NGOS with FCC, due to its overall best performances.

The approach based on a bank of UIFDQ’s detected only accentuated faults in sensors
(Wiinnenberg, 1990). The decisions obtained were characterised by missing and false
alarms. Finally, the mechanism of reject option detected the considered faults in
components as belonging to an unknown class. Therefore, both the diagnosing systems
produced correct fault alarms.

5. Concluding Remarks

The present paper suggests neural approaches to observer-based schemes in order to
perform a robust diagnosis of process faults. The symptoms are generated by using
dynamic neural networks with mixed structure. The residuals are then classified by
means of static artificial nets. An application to a laboratory process is included.
It offers, however, a properly limited environment before the complicated industrial
plants are studied.

The study demonstrates that neural networks provide efficient tools for system
modelling, identification and pattern recognition. The main advantage of the neural
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approach is that no mathematical model of the plant is needed. The robustness of the
diagnosing systems is complementary ensured in both steps of symptom generation
and evaluation. This has led to better performances of two diagnosing subsystems
designed to detect incipient faults in components and sensors of a three-tank system.
The previous approach to the robustness problem, based on a bank of UIFDOQ’s,
detected only accentuated faults (Wiinnenberg, 1990). This fact was due to the
inherent limitation of the mathematical model used in the design of that FDI system.

The main drawback is, however, that one requires data from faulty conditions.
Those data can be collected either directly from the process, if available, or with
the help of a simulation model that has to be as realistic as possible (Frank and
Ko&ppen-Seliger, 1997). The latter possibility is of special interest for collecting data
corresponding to different faulty situations in order to assess the performance of the
diagnosing system. Those data are not generally available from the real process. On
the other hand, the experience gained using the ANN structures has evidenced the
considerable computational effort that is implied in the design of the neural observers.
Evolutionary algorithms of genetic type have been proposed to tackle different kinds
of problems in the ANN research area (Man et al., 1997). It is expected that those
results would be applicable to the design of neural observers for fault diagnosis as
well.

Acknowledgements

The first author gratefully acknowledges the support of this research by the Alexander
von Humboldt Foundation, Germany. The second author would like to acknowledge
the support for the completion of this work by the EC INCO-Copernicus project
on ‘Integration of Quantitative and Qualitative Fault Diagnosis Methods within the
Framework of Industrial Application’ (ERBIC-15 CT-97-0714).

References

amira (1993): Laboratory Ezperiment Three-Tank System. — Duisburg, Germany: amira

GmbH.
Ayoubi M. (1996): Nonlinear System Identification Based on Neural Networks with Locally
Distributed Dynamics and Application to Technical Processes. — Diisseldorf: VDI

Verlag GmbH, Reihe 8 No.591.

Back A.D. and Tsoi A.C. (1991): FIR and IIR synapses, a new neural network architecture
for time series modeling. — Neural Computation, Vol.3, No.3, pp.375-385.

Back A.D. and Tsoi A.C. (1992): Nonlinear system identification using multilayer percep-
trons with locally recurrent synaptic structure, In: Neural Networks for Signal Process-
ing IT (S.Y. Kung, F. Fallside, J.Aa. Sorenson and C.A. Kamm, Eds.). — Piscataway,
NJ: The IEEE Inc.

Cichocki A. and Unbehauen R. (1993): Neural Networks for Optimization and Signal Pro-
cessing. — Stuttgart: John Wiley & Sons & B.G. Teubner.



Development of dynamic neural networks with application to ... 569

Demuth H. and Beale M. (1996): Neural Network Toolboz. — Natick, MA: The MathWorks
Inc.

Frank P.M. (1994): Enhancement of Robustness in Observer-Based Fault Detection. — Int.
J. Contr., Vol.59, No.4, pp.955-981.

Frank P.M. and Koppen-Seliger B. (1997): New developments using Al in fault diagnosis.
— Engineering Applications of Artificial Intelligence, Vol.10, No.1, pp.3-14.

Frank P.M., Alcorta-Garcia E. and Képpen-Seliger B. (1997): Modelling for fault detec-
tion and isolation. — Prep. ESF Workshop Control of Complex Systems, Budapest,
Hungary, pp.111-129.

Frank P.M., Schreier G. and Alcorta-Garcia E. (1999): Nonlinear observers for fault de-
tection and isolation, In: New Directions in Nonlinear Observer Design (H. Nijmeijer
and T.I. Fossen, Eds.). — Berlin: Springer Verlag.

Haykin S. (1994): Neural Networks — A Comprehensive Foundation. — New York: MacMil-
lan College Publ. Comp.

Isermann R. and Balle P. (1997): Trends in the application of model-based foult detection
and diagnosis of technical processes. — Contr. Eng. Pract., Vol.5, No.5, pp.709-719.

Isermann R., Ernst E. and Nelles O. (1997): Identification with dynamic neural networks —
Architectures, comparisons, applications. — Prep. IFAC Symp. System Identification,
Fukuoka, Japan, pp.947-972.

Ko6ppen-Seliger B. (1997): Fehlerdiagnose mit kiinstlichen neuronalen Netzen. — Diissel-
dorf: VDI Verlag GmbH, Reihe 8, No.632.

Liang F. and ElMaraghy H.A. (1993): Multistep localized adaptive learning RBF networks
for nonlinear system identification. — Proc. ECCA/IFAC 2nd European Control
Conf., Groningen, The Netherlands, Vol.1, pp.111-116.

Man K.F., Tang K.S., Kwong S. and Halang W.A. (1997): Genetic Algorithms for Control
and Signal Processing. — London: Springer Verlag.

Marcu T. (1996): Pattern recognition technigues using fuzzily labeled data for process fault
detection. — J. Appl. Math. Comp. Sci., Vol.6, No.4, pp.815-840.

Marcu T. and Mirea L. (1997): Robust detection and diagnosis of process faults using neural
networks. — IEEE Contr. Syst., Vol.17, No.5, pp.72-79.

Marcu T., Mirea L. and Mensler M. (1997): Neural approaches to observer-based diagnosis
of faults in dynamic systems. — Prep. IFAC Symp. System Identification, Fukuoka,
Japan, Vol.3, pp.1179-1184.

Patton R.J. (1994): Robust model-based fault diagnosis: The state of the art. — Prep. IFAC
Int. Symp. Fault Detection, Supervision and Safety for Technical Processes, Espoo,
Finland, Vol.1, pp.1-24.

Sorsa T., Suontausta J. and Koivo H.N. (1993): Fault diagnosis of dynamic systems using
neural networks. — Prep. IFAC World Congress, Syduney, Australia, Vol.7, pp.453—456.

Tsoi A.C. and Back A.D. (1994): Locally recurrent globally feedforward networks: A critical
review of architectures. — IEEE Trans. Neural Networks, Vol.5, No.2, pp.229-239.

Williams R.J. and Zipser D. (1990): Gradient-based learning algorithms for recurrent con-
nectionist networks. — Techn. Rep. NU-CCS-90-9, Northeastern University, College
of Computer Science, Boston.



570 ' T. Marcu, L. Mirea and P.M. Frank

Wiinnenberg J. (1990): Observer-based fault detection in dynamic systems. — Diisseldorf:
VDI Verlag GmbH, Reihe 8, No.222.

Yokohama Y., Kohda T. and Inoue K. (1992): Synthesis of optimal control using neu-
ral network with mized structure. — Prep. IFAC/IFIP/IMACS Int. Symp. Artificial
Intelligence in Real-Time Control, Delft, The Netherlands, pp.289-294.

Received: 17 December 1998
Revised: 20 April 1999



