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'CMAC AND ITS EXTENSIONS FOR
EFFICIENT SYSTEM MODELLING

Tamis SZABO*, GABor HORVATH*

This paper deals with the family of CMAC neural networks. The most impor-
tant properties of this family are the extremely fast learning capability and a
special architecture that makes effective digital hardware implementation pos-
sible. The paper gives an overview of the classical binary CMAC, shows the
limitations of its modelling capability, gives a critical survey of its different ex-
tensions and suggests two further modifications. The aim of these modifications
is to improve the modelling capability while maintaining the possibility of an
effective realization. The basic element of the first suggested hardware struc-
ture is a new matrix-vector multiplier which is based on a canonical signed digit
(CSD) number representation and a distributed arithmetic. In the other version,
a hierarchical network structure and a special sequential training method are
proposed which can constitute a trade-off between the approximation error and
generalization. The proposed versions (among them a dynamic extension of the
originally static CMAC) are suitable for embedded applications where the low
cost and relatively high speed operation are the most important requirements.
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1. Introduction

Neural networks have an important role in both modelling non-linear static or dynamic
systems and diagnosis. Static systems can be modelled by feedforward static networks
like MLP, RBF, etc. For dynamic system modelling networks can be used that reveal
a temporal behaviour. This behaviour can be obtained by various methods, e.g. by
using a local storage at the neuron level where every neuron performs a dynamic
operation, or by adding global memories to the static networks. These extended
networks are usually based on static feedforward networkstructures too. This means
that in most cases the main features of a network, like its modelling capability, learning
speed, special problems of implementations, etc. depend on the features of the static
network in both the static and dynamic cases.

Among static networks, MLP’s (Multi-Layer Perceptrons) are the most popular
ones. Their universal approximation capability is proved, there are many training
algorithms, and based on static MLP’s various dynamic feedforward and feedback
structures have been developed.
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The most serious drawback of MLP’s and MLP-based dynamic networks is their
rather slow training procedure, which may be an obstacle to apply them to real-time
adaptive modelling problems. To increase the learning speed, modified training algo-
rithms have been developed and applied, e.g. instead of the standard backpropagation
method, more sophisticated algorithms such as Levenberg-Marquardt, RLS and oth-
ers can be applied. However, there is a further way to increase the learning speed:
to use networks that have only a single trainable layer. There are some networks
with a single trainable layer that have the same or approximately the same capabili-
ties as multi-layer perceptrons. CMAC’s (Cerebellar Model Articulation Controller)
and RBF’s (Radial Basis Function Network) are among such networks (Albus, 1975;
Broomhead and Lowe, 1988). CMAC networks have further advantages. It is easy
to implement such a network: as we will see later, it does not need multipliers at
all. Similarly to the MLP, the CMAC is a static network. However, it can also be
extended to form dynamic behaviours.

This paper deals with the CMAC network family. It presents the basic structure
of this network, summarises the most important advantageous features and the draw-
backs of the classical CMAC. It gives a critical review of various versions that have
been developed and published in the last twenty years, and suggests some further
modifications that have advantageous properties. The aim of these modifications is
to improve the modelling capability of the network, or at least to form structures
where some bounds can be determined for the modelling error and at the same time
to maintain its fast training and the possibility of easy implementation. So special
emphasis will be put on the question of hardware realizations, i.e. all versions will
be ranked according to the ease of digital low-cost implementation. Although the
proposed versions require multiplications, a new efficient multiplier structure is also
proposed, so both the classical multiplierless structure and the new versions are suit-
able for low-cost embedded systems.

The paper is organised as follows. The classical CMAC and its main features will
be reviewed in Section 2. Various extensions and modifications will be overviewed in
Section 3. Section 4 details the suggested new modification and its properties. In
addition, at the end of this section some dynamic extensions will be briefly presented,
where most of the advantageous features of the static network can be maintained,
while Section 5 deals with special questions of hardware realizations.

2. Classical CMAC and Its Main Features

The idea of the CMAC (Cerebellar Model Articulation Controller) neural network
goes back to the mid 1970s (Albus, 1975). The CMAC has many excellent proper-
ties which make it a real alternative to backpropagated multilayer networks (MLP’s).
Perhaps the most important feature is its exceptional learning characteristic: the
speed of learning can be much higher than that of a corresponding MLP using the
backpropagation training algorithm. A further important feature is that the classi-
cal binary CMAC can be implemented without using multipliers, so it is especially .
suited to digital hardware implementation, an ideal network architecture for embed-
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ded applications where a relatively high operating speed, a small size and a small
implementation cost are the most important requirements.

The binary CMAC network can be considered as an associative memory which
performs two subsequent mappings. The first one (which is a non-linear mapping)
projects an input space point (u) into a binary association vector (a). The as-
sociation vectors always have C active elements, which means that C bits of an
association vector are ones and the other are zeros. C is an important parameter of
the CMAC network and it is much less than the length of the association vector. The
CMAC uses a quantized input, so the number of possible different input data is finite.
There is a one-to-one mapping between the discrete input data and the association
vectors, i.e. each possible input point has a unique association vector representation.

The first mapping should have the following characteristics:

e It should map two neighbouring input points into association vectors in which
only a few elements, i.e. few bits, are different.

e As the distance between two input points increases, the number of common
active bits in the corresponding association vectors decreases. The input points
far enough from each other (further than the neighbourhood determined by the
parameter C) should not have any common bits.

e This mapping is responsible for the non-linear property of the whole system.

The second mapping calculates the output of the network as a dot product of the
association vector (a) and a weight vector (w):

y=a’ (uw (1)
As the association vector is a sparse binary vector with C active elements, every
active element will select a weight from the weight vector and the scalar product
means nothing but the sum of C selected weights.

In practical applications the two mappings are implemented by a two-layer net-
work. The first layer is responsible for mapping the input points to the association
vectors; this mapping is fixed (can be wired in hardware). The second layer is a
linear combiner, where the weights can be modified during training. This is the only
trainable layer of the CMAC networks; the weights can be updated using a simple
LMS rule.

To implement the first mapping, the input variables are divided into overlapping
regions where every region is subdivided into quantization intervals. This quantization
determines the resolution of the network and the shift positions of the overlapping
regions. A given value of an input variable activates all the regions where the input is
within a quantization interval of a region. To ensure C' active bits in the association
vectors, C overlapping regions have to be selected by every quantization interval.
Figure 1 shows some overlapping regions in a two-dimensional case when C = 4.
If the distance between two input points is no more then C' quantization intervals,
then there are surely common bits in their association vectors. As in this case a
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local generalization takes place, the parameter C is often called the generalization
parameter. This local generalization means that the training of a point does not have
any or has only a weak effect on training a different point if these points are far enough
from each other. A consequence of this property is the incremental learning capability,
the feature that cannot be found in backpropagation nets. Global generalization does
not exist in this network.

Overlapping regions

125]

Points of o M
subdiagonal """ o Regions of
‘ __one overlay

Points of
main diagona

Quantization intervals

Fig. 1. The overlapping regions of the CMAC.

The operation of the CMAC can be regarded in a different way as well. The
output value for an input point can be considered as a weighted sum of selected basis
functions. Every element in the association vector corresponds to a basis function.
Each basis function has the so-called receptive field. The shaded regions in Fig. 1
are receptive fields of different basis functions. If an input point is within a receptive
field, the corresponding basis function is selected.

The basis functions can be grouped into overlays. One overlay contains basis
functions with non-overlapping supports, but the union of the supports covers the
whole input space. The different overlays have the same structure; they consist of
similar basis functions in shifted positions. The positions of the overlays and the
basis functions of one overlay can be represented by definite points. In the original
Albus scheme the overlay-representing points are on the main diagonal of the input
space, while the basis function positions are represented by the subdiagonal points
as is shown in Fig. 1 (black dots). The overlay representing points can be described
as displacement vectors whose elements are the co-ordinates of the definite points.
Bvery input datum will select C basis functions, each of them on a different overlay,
so in an overlay one and only one basis function will be active for every input point.
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As every selected basis function will be multiplied by a weight value, the size of the
weight memory is equal to the total number of basis functions or to the length of the
association vector. As an element of the association vector can be considered as the
value of a basis function for a given input, the output of the binary basis function is
one if an input is in its receptive field and zero elsewhere:

1 if u is in the receptive field
a;(u) = of the i-th basis function

0 otherwise

The application of such functions means that if the basis functions are selected, the
sum of the corresponding weights will form the network’s output value independently
of the exact position of the input point in the receptive fields of the basis functions:

yw = Y w | | | @

i ai(u)=1

The output of the network can be obtained without the need for any multiplication.
Tt is also easy to train the network. As the output layer is the only trainable layer
of the CMAC and as this output layer performs a linear operation, the simple LMS
algorithm can be applied:

w(k+1) = wk) + 2ue(k)a(k) (3)

Here k is the discrete-time index, e(k) is the error of the network and a(k) is the
association vector at step k. As a(k) is a sparse binary vector, only those weights
will be modified during training which take part in the formulation of the output
value.

The learning rate p affects the convergence and the speed of the convergence of
the training process. However, the training speed depends not only on p, but also on
the sequence of the training points. If more training points activate at least partly the
same basis functions, there will be some learning interference which can slow down
the convergence. Interference can happen because a given weight will be adjusted not
only for a single training point, but also for many neighbouring ones. This means that
after adjusting the selected weights for a given training point some of these weights
will be adjusted again when such further training points are used, which are in the
neighbourhood of the first one. To reduce the learning interference, only a relatively
small learning rate can be applied and many training cycles must be used. A better
possibility is to use such training points that just lie outside of the neighbourhood of
the previous training points. This technique is called the Neighbourhood Sequential
Training (Thompson and Kwon, 1995). In this case the training points are positioned
at the nodes of a lattice, where the distance of the nodes is exactly C. Using this
training technique and applying the optimal learning rate only a single cycle is enough
to learn all the training points exactly. The response of the network for all the other
input values can be determined easily. The network will perform a linear interpolation
between the training points, so by using rather few training points (the points at the
nodes defined just before) very quick learning and a relatively good answer can be



576 T. Szabé and G. Horvzithk

‘obtained. (For example, if in a two-dimensional problem the input components are

quantized to 10 bits and C' = 32, the number of possible discrete input values is
220 while the number of training points according to the Neighbourhood Sequential
Training is about 2'°. So only one thousandth of all the possible points are used
to train the network.) Linear interpolation gives a good answer if the function to
be learnt is ‘smooth enough.’ If further points inbetween the lattice nodes must be
learnt, these points can be trained, using a much smaller learning rate, after having
finished the Neighbourhood Sequential Training phase. In this second training phase
learning interference cannot be avoided, so it needs more than one training cycle, but
because we have to adjust only the response of the previously trained network, this
second phase takes usually a relatively short time, too.

In practical applications it may happen that the training points are not arranged
according to the nodes of the lattice, so this sequential training cannot be applied and
training takes a much longer time. However, even in such cases the training time is
much shorter than that of the corresponding MLP. The relatively fast learning is due
to the linear output layer, the required simple operations (no multiplications) and the
compact support of the basis functions.

When deciding upon the selection of a network architecture for a given applica-
tion, however, not only the advantages but also the drawbacks have to be taken into
consideration. The most serious drawbacks of the CMAC are its enormous weight
space (when a network with a multi-dimensional input must be realized) and its lim-
ited modelling capability.

The necessary weight memory can be very large in the case of a multi-input
network. For example, if in a ten-dimensional problem all input components are
quantized to 10 bits and C = 32, the size of the weight memory is approximately 25°
words, which is absolutely impossible to implement today. To reduce the size of the
weight memory hash coding, a random compression technique can be used (Albus,
1975). The basic idea is to project the elements of the original association vector
onto a smaller, compressed association one. If compression is applied, the first layer
implements two mappings: one from an input point to an association vector and the
other from the association vector to the compressed one. All the elements of this
compressed vector will select a weight in the weight memory. The mappings of the
binary CMAC including compression are shown in Fig. 2. Although compression is
almost necessary when the dimension of the input data is larger than three, we will
not consider it in the sequel. (It can be shown (Ellison, 1991) that if the length of the
compressed vector is not too small — at least 100+ 1000C, the effect of hash coding
can be neglected.)

The weight space can be reduced using hash coding and because the cost of
memory decreases rapidly, the size problem of the weight space is not so serious
today as it was a few years ago. However, its limited modelling ability may have
more serious consequences. When compared with the MLP, a multi-input CMAC
is not a universal approximator. As is shown (Brown et al., 1993), a binary CMAC
could model exactly only multidimensional additive functions. This limited modelling
capability comes from some consistency equations which impose constraints on given
neighbouring training data. These equations are fulfilled only if the multidimensional
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Fig. 2. The mapping of the CMAC.

mapping can be formed as a sum of one-dimensional ones, e.g. if the multi-input
single-output non-linear mapping can be described as a sum of univariate functions.
This is an inherent feature of the binary CMAC and the reason behind this property is
the nature of the fixed non-linear mapping of the first layer and the use of rectangular
basis functions.

3. Some CMAC Modifications to Improve the Modelling
Capability

To overcome the limited modelling capability, some modifications or extensions of the
original CMAC have been proposed. These proposals can be grouped into three main
directions:

e to change the positions of the basis functions,
e to change (increase) the number of basis functions, or
e to use general basis functions instead of binary (rectangular) ones.

In the original Albus scheme, the positions of the overlays of the basis functions were
determined by the main diagonal lattice nodes as was shown in Fig. 1. The positions
of the C different overlays are determined by the corresponding displacement vec-
tors. Although it can be shown (Brown et al., 1993) that the modelling capability
of CMAC’s with different displacement vectors are not the same, there is no binary
CMAC (independently of the displacement vectors) that is a universal approximator.
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The only difference is the case of C' = 1, which is a simple look-up table without
any generalization capability. The displacement parameters of the network (and the
generalization parameter, C) have effects on the distribution of the approximation
error over the input space (Brown and Harris, 1994), so their selection can be an
important step to design a CMAC for a given application.

Increasing the number of basis functions can also help to reduce the approxima-
tion error. In Albus’ scheme C' overlays of basis functions are used independently of
the dimension of the problem. Lane et al. (1992) proposed some modifications where
more basis functions were used than in the original version. The new basis functions
are also arranged in overlays. The number of overlays can be increased from C (this
is the original Albus scheme) up to the maximum of C¥, which is called a fully cov-
ered overlay arrangement. In the fully covered case every lattice point determines
a different overlay (see Fig. 3 for C' = 8). As can be seen, there is a unique basis
function for each input quantization cell, so this network is a universal approximator:
all the training points positioned at the lattice points can be learnt without any error.
The price of a better approximation capability is a great number of the required basis
functions: the number of basis functions (the size of the weight vector) increases ex-
ponentially with the input dimension, making implementation of the network much
more difficult, especially in multi-dimensional cases.

The application of sparsely distributed basis functions is only one reason of the
limited modelling ability of the original CMAC. Another reason is the use of binary,
rectangular basis functions. To use higher-order basis functions instead of binary
ones helps us to improve network capabilities. Recently several papers have dealt
with higher-order CMAC’s, where the rectangular basis functions were replaced by
general ones (Chiang and Lin, 1996; Eldracher et al., 1997; Gonzalez-Serrano et al.,
1998a; 1998b; Lane et al., 1992). For general basis functions higher-order (dilated)
B-spline basis functions (Lane et al., 1992) are usually used. Univariate B-spline
basis functions are piecewise polynomials, so the main advantage of using higher-
order basis functions is that in this case the function and some of its derivatives can
be approximated by the network.

Higher-order CMAC’s are similar to B-spline networks (Brown and Harris, 1994).
However, there are two significant differences: the supports and positions of the basis
functions are different. For B-splines there is a close relationship between the order
of the spline function (O) and the size of its support (C): C = O. In the case of a
higher-order CMAC, when using dilated B-spline functions, the size of the support
of the basis function is exactly C' which must be an integer multiple of its order:
C = n0. (Figure 4 shows some univariate B-spline functions of different orders and
a dilated second-order basis function when C = 4).

As regards the positions of the basis functions, in B-spline networks a fully cov-
ered overlay arrangement is always used, as opposed to the sparse distribution of basis
functions for the CMAC. Higher-order CMAC’s are usually used when not only the
function, but also its derivatives have to be approximated. In this case, the CMAC
performs a continuous mapping between the input and the output in such a way that
the input is really not quantized. The outputs of the first layer of a higher-order
CMAC (the elements of the association vector) are the responses of the selected basis



CMAC and ifs extensions for efficient system modelling 579

1

w2
®
@
®
®
*
—1®
@ ui
(a)
i
u2

*1_*’ ]

(b)

Fig. 3. Different overlay arrangements for C' = 8: the orig-
inal Albus scheme with C overlays (a) and a fully
covered input space with CV overlays if N =2 (b).
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Fig. 4. B-spline functions of different orders.

functions: these responses depend on the relative positions of the input value within
the supports of the basis functions. This means that the elements of the association
vector are not constants (zeros or ones) as in the binary case, but may get any value
of a higher-order basis function. This is the reason why the network cannot be imple-
mented without multipliers when using higher-order basis functions. However, this
is not the only drawback of higher-order CMAC’s. To get association vectors, the
responses of all the selected basis functions for an input point must be determined,
i.e. quite a lot of extra computations are needed (Ker et al., 1995).

To overcome the difficulties of the basis function computations, discrete, piece-
wise constant versions of higher-order basis functions can be used where the value
of the function is constant within a quantization interval. Figure 5 shows both the
continuous and discrete versions of a two-dimensional second-order basis function.
Two-dimensional functions can be obtained by the tensor product of one-dimensional
ones.

The number of different values of a discrete function is finite. In this case,
the quantized input is used again, but this is not a serious restriction as in many
applications (like in discrete system modelling and control) the inputs are in digital
form. Using discrete basis functions, the calculation of the association vectors is rather
simple, however the multiplications to get the output of the whole network cannot be
avoided. In the next section, a new multiplier structure will be presented making an
efficient, realization of higher-order discrete CMAC’s possible.

Unfortunately, using higher-order basis functions and the original, sparse Albus
overlay scheme, neither the function nor its derivatives can be approximated arbitrar-
ily well. What is more, to the best of our knowledge, for networks with Albus’ overlay
scheme there is no general result about the approximation error using any order of ba-
sis functions. The approximation capability of the network (the errors at the training
points and the generalization) highly depends on the parameters of the network (the
quantization and the value of C). To illustrate this, Fig. 6 shows two different cases
for a second-order CMAC. In this example, the function to be approximated was the
two-dimensional sinusoid y = sin(u, ) sin(uz). In Fig. 6(a) the input components are
quantized to six bits and C' = 8 is chosen for the generalization parameter. If the
training points are defined at the nodes of a regular lattice with the distance of 4, the
network can learn the training points exactly, while its generalization is rather poor.
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Fig. 5. Second-order continuous (a) and discrete (b) basis functions.
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A much smoother output can be obtained if we increase the value of the generalization
parameter. In Fig. 6(b) the output of the trained network can be seen when C' = 32
and the other parameters are the same as in the previous case.

A further improvement of the capability of the network can be obtained if higher-
order continuous functions and, at the same time, a fully covered overlay arrangement
are used. Indeed, this is a second order B-spline network. As for the modelling capa-
bility of these networks, Commuri et al. (1995) stated that they are universal approxi-
mators. This means that the network can learn exactly all the training points that are
positioned on the vertices of a hypercube lattice. The error of the network’s response,
y = f(u), between the training points is bounded and can be made arbitrarily small
if the parameters of the network are chosen properly, i.e. if the density of the lattice
is high enough.

This result can be formulated as follows: if f(u): RY — RM is a continuous
function on a compact subset Q of RV which is partitioned by a hypercube lattice,
and f(u) = f(u) whenever u is a vertex of the lattice, the approximation error on {2
is bounded: ||f(w) — f(u)|| <&, where ¢ = M LS. Here L is the Lipschitz constant
of f() on Q and ¢ is the maximum partition size of Q. (It must be mentioned
that according to the knowledge of the authors this is a special case of general spline
approximation results. In spline approximation exact results can be obtained for the
approximation error of a function and some of its derivatives, see e.g. (de Boor, 1978;
Schumaker, 1981).)

The required density of the lattice (as well as the number of basis functions) de-
pends on the Lipschitz constant of the function to be approximated and the allowable
approximation error. Increasing the density of the lattice will decrease the size of
the support of the basis functions and decrease the generalization capability of the
network. A further drawback of this approach (from the point of view of hardware
implementation) is again the application of continuous basis functions, which needs
additional computations and requires multiplications.

Figure 7 shows the arrangement of the basis functions as well as the positions of
the training points (small black disks and open circles) for the two-dimensional case.
The figure shows the four overlays. The black disks on an overlay are positioned
exactly on the middle vertices of the support of the corresponding basis functions.
These are the only basis functions that are responsible of forming the exact output
values for these points, so if the training points are arranged in such a regular form,
the response at any training point is determined uniquely by only one basis function.

4. A Further Modification with Discrete Basis Functions

In this section, we propose a modified version of the afore-mentioned approach. Here,
similarly positioned basis functions are used, but instead of continuous functions,
discrete ones are applied again. In the discrete version, the supports of the basis
functions are quantized. For an N-dimensional case there will be CN quantization
cells in each support. The discrete basis function suitable for this version (Fig. 8 for
C = 8) is a bit different from the function shown in Fig. 5(b). This small difference
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Fig. 7. A higher-order CMAC with fully covered overlay arrangement.

is important because it makes it possible to get a discrete counterpart of the second-
order continuous B-spline network with a similar modelling capability. It is also a
universal approximator in the sense that it can represent exactly every training datum
positioned on a main vertex of the hypercube lattice and that the approximation error
between the training points is bounded. The distance between the main vertices of
the lattice is C'/2 quantization intervals for all dimensions.

A further modification is that a hierarchical structure can be formed, which
means that the generalization and the approximation error can be controlled inde-
pendently of each other. The hierarchical structure means that if a network with C
generalization parameters results in a too large approximation error instead of in-
creasing the density of the lattice, which would decrease the generalization capability
of the network, further similar networks can be applied with smaller generalization
parameters. The first network with generalization parameter C can be followed by
another one with parameter C/2 and a further one with C/4 etc. until the required
error limit is reached. This approach which we call a hierarchical fully covered CMAC
can be a trade-off between generalization and the approximation error. The suggested
hierarchical structure is somewhat similar to Moody’s proposal (Moody, 1989). How-
ever, while he increased the resolution of the network, i.e. when the error could not
be reduced below a given limit, he used a next level of the network with a finer in-
put quantization and the same generalization parameter; here the quantization is not



CMAC and its extensions for efficient system modelling 585

Fig. 8. The modified second-order discrete basis function.

changed, but the generalization parameter is reduced instead step by step.

This proposed version combines the advantageous properties of some previously
mentioned networks:

o It uses a quantized input space and discrete basis functions, which means that
the calculation of the association vector is simple: all the possible values of the
association vectors are known in advance if the basis functions are fixed, so they
can be stored or built into the network architecture.

e The supports of the basis functions are determined by the generalization pa-
rameter (C ) of the network. However, the number of overlays does not depend
on C. In the two-dimensional case with second-order basis functions there will
be only four overlays, so the total number of basis functions is relatively small
even if the generalization parameter is quite large. In a hierarchical structure —
for the two-dimensional case — the maximum number of overlays is four times
as large as the number of the hierarchy levels.

e It is a universal approximator, which means that similarly to the previous case
all the training points can be learnt exactly. The positions of the training
points are on the vertices of the hypercube lattice which are placed exactly
C/2 quantization intervals from each other. The response of the network for
such a discrete input that lies between the training points can be obtained as
a linear interpolation of the responses of the neighbouring training points. The
maximal error at these points is bounded, where the bound is determined by the
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Lipschitz constant of the function to be approximated and the distance between
the training points. For a given error bound and Lipschitz constant, the number
of the required hierarchy levels can be determined.

¢ The network can be trained extremely fast — one training cycle is enough — if
similarly to the Neighbourhood Sequential Training method the training points
are exactly on the vertices of the lattice of a given hierarchy level. We have
to start with a hierarchy level of generalization parameter C' and go further
to smaller generalization levels if we have further training points exactly at
the corresponding lattice points. In many applications we are not in the ideal
situation: the training points do not coincide with lattice points and they are
distributed randomly over the input space instead. In these cases, the Neigh-
bourhood Sequential Training cannot be applied, however the learning features
of the network remain remarkably good. Figure 9 shows the results of two sim-
ulations using hierarchical networks. In Fig. 9(a) the training points are in the
ideal positions and in Fig. 9(b) they are randomly distributed.

e Although it requires multiplications, it maintains a relatively simple hardware
structure, so it is also suitable for low-cost digital implementations.

5. Dynamic CMAC Networks

The CMAC is a static network. However, in system modelling and diagnosis in many
cases we require a universal modelling device which reveals a dynamic behaviour. To
form a dynamic net from the CMAC network some time dependence has to be built
into it. A possible solution would be to use tapped delay lines at the inputs, similarly
to the MLP-based solutions (Haykin, 1994). By using this approach, the modified
network can be used as an alternative to MLP-based dynamic models, while some of
the advantageous properties of the CMAC, like faster training and the possibility of
simple digital implementation, are maintained. However, using tapped delay lines at
the input increases the number of inputs of the CMAC network, which means that the
size of the required memory may be too large. For obtaining dynamic CMAC networks
such modifications are preferred where the number of the input components is not
increased. A dynamic CMAC can be constructed (without increasing the number
of the input components) if instead of using tapped delay lines at the input of the
network the synaptic weights of the output layer are replaced by filters. If finite
impulse response (FIR) filters are used, the result is the so-called FIR-CMAC which
is a general NFIR model (Fig. 10). The input-output mapping of an NFIR model is
given by

y(k) :f(u(k),u(k—1),...,u(k—L)) (4)

where f(-) is some nonlinear function. The FIR-CMAC can be considered as a
piecewise linear filter or — as it is a cascade connection of a static fixed nonlinear
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mapping and a linear filter bank — it is a special implementation of the Hammerstein
model

M M L M
gk =D ak) =Y wilp)aitk —p) =Y wai(k) (5)
i=1 i=1 p=0 i=1

where a;(k) = [a;(k),ai(k — 1),...,a:;(k — L)]* is a vector formed from the delayed
values of the i-th output of the first CMAC layer, w;(k) = [w;(0),w;(1),...,w;(L)]T
is the coefficient vector of the i-th filter with L + 1 components and z;(k) is the
output of the i-th FIR filter. The detailed operation, the learning rule and some
further dynamic versions were presented in (Horvath and Dunay, 1996).

z(k)=w'a,(k)

k
il
a(k) z(k)

First layer FIR filter
! k
u (k) mapping @_*yg

(fixed projection)

Fig. 10. FIR-CMAC network.

The proposed dynamic CMAC networks maintain the most significant advanta-
geous features of CMAC networks and, as the first layer of the CMAC is not changed,
the dynamic extensions can be applied for all versions of the previously mentioned
networks.

As regards the complexity of the extended networks, only the size of the weight
memory is increased. However, the required weight memory size increases only pro-
portionally to the length of the filters (L + 1) when compared with the exponential
increase in the memory size if a tapped delay line is used at the input.

6. Hardware Implementation

Although CMAC’s are especially suited for digital hardware implementation, there
are only a few papers (e.g. Miller et al., 1991) which give reports about hardware
versions of CMAC. The most recent ones are from (Ker et al., 1995; 1997) who
fabricated a VLSI CMAC chip which has been used as an embedded controller for
colour correction in image reproduction systems. These realizations were developed
for binary CMAC’s or for higher-order CMAC’s with continuous basis functions. In
this section, we present some details of the hardware realization of the newly proposed
versions using discrete higher-order basis functions.
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In the previous sections, we suggested to use two different modified versions of
CMAC. In the first case, the overlay arrangement and so the general architecture of
the first layer of the original Albus scheme have been maintained. The most important
feature of this version was the use of discrete higher-order basis functions. As was
shown, the application of such basis functions results in a quite good approximation
capability, while — as we will show in this section — using discrete basis functions,
we can create an efficient hardware structure in spite of the need for multipliers. In
the other proposed case, discrete basis functions are used again, but with a slight
modification (cf. Figs. 5(b) and 8). This modification ensures that using a special
fully covered overlay arrangement, a good approximation capability can be obtained
in spite of the relatively sparse distribution of the basis functions.

6.1. Implementation of CMAC with Discrete Higher-Order Basis
Functions

The main points of the implementation of a CMAC are the weight address mapping
(the task of the first layer) and the computation of the dot product of the linear
output layer.

The address mapping method. The first layer is responsible for the mapping
from the quantized inputs to the association vectors. From the point of view of a
realization, this mapping means the calculation of selected weight memory addresses.
For every discrete input vector a proper number of weights must be selected, i.e. the
addresses of the selected weights must be determined.

As in the first proposed version addressing is not changed, the classical main di-
agonal overlay arrangement is used and we will adopt the memory addressing method
of Ker et al. (1997) which is an excellent solution for this task. Thus a direct memory
address mapping method is applied where the whole weight memory is divided into
C logical memory banks. The main difficulty of the implementation of addressing is
to find a way of efficient physical memory utilization and at the same time to give a
possibility for parallel operation, i.e. to obtain the C' addresses (and the C' weights)
in parallel. The essential point of the idea can be illustrated in a two-dimensional
example shown in Fig. 11.

The weights are stored in C memory banks where each bank contains memory
blocks. The sparsely positioned rows of the original address space are pushed into
such blocks. The blocks corresponding to the rows with indices 1, C, 2C, 3C, etc.
are stored in the first memory bank with indices 2, C + 1, 2C + 1, 3C + 1, etc.
in the second bank, and so on. This results in a solution where for a given input
point a weight memory cell is selected from each of the C' banks, i.e. the C weights
are retrieved in parallel. The necessary computational algorithm for this address
mapping strategy is extensively detailed and optimized in the cited paper. The main
advantages of this approach are that it is suitable for arbitrary dimensions and that
by applying some week assumptions (C' must be an integer power of two and all the
input components must be quantized to the same number of bits) this structure can
be significantly simplified resulting in a simple combinational network.
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Fig. 11. Direct adressing and the illustration how to form memory
banks and remove redundant memory cells (Ker et al., 1995).

Implementation of the output layer. In the case of a binary CMAC, to get the
answer of the network, it is enough to sum up the selected weights. In higher-order
cases, the weight values have to be multiplied by the basis function values before
summation, so we have to determine the responses of the selected basis functions for
each discrete input value. The response of a selected basis function depends on the
relative position of the input value within the receptive field of the basis function.

The dot product at the output layer needs C' multiplications. Our idea is based
on the obsrevation that if instead of using C general multipliers we apply a special
matrix-vector multiplier, the output value can be calculated more efficiently. This
special structure is derived from a bit-serial multiplier that can be applied if one of
the multiplicands is constant, where the constant coefficient is built into the multiplier
structure. For a general neural network, this special multiplier architecture can be
applied only if its weights are fixed, so the network is pretrained and further on-line
training is not required. Some papers deal with such applications (Szabé et al., 1998;
Szabo and Horvath, 1999). However, if on-line training is necessary, the weights of
the neural network are not fixed. If the weights are not fixed for using this special
multiplier structure, the other multiplicand must be constant.

For a higher-order CMAC with discrete basis functions, the number of different
responses of a selected basis function is rather limited. Thus these fixed values can be
built into the multiplier structure. This makes it possible to use the special multiplier
structure even in the case of an on-line trainable CMAC network. In turn, this results
in an efficient, hardware-cost-optimized network structure.

The multiplier operates in a bit-serial mode. This increases the computational
time, but decreases the necessary hardware and the number of interconnections.
However, if all multiplications can be performed in parallel, the globally parallel
architecture can compensate for the speed loss caused by locally serial computa-
tion/communication.
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To construct the special matrix-vector multiplier, we have to determine all the
possible different combinations of the constant values of the selected C' discrete basis
functions. It can be shown (Szab6 and Horvath, 1999) that in a CMAC with the
main diagonal addressing mode the values of the active (selected) basis functions can
form only P = CN—1 different vectors. These vectors must be multiplied by the
selected weight vector to get the output value. If N and C are not too large, the
number of different constant vectors will also be rather limited, and from all these
vectors a constant matrix can formed. In the case of an efficient realization of the
multiplication of a constant matrix by variable weight vectors it may be worth of
implementing this matrix-vector multiplication. The result of this multiplication is a
vector whose only one element represents the output value of the network for a given
input. This element can be selected according to the relative position of the current
input value in the receptive fields of the selected basis functions.

In a single-input CMAC only one association vector-pattern a, can be formed
from the responses of the selected basis functions. The structure and length of this
vector-pattern depend on the order of the basis functions and the value of parameter
C. In multi-input CMACs there will be more different association vector-patterns
depending on the number of the input components, the order of the basis function
and the generalization parameter of the network too. From these association vector-
patterns a constant matrix A, can be formed. It is an m xn constant matrix, where
m is the number of different association vector-patterns (in our case m = C¥) and n
is the length of the association vector-pattern (in our case n = C). For obtaining the
output value of the network, the weight vector will be multiplied by this matrix. For
this constant matrix an optimized multiplier structure can be constructed in advance,
so by using this approach an efficient hardware structure can be obtained.

Here we confine the examinations to at most several- (two- or three-) dimen-
sional problems, because otherwise the memory requirements of the CMAC would
be extremely large. If the dimension of the input space is higher, we propose to
use a tree of CMACs structure or to implement conventional multipliers and LUTs
(Look-Up Tables) with basis function values. In a two-dimensional case the C active
basis functions can form C' different combinations of the active association vector
elements (C different association vector-patterns). Figure 12 shows these association
vector-patterns for a second-order CMAC if Albus’ addressing scheme is used and
C=4.
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Fig. 12. Possible local association vectors for the two-dimensional case if C = 4.
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The output of the higher-order CMAC will be the dot product of this association
vector-patterns and the vector composed of the active weights: y = a;f'w. However,
if instead of this dot product the matrix-vector product y = A,w is computed,
the required scalar output y has to be selected from the vector y. This can be
done using the relative position of the input value within the support of the selected
basis functions. In a two-dimensional case, the selection formula is simple: s =
modg(ug — u1), where s is the selecting index of the output vector. The block
scheme of the system is given in Fig. 13.
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Fig. 13. The block diagram of the higher order CMAC system.

Implementation of the matrix-vector multiplier. The idea of efficient imple-
mentation of the matrix-vector multiplier is based on the ‘do not implement unless
it is necessary’ rule. This means that given some (e.g. binary) representation of the
elements of the coeflicient matrix, where there are zero bits in this representation,
the corresponding parts of the serial multiplier are needless to implement. Further,
if there are similar bit patterns, it is enough to implement the pattern and the corre-
sponding part of the multiplier once in the whole matrix-vector multiplier.

Such an optimization method for vector-vector (inner product) multiplication
was originally presented in (Fehér, 1993). In this system, the constant coefficients are
not stored explicitly but they are ‘built’ into the structure. This kind of approach
is ‘much more distributed’ than those in the literature of Distributed Arithmetic. A
two-step version of this approach for matrix-vector multiplication was introduced in
(Szabé et al., 1998). At first, the partial vector-vector products of a matrix-vector
product are reduced independently, then more reduction can be achieved by merging
their identical parts. Our most recent paper (Szab6 and Horvath, 1999) deals with a
generalization of the original method. This algorithm seeks for optimal reduction in
the whole matrix-vector product.

An obvious implementation of the matrix-vector product is the application of
m x n serial-parallel multipliers followed by adder trees. Here m and n are the
size parameters of the matrix again. On closer examination, such a multiplier is
composed of simple one-bit adders and bit-delay elements (D flip-flops). Moreover, it
can be found that its complexity depends on the number of non-zero elements in the
binary representation of the coefficient matrix. At this point significant hardware cost
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reduction can be achieved by using Canonical Signed Digit (CSD) encoding (Hartley
and Parhi, 1995). In CSD coding, as opposed to the standard binary representation
where only 0’s and 1’s are used, 0, +1, and -1 digits are applied. In this case, the
maximum number of non-zero elements in a CSD encoded number is B./2 where
B, is the word length. Moreover, the average number of nonzero elements in the
number representation is B./3. (The dynamic range of a CSD number also extends.)
As can easily be seen, the application of —1 does not mean any extra cost in the
hardware realization because the hardware costs of a bit-serial adder or substractor
are the same.

Another idea is to reduce the occurrence of identical bit patterns in the CSD
representation of the coefficients. For this reduction the distributive property of
multiplication is exploited. The reduced version can be obtained using an iterative
optimization algorithm which is similar to the steepest-descent method. Clearly, it is
not guaranteed that the algorithm will find a global optimum — as finding the global
optimum is an NP-complete problem — but a significant hardware cost reduction
can be achieved. The convergence of the algorithm is guaranteed in a finite number
of steps (Szabé and Horvath, 1999). This method reduces the hardware cost of the
implementation of a matrix-vector multiplier significantly, and full-precision results
are obtained. The approach is very suitable for FPGA and ASIC implementations.

Applying the proposed method for implementing the output layer multiplications
of higher-order CMACs, the hardware complexity can be significantly reduced.

6.1.1. Implementation of the Hierarchical Fully Covered CMAC

Our next task is to find an efficient implementation for the hierarchical fully covered
CMAC architecture. Here we are looking for similar solutions, where the active
weights are retrieved in a parallel way. We restrict our study to two-dimensional
problems again. In these cases, an input point activates four basis functions, which
means that we have to implement four memory banks. In order to select only one
weight from each bank for an input point, we have to organize the address space
as follows (see Fig. 14): the four memory banks are denoted by A,B,C,D and
Ai,Bj,... denote the i-th and j-th memory addresses within banks A and B,
respectively. The consecutive memory addresses Al, A2,A3,... for bank A and
B1,B2,B3,... for bank B are assigned to the weights which correspond to the basis
functions represented by open circles in the figure. Here the representing point of a
basis function is in its centre. So along both input components every second basis
function is related to the same memory bank.

The address of each memory bank can be determined directly from the input
data. First, segments of the addresses are calculated — every input component will
determine an address segment. Then the address of a weight value in a memory bank
can be formed as a concatenation of the segments. In a two-dimensional case, the
two address segments can be computed as u;/2C and (u; +C)/2C, i = 1,2. Here
u; means the value of the i-th component (the co-ordinate of the i-th element of the
input vector). As we have two input co-ordinates, us and u;, we can form the four



A3

T. Szab6 and G. Horvath

point =TT

B

Tpul

Ti

addr:9  Bank D addr:5

:1}

10

Al

BO

chical fully-covered CMAC.

A0

Buank C addr:5  Bank A addr:9
Fig. 14. An illustration of the addressing formula for a hierar-

memory bank addresses as

594

C uy +C
&& 5C
Ui

+
2C
us +C

=l

Uu

(7)
(8)
(9)

the addresses are as follows:

b

)

4

C

9
9
5
5

(

10011
1001gN
0101gN
0101gin

2C

uy +C
uy

2C
2C

&&

U3
2C
U3
2C
where & & stands for the bit-wise concatenation operation. We assume that C is a

2C
power of two again. In the example of Fig. 14



CMAC and its extensions for efficient system modelling 595

Here [-] is the integer part function. Both the concatenation and determination
of the integer part are very simple, and if the value of C is an integer power of
two, division by 2C is also a trivial operation when using either bit-serial or bit-
parallel computation. In a bit-parallel environment integer divisions, the integer part
operation and the bit concatenation do not require any additional hardware.

So far active basis functions have been selected. In the next step the basis
function values have to be determined. This means that we have to determine the
relative position of the current input point within each basis function receptive field.
First, the co-ordinates of the centre of an active basis function must be obtained.
This can be determined from the previously described address segments as

Uj
[%] £2C - C (10)
and
u; + C
{ o ]*20 (11)
In our examples the selected basis function centres are: A9 = (8,16),B9 =

(12,16),C5 = (8,12) and D5 = (12,12). To get the relative co-ordinates, these
values must be substracted from the input point co-ordinates which are P(10,13) in
the example of the figure. According to the previous values, the relative co-ordinates
will be Ar = (2,-3),Br = (-2,-3),Cr =(2,1) and Dr = (—2,1). These relative
co-ordinate values (or these values with an offset C to avoid negative numbers) can
be bit-wise concatenated and used as the addresses for the basis function values.

Now, we have the address values representing the relative positions of the current
input point within the support of the selected basis functions. Using these addresses,
the basis function values can be reached. At this point we could use the matrix-
vector multiplier described in the previous section. However, because we have only
four active basis functions in a two-dimensional case, this is not worth the trouble.
Thus, here we propose to use conventional multipliers plus an LUT for the basis
evaluation. That is, the relative basis function addresses can address LUT’s directly.

Figure 15 shows the block diagram for the modified CMAC hardware. There
are many blocks, denoted by dashed boxes, which do not require any hardware to
implement when bit-parallel computations are used. Using a bit-serial arithmetic,
these parts are also very simple to implement, (they require simple masking, shift and
add operations). A further advantage is that this result can be extended to higher
input dimension cases too.

6.2. Implementation of the Dynamic CMAC Versions

The real difference between the static and dynamic versions is the use of filters instead
of the weight values. The input layer and the addressing scheme of the dynamic
version remain the same as that of the corresponding static version. However, instead
of every memory bank, L + 1 memory banks have to be used, so the total number
of memory banks is (L + 1)C or 4(L + 1) depending on the selected static CMAC
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Fig. 15. Block scheme of the hierarchical fully-covered CMAC hardware.

version if L 4+ 1 is the number of filter coefficients in every filter of the output layer.
An open question is if an efficient matrix-vector multiplier can be applied for the
dynamic versions too. This will be studied in the near future.

6.3. Implementation of Higher-Order B-Spline Networks

The proposed addressing method (Fig. 15) can be easily generalized to higher-order B-
spline networks. The main difference between the second- and higher-order B-spline
approximation, beyond the distinct shape of the basis function, is that the higher
the order of the spline functions, the more overlays of the basis functions have to
be used. If the basis function order is O, then the supports of the basis functions
in different overlays are shifted by the C/O quantization interval, where similarly
to the previous cases the support of the basis functions in all the dimensions are
divided into C' quantization intervals. From this it follows directly that one input
point will activate OV basis functions in an N-dimensional space. Thus we have to
select O possible address segments for each dimension and combine them for address
segment concatenation. If we consider the practically most important cubic spline
case (O = 4), we have to select 4> = 16 basis functions for a two-dimensional space.
We can use the address segments computed from wu;/4C, (u; + C)/4C, (u; + 2C) /4C
and (u; +3C)/4C. However, we have to note that both the number of activated basis
functions and the necessary weight memory space increase dramatically with the
input space dimension and the order of approximation. Thus hereafter the usage of
association vector compression (e.g. hash coding) and a hierarchical network structure
should be considered, or at least the fully parallel network computation should be
given up. The detailed analysis of these problems, however, is beyond the scope of
this paper and requires further investigations.
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7. Conclusions

In this paper, many different versions of the CMAC network as well as their most
important properties were presented. The CMAC family is formed from networks
which are characterized by a very interesting architecture (they have a single trainable
layer), and have very attractive features such as fast training, an easy-to-implement
structure, etc. Besides those advantageous features, these networks have some seri-
ous drawbacks, the most important of them being their limited modelling capability.
The main aim of the paper was to show that using some extensions or modifications,
some versions can be obtained which reveal an improved modelling capability, or at
least versions where some bound can be determined for the modelling error while
maintaining the possibility of an efficient digital hardware realization. For that pur-
pose, the use of discrete higher-order basis functions and a special multiplier structure
have been proposed. The networks can be used in systems modelling and, because of
their good properties, they are especially suited for real-time applications in low-cost
embedded systems.
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