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NEURAL NETWORK EVALUATION OF MODEL-
BASED RESIDUALS IN FAULT DETECTION
OF TIME DELAY SYSTEMS

PavEL ZITEK*, RENATA MANKOVA*, JArosLAV HLAVA*

Model-based fault detection becomes rather questionable if a supervised plant
belongs to the class of systems with distributed parameters and significant de-
lays. Two methods of fault detection have been developed for this class of
plants, namely a method of functional (anisochronic) state observer and a mod-
ified internal model control scheme adopted for that purpose. Both these model
schemes are employed to generate residuals, i.e. differences suitable to watch
whether a malfunction of the control operation has occurred. Continuous eval-
uation of residuals is provided by means of a dynamic application of artificial
neural networks (ANNs). This evaluation is carried out on the basis of prediction
of time series evolution, where the accordance obtained between the prediction
and measured outputs is used as a classification criterion. Implementation of
both the methods is demonstrated on a laboratory-scale heat transfer set-up,
making use of the Real-Time Matlab software.

Keywords: model-based fault detection, anisochronic model, state observer,
internal model control, artificial neural networks.

1. Introduction

Model-based fault detection methods have been developed in the last decade making
use of two main approaches (Patton et al., 1989), namely state estimation by means
of state observers and parameter estimation by applying an identification procedure.
Both these approaches evaluate certain differences between a ‘faultless model’ and
the observed real behaviour of the system to be monitored and therefore they need
to be provided with models which are sufficiently accurate and true in describing the
faultless behaviour of the process watched. As far as the model-process accordance is
concerned, the modelling methods usually used coped well with systems with clearly
lumped parameters. On the contrary, the model-based approach involves crucial
troubles if systems with distributed parameters and significant delays are treated.
Using the standard state space, a sufficiently accurate model introduces a rather large
number of artificial state variables resulting, among other things, in a complicated
state observer scheme.
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Model-based approaches to fault detection of distributed and time delay systems
may become more favourable and serviceable if the conventional state space framework
is replaced by a functional extension called anisochronic one (Zitek, 1998b). The
essence of this extension consists in considering a segment of state variables as the
system state instead of the usual instantaneous state vector. Due to this concept, it
is possible to reduce substantially the number of state variables, while a minority of
them have to be artificially defined. As a rule, measurable system outputs usually
constitute a major part of the state variable vector if this kind of model is applied.
A linear form of the anisochronic state space model is as follows:

" T T
% = /0 dA(r)z(t— 1)+ /0 dB(t)u(t—71), y=Cx (1)

where xz,u,y are state, input and output vectors, respectively, 7 and T are the
delay variable and its upper bound, and A(7), B(r) are functional matrices the
elements of which determine not only the gain coefficients but also delay distribution
functions in appropriate relationships. As a rule, these distribution functions are
discontinuous, i.e. they are composed of weighted steps. While the conventional state
space description represents only a structure of point-concentrated accumulations,
the model (1) results in a network of both accumulations (simultaneous integrators)
and delay relations (delayors). A particular form of A(7) and B(7) can be widely
diversified, however the Laplace transform of (1) is always available. As far as the
transfer properties are concerned, i.e. in the case of zero initial conditions of the
functional differential equation in (1), the transform is as follows:

sx(s) = A(s)z(s) + B(s)u(s) (2)

where
T T
A(s) =/0 exp(—s7)dA(s), B(s) :/0 exp(—s7)dB(s) (3)

On the basis of the above model, most of conventional methods of control system
design can be modified and applied to the plants with distributed parameters and de-
lays. Since the functional state space of x-segments over (t—7,T) keeps the essential
properties (separability, consistence) claimed for a state space in general, controllabil-
ity and observability concepts can be defined for (1) too. Also various ideas applied
in the conventional control system design can be modified for the systems with dis-
tributed parameters and delays as soon as they are described as anisochronic systems
(Zitek and Hlava, 1998). For instance, the methods of inverse-based or internal model
control system design can be modified in this way (Zitek and Hlava, 1998). Let us note
that the order of (1) is substantially reduced: even quite involved process dynamics
can be described by (1) of second order only.

2. Anisochronic State Observer Design

State observers in fault detection serve as parallel models generating residuals, i.e.
process-model output differences able to indicate system faults by increasing devi-
ations exceeding some bounds. The convergence of both the observer and process
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outputs is provided by an available output feedback. If this feedback is properly
designed and if an observability condition is satisfied, the state vector is well esti-
mated in real time. Anisochronic state variables in (1) can be selected much more
as available outputs, but even so some artificial ones may also appear. Similarly to
the conventional state observer structure, its anisochronic modification is designed as
follows: )

d(i!(t) T A T T A

20 /0 dA(T)a;(t-r)+/0 dB(T)u(t-T)Jr/O 4L () [y(t-)~Ca(t-7)| @

where L(7) is an observer feedback matrix, functional again in general. Its dimen-
sions (n,l) are given by the dimensions of the state and output vectors, respectively.
Since most of the state variables coincide with the outputs, the output matrix C' is
usually simple, composed of units and zeros.

Observability condition. The requirement of observability, i.e. that system state
variables can really be reconstructed from the measured outputs, is a crucial condition
for any observer design. For the system (1) the spectral observability concept (Lee
and Olbrot, 1981) can be adopted. System (1) is spectrally observable if and only if
the matrices A(7) and C satisfy the requirement

rank [ sk _CA(S) :| =n (5)

for any complex s. If this is satisfied, any of the A(s) eigenvalues can be observed
from the output measurements by means of the observer (4) (Zitek, 1998b).

Local observer separability. One of the problems encountered in the observer de-
sign is a usually rather high number of observer parameters, i.e. the L(s) elements.
This number is given by the product nl (the numbers of state and output variables)
and with respect to n some of the L(s) elements are redundant as a rule. On the
other hand, complex technical systems are composed of co-operating simpler com-
ponents, which can be viewed as separated units as regards the state observation.
The key condition of their separability is that the interrelations between this unit
and the other ones are carried out by means of available outputs only, not by the
artificially defined state variables. Suppose that the state vector is partitioned as
z = [zl zl,zT)T, where x,, m, T are the inner state variables of the unit ‘S’,
the outer available (measurable) state variables and the other artificial state variables,
respectively. The unit ‘S’ can be observed separately if and only if the adequately
partitioned matrix '

Ag(s) An(s) A.(s)
A(s) = ,
) other parts )

has only zeros in A, (s), i.e. if A.(s) =0.

If (6) holds, this property means that the unit ‘S’ is influenced by other system
units in a way which always can be expressed by measurable state variables and hence
need not be estimated by the observer. It should be emphasized that the anisochronic
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state formulation of the process model is particularly favourable in selecting the state
variables as measurable quantities. That is why this class of models is well suitable
for state observer design. An example of anisochronic observer design for a thermal
laboratory system is presented in Subsection 5.2.

3. Internal Model Control of Time Delay Systems and Its Use
for Generation of Residuals

Anisochronic state observers described in the previous section are a very appropriate
means for generating residuals in time delay systems. However, if a controller is
not based on state feedback but it uses output feedback only, the state observer is
an additional component and the whole control and fault detection system becomes
considerably more complex and more difficult to design and implement. For this
reason, it can sometimes be more advantageous to use a structure of the control
system in which the necessity to add additional components for residuals generation
is minimized. Since the Internal Model Control (IMC) structure (Frank, 1974; Garcia
and Morari 1982; Morari and Zafiriou, 1989) contains the system model as an inherent
part, it is a suitable candidate for this application. Moreover, IMC has already proved
to be an effective method for designing robust control systems and, unlike most other
developments in modern control theory, it has been widely accepted also by control
engineering practitioners.

However, both the theoretical treatment and applications of IMC described in
the literature have been limited to control of systems without delays or simple time
delay systems with one delay in control only. In exceptional cases where an attempt
to design an IMC controller for a more complex time delay system with state delays
was done (see e.g. Roduner and Geering, 1996), time delays in the system were ap-
proximated by Padé approximants, which resulted in a complicated controller of a
very high order. However, these attempts to use delay free approximations for time
delay systems are based on reasons that are much more traditional than rational and
they actually cause more problems than benefits.

Since this paper is about fault detection in time delay systems, we will first briefly
(see Zitek, 1998a; Zitek and Hlava, 1998 for more details) show in the first part of
this section that the IMC concept can be extended to general time delay systems with
state and control delays, i.e. systems that cannot be controlled by a Smith predictor
and for which only a very awkward and ineffective control schemes such as finite
spectrum assignment or LQ control for time delay systems have been proposed in the
literature until now.

A basic IMC structure is depicted in Fig. 1 with a solid line. In the case of
perfect process model accordance, there is a very transparent relation between con-
troller design and closed-loop behaviour. It can be.expressed by the following transfer
functions:

Y(s) = Gumu(s)R*(s)W(s) + (1 - G’Mu(s)R?‘(s)) GaraD(s) (7)
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Fig. 1. Augmented IMC scheme.

Lumped delay case. Let us now consider retarded SISO time delay systems with
lumped delays in states and in control. This is a subclass of systems described by (4)
in which the Stieltjes integral reduces to summation. This class of systems is described
by state equations of the form

&(t) = Agx(t) +2Aar:t— +bout)+2but—fj)

y(t) = Cz(t) ; ®)

The corresponding transfer function is given by

! -1 k
Grru(s) = C [31 ~A -3 Aie—sﬂi] bo+ Y bje "
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i=1

! k
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This transfer function is a quotient of two quasi-polynomials and as such it is
not a rational function. If the characteristic quasipolynomial D(s) is stable, then
since N(s) is a quasi-polynomial with the highest power of s equal to » — 1 and
exponential terms with negative exponents, the transfer function (9) is analytic and
bounded in the open RHP, i.e. it is in the function space H* and it admits an
inner-outer factorization

GMU(S) = Go(s)GI(S) (10)

where Go(s) is outer and Gy(s) is inner. Both the factors are possibly irrational.
In most cases of practical importance, the inner factor reduces merely to a singular
function Gp(s) = e *?. The transfer function can then be written as

NO(S) —s
D(s) e’

Gu(s) = =Go(s)e™* (11)
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where D(s) and No(s) are stable quasi-polynomials. Delays in quasi-polynomials
D(s) and Np(s) are often considerably larger and they may have more significant
influence on the dynamic behaviour than the explicit delay 8. This will be also shown
in the application example at the end of this paper.

If factorization (11) is possible, an IMC controller can be computed according to
the formula

R*(s) = (Gol(s)) ™} F(s) (12)

Robustness issue. Since the controller includes the inverse of infinite dimensional
Go(s), it is also an infinite dimensional system. With F(s) of a sufficiently high
order, this controller is proper and it can be shown that it is also causal and the
nominal dynamic behaviour of the control system is fully determined by the filter
F(s). Owing to the inherent limitation given by the time delay 6, which cannot be
overcome by any causal controller, the response can be achieved arbitrarily fast by
using a filter with small time constants. However, if filter time constants are small,
the performance of this controller becomes very sensitive to modelling errors. Thus,
neither nominal stability nor nominal performance are the primary design targets but
robust stability and robust performance. An important advantage of IMC lies in the
fact that it provides a framework in which robustness can be dealt with explicitly and
relatively easily. It can be shown that even in the case of the infinite dimensional
system (8) and controller (12) it is possible to use a robust performance condition in
the form

|0 (jw)wp (j0)| + |To(jw)lm(jw)| <1 Vw (13)

where Sp is the nominal sensitivity, T, stands for the nominal complementary sen-
sitivity To(s) = R*(5)Gumu(s), So(s) =1 —To(s) =1 = R*(8)Gpru(s), wm(jw) is
the performance weight and I,,,(jw) is an upper bound on the multiplicative uncer-
tainty. Using (13) it is possible to find an ‘optimal’ trade-off between performance
and robustness. This is very important because no other method of controller design
developed for systems (8) allows for this except for some recently developed and very

complicated methods of H* optimal control for time delay systems.

Fault detection supplement. However, the IMC scheme not only allows for an
advantageous extension to control complex time delay systems but, since the difference
signal which can be used as residual one is inherent in the basic IMC structure, this
control structure also offers a suitable starting point for fault detection. Since larger
values of error feedback may be caused not only by faults but also by load disturbances,
i.e. they may arise even during faultless operation, the basic IMC scheme should be
augmented by additional blocks depicted with a dashed line in Fig. 1 and the input
to the fault detection block is then given by

ep(s) = y(s) — Garu(s)u(s) — Gual(s)d(s) (14)

Hence the extended internal model can be applied in two roles: as a part of
the control system and for computation of the difference ep. This residual can be
employed in a similar manner as in the observer-based methods of fault detection.
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In comparison with the state observer technique, this approach offers simplicity and
a low cost. Since the disturbance d caused by useful load changes is assumed to
be measurable, the control scheme of Fig. 1 could further be augmented by an addi-
tional feedforward block compensating for this disturbance. This would bring about
a considerable improvement of the disturbance response in the case of perfect process
model accordance. However, the performance of the feedforward controller block is
rather sensitive to a process model mismatch and, as a result, the use of this feed-
back /feedforward combination could decrease the robustness and cause a performance
deterioration in the presence of errors. Since the controller is required to achieve a
reasonable performance even in the case of plant parameter changes and faults, the
feedforward block was not implemented.

4. Neural Network Approach to Residual Evaluation

The residuals obtained from the anisochronic observer or from IMC are viewed as
symptoms of system faults, i.e. of possible sensor or actuator failures, as well as of
process breakdowns. Instead of immediate evaluation, the time series of residuals are
subjected to a test by an artificial neural network (ANN) which models the monitored
operation on-line. Such a processing takes advantage of watching the cumulative
difference between the real and ANN-modelled (predicted) residual signals instead of
an alarm caused by exceeding prescribed limits.

The neural detection presented here is based on the dynamic performance of
the neural detector instead of the more usual static pattern recognition approach.
The network is set up as a residual signal predictor (Adam et al., 1993; Zitek et
al., 1999) and the criterion of a ‘good’ signal prediction becomes an indicator of the
process malfunction. The ANN predicts a sequence of residuals over time and the
cumulative prediction error, i.e. a sum of squared differences over a selected time
interval, indicates discrepancies, if any.

This approach yields several substantial advantages. First, a well-learnt ANN
can be used to process available signals of system outputs or control actions and
useful loads, and therefore to avoid additional costs for sensors and the measuring
technology. Second, a standard detecting means monitors the growing value of a
residual signal and gives rise to an accident alarm as soon as a single value exceeds
the watched limit. In reality, such a situation need not reflect a real malfunction at all
and it can be caused by a single measurement or an information transmission error.
The neural predictor overcomes this by reducing the process (plant) dynamics to its
constituent part via signal history embodying and thereby it reflects the trespass
upon the principle, rather than a random single difference value only. Third, the
neural detection is far more sensitive, quicker and it can be tuned based on certain
problems in question. Furthermore, it is aimed at signal processing still within ‘safe
bounds’ of differences and it can discover some discrepancies as early as they occur,
even if they are not ascertainable by direct observation. Such a competence can bring
earlier information on a coming break-down, discover a minute trouble which can be
permanently compensated by actuator interventions or which can grow slowly and
cause suddenly a plant damage. :



606 P. Zitek, R. Mankova and J. Hlava

Network architecture. The choice of a suitable network architecture has been sup-
ported by experiments with various topologies of different size and transfer functions
(linear and non-linear feed-forward multilayered perceptrons). Following the previous
experience in complex and chaotic signal prediction (Bila et al., 1997; 1998; Mankova,
1997), quite simple feed-forward non-linear three-layered networks (perceptrons) were
used. The number of input neurons reflects the history of the residual signal evolution
and it is in relation to the estimated order of the process (in the case of model-based
simulation), or more generally, to the process complexity. The prediction strategy, i.e.
the number of history samples for prediction, creates a set of input nodes and affects
significantly the prediction result (the diagnostic ability of the network). In view of
the above-mentioned laboratory plant (i.e. a low-order non-linear time delay system)
the one-step-ahead prediction from a single actual and two previous steps was chosen.

Network learning. Networks were trained by a simple back-propagation algorithm
with fixed learning rate (due to comparability of results) and without momentum. In
the experiments, exposition of time series of 500 samples which describe time evolution
over ca 8 minutes (2000 training epochs) was carried out. The networks were trained
by time series of characteristic signals belonging to specific operations of the plant.
Some attention should be paid to the time series length and to suitable sampling.
The series provided a representative training/testing set including all characteristics
of the considered events. In the case of a normal operation, they covered the whole
width of the ‘safe band’ of the difference signal and in the case of an unusual event
or singularity they illustrated its typical size and dynamics.

The data obtained are very problem-dependent and they vary not only according
to certain simulated faults, but also according to plant operating points and useful
load changes. For this reason, there is no general rule for finding an optimal network.
Every network was tuned ‘by hand’ by recurrent exposition of certain training data
and the experiments confirm the chance to find a suitable solution in most cases.

Detection criterion. The detection is based on a simple classification criterion
which reflects the success of a neural network to describe (i.e. to predict) time evolu-
tion of the tested signal. Low values of the prediction criterion (a sum of the squared
differences between the original and predicted values — SSE) indicate that the signal
belongs to the class which the network was learnt on, whereas high values exclude it
from that class and identify it as ‘abnormal’.

The approach is based on a pure predictive function with saturation by the
original output signal (Bila et al., 1997), i.e. the prediction in every step is computed
from actual and previously measured values of the output signal (residuals) and does
not have to be supported by information on the plant inputs or internal control
interventions.

5. Application Example
5.1. Description of the Controlled System

Practical applicability of the approaches to control and fault detection of time de-
lay systems that were presented in the preceding parts of this paper was tested on
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Fig. 2. Scheme of the under consideration.

a laboratory-scale heating system. The main components of this system are schemat-
ically sketched in Fig. 2. Water in the primary circuit is heated in a through-flow
heater. Power consumption of this heater can be changed continuously from zero to a
maximum. Hot water from the heater is conveyed to a controllable rotary three-way
valve. The position of this valve can be set in a continuous way and it is used as a ma-
nipulated variable. This valve mixes the hot water stream with colder water returning
from the heat exchanger. Water from the outlet of this valve is conveyed to the coun-
tercurrent plate heat exchanger (A) where it heats water in the secondary circuit.
Water in the secondary circuit is then cooled in the air-water heat exchanger (C).
This air-water heat exchanger is integrated with a fan driven by a DC motor whose
speed is controlled by the armature voltage. Thus, besides the electrical power input
of the heater and position of the three-way valve, the armature voltage is the third
independent input variable. Changes in the fan motor speed, i.e. changes in the in-
tensity of water cooling in the secondary circuit may be interpreted as changes in the
useful load of the system.

The heat exchangers are interconnected with long pipes, which results in consid-
erable transportation delays. The delay between the outlet of the heat exchanger A
and inlet of the heat exchanger B can be set to three different values depending on
the cocks C'1, C2 and C3. Delays in both the primary and secondary circuits can
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further be adjusted more finely by the valves V1 and V2. Control of this system is
accomplished with a PC using the RealTime Toolbox for MATLAB and Simulink. It
allows for an easy and flexible programming of an almost arbitrary controller /observer
structure including neural and fuzzy ones.

This plant incorporates two heat exchangers connected through long pipes. Thus
it includes a number of both distributed and lumped delays. Since connecting pipes
are relatively long in comparison with the dimensions of the heat exchangers, trans-
portation delays in the piping have a decisive influence on the overall behaviour of the
system. It is possible to consider a model with lumped delays only by approximat-
ing heat exchangers by lumped-parameter models (Malleswararao and Chidambaram,
1992; Mozley, 1956). Nevertheless, the mathematical model of the system is relatively
complex even with this simplification (it contains several internal state delays) and
moreover it is non-linear (Hlava, 1998).

If ¥9p is a controlled variable, the position of the three-way valve «a (its Laplace
transform is denoted by A(s)) is used as a manipulated variable and the armature
voltage of the fan motor uy is used to change the load, the whole system can be
described by the following linearized model:

le(s)

Op(s) = %%Ze”gssA(s) + Me_l%sUf(s) (15)

Clearly, Gar(s) and Garq(s) in (7) can now be expressed as

Nui(s) _os Nia2(s) _193
G uw = TN 57 vy y 1
Mu(8) 10 e G ma(s) M (s) e (16)
Since this system includes internal delayed feedbacks, M (s) and Ni2(s) are not
polynomials but quasi-polynomials and for the working point used for the experiments
described in this paper they are given by the following formulae:

M (s) = 80000s® + s (18272 — 3051e™'"*) + s (1103.5 — 468.128e "¢

—6.4e71%3%) 4 15.6 — 8.28e17* — 1.64¢ 71?3 — 0.519¢~140¢
Nia(s) = 217.6s + 55.8 + 19.6e17¢

Ni1(s) = 504625 + 8598.8s + 154.415 (17)

It is evident that the internal delays in these quasi-polynomials are equally high
or even greater than the control delays in series with the transfer functions in (15).
Consequently, the dynamics of this system are considerably more complex in compar-
ison with those of delay-free systems or simple systems with time delays in control
only.

5.2. An Example of Anisochronic Observer Design

The fault detection methods have been developed primarily for systems with delays
and distributed parameters. Their application has been proved on a thermal labora-
tory set-up with heat exchangers sketched in Fig. 2 and described in Subsection 5.1
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in more detail. Circulating water is warmed up to the outlet temperature 94 in the
plate heat exchanger A and then cooled down to the outlet temperature ¥¢ in the
air-water radiator C. Both the exchangers are rather distant from each other and
consequently significant delays arise in their operation. Several anisochronic models
have been developed for this system and one of them is used in this section. The
dynamics of exchanger A can be described by the second-order anisochronic model:

dd, (t)

TAT =k [t —1H) —adalt — m) — Bc(t — 1 — 7¢)]
+9c(t — 7¢) — Va(t)
Ty dﬁ;t(t) = 91(t) = Va(t) (18)

where ¥, is an inner representative temperature of the warmed up water (an artificial
state variable) and ¥y is the heating water temperature. The time constants T
and T, express accumulative properties of the exchanger, 7¢ is a transport delay
between C and A, 71, Tp and 7y are the delays resulting from the distributed heat
exchange parameters, and k;, @, 8 are heat exchange static gains. An analogous
model structure may be used for the cooler C with the following result:

Tc dﬂjt(t) = B(Wo)v(t — 1) — kaydc(t — n)
+ (1= kae)9a(t = 70) — Dot
T dﬂg't(t) = 95(t) — I (2) o

where the parameter B(dy) expresses the influence of the air temperature ¥y, ko
is the heat exchange static gain and the time constants T¢, 7> have an analogous
meaning as T4, T1 in (18). The only available outputs of the system are the measured
temperatures Y4 and ¢, hence the output matrix is

1 0
c=|" 0 (20)
0 001
and the dynamics matrix is as follows:
- 1 1 -
0 —— —STp — (e=s57c — k —s(T¢—T11)
T (k1ae +1) 0 i (e 183e )
1 1
i T ’ ’
A(s) = . . (21)
—p—S8STD 1 - — —S8TN
0 Toe (I—kee) O o (kaye™™ +1)
1 1
0 0 — ——
L Ty Ty J
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It is easy to find out that the observability matrix satisfies the observability
condition (5) since the determinant

-1 1 -
—_— = -0 0
T T +s
1 1

0 0 -—— 45 1

det I, T = #0 (22)
T
0 1 0 0
i 0 0 0 1 |

is non-zero for any s. It also is obvious that the matrix A(s) can be decomposed
according to (6) for considering the models (18) and (19) as separate units, since
none of the artificial state variables 9; or ¥ represents the mutal influence between
the two parts A and C. Therefore it is possible to arrange the state observation
system as two local observers for A and (', where the first one can be designed
with simple feedback coefficients I; and l,. Its characteristic matrix results in the
following simple form:

1
O 71— (kla/e—”M + 1) — Zl

Asa(s) = La()Csa=| , ~* ) (23)
= -1
T o7

Acceptable observation dynamics can now be achieved by means of prescribing
the desired dominant eigenvalues of (23). Let s; = —0.5 and sy = —0.7, whence the
following feedback coefficients result: I; = 1.034, I, = 0.914. With these coefficients
the local observation process is aperiodic and fast enough. In a similar way, the
other local observer for the part C can be designed. Of course, the cooperation of
both the local observers generates a slightly different dynamics from their separated
behaviours, but this difference can be kept in quite acceptable limits.

5.3. Internal Model Controller

Since this system is described by irrational transfer functions, the IMC controller
computed using (12) will also be irrational. The internal model controller controlling
the temperature ¥p using the position of the three-way valve as a manipulated
variable is given by

M(s)

B () = Ni1(s)

F(s) (24)

where a first-order filter is sufficient to make (18) proper:

1
As+1

F(s) =
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and the controller can then be expressed as

8000053 + 1827252 + 1103.55 + 15.6

R'(3) = 5046257 7 8598.85 + 154.415) (s + 1)
~ 305152 + 468.128s + 8.28 v
(504625 + 8598 85 + 154.415) (As + 1)
~ 6.4 -+ 1.64 e
(504625 + 8598 85 + 154.415) (As + 1)
0.519
_ . e~140s (26)
(5046252 + 8598.85 + 154.415) (As + 1)
or
R*(s) = Go(s) + G1(s)e™"* + Ga(s)e™"* + G3(s)efs* (27)

Its structure is shown in the block diagram of Fig. 3. Besides the controller itself,
this diagram also contains blocks of the RealTime Toolbox that allow us to connect
it directly to a real system. The structure displayed in Fig. 3 is obviously only a part
of the whole control system which includes not only the controller R*(s), but also
the model of the system G, (s) and load disturbance model Gpr4(s) for generating
the residuals according to the scheme depicted in Fig. 1. Both Gary,(s) and Gpra(s)
are given by (16).
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Fig. 3. IMC scheme for the laboratory heating system.

5.4. ANN Evaluation by Neural Predictors

First experiments were aimed at proving the ability of networks to predict a real signal
of the above-mentioned nature. The normal process data as well as seven artificial
faults were measured simultaneously based on six sensors. After filtering, difference
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signals were generated and fed to the networks to learn and test (Zitek et al., 1999). As
is presumed, a quite simple three-layered feed-forward non-linear network complies
best with the non-linear low-order process with delays. A single ANN trained by
sets of data series (500 steps/2000 training epochs) is able to distinguish safely the
‘normal’ difference signals against all exposed ‘faulty’ signals. The reliable difference
in the prediction criterion is of 2—-3 orders. The same results are obtainable from all
six sensors.

As to the diagnosis, a proper choice of appropriate sensors is the basic preposition
of a valid neural verdict. In this case, it was necessary (but also sufficient) to combine
data from two representative sensors to cover the whole scope of our fault repertoire.
At this stage of research a surprising finding has occurred: in a certain range ‘small’
faults are better diagnosable (not detectable!) than the ‘big’ ones. This is caused by
the nature of ANNs; a flexible network trained to ‘wild’ series of residuals caused by
a ‘big’ fault is able to predict well all the other more ‘moderated’ residuals of ‘small’
faults, so evidently distinguishing them is impossible.

Observer generated residuals. In the second experimental step, the idea of ob-
server generated residuals processing by ANNs was tested. A local anisochronic state
observer was implemented in a real-time linkage to the above-mentioned thermal pro-
cess. Residuals of the output temperature were processed by the ANN (Zitek et al.,
1999). The neural tool was identical to that from the first experiment, i.e. multilay-
ered perceptrons taught by a back-propagation algorithm (intervals of 400 steps/2000
epochs).

The experiments indicate that time series of observer residuals contain important
information about the process (plant) dynamics and reflect all its changes well. A
repeatedly executed training process enables us to find in every tested case a network
which is able to distinguish safely the normal residual signal from any malfunction on
the basis of the prediction error. The difference in the values of the criterion is lower
than that one in the experiment with simulated residuals, but it-is-clear enough.

The ability of the diagnosis was tested on two different simulated faults of the
‘same nature on the cooling fan C. The data of each fault served to train the respective
network. Both the networks performed their role well: the learnt faulty residuals were
predicted with a very low prediction error, the other test signals of strange faults, as
well as ‘normal’ operation residuals, were not well predictable.

IMC residuals. Further, the residual signal ep resulting from the IMC scheme can
be employed in a similar manner as the one from the observer model. However, its
main advantage is the implicity and low costs offered by this approach. In comparison
with the state observer technique, no need for artificial state variables’ estimation can
arise. The better the accordance between the internal model and the real plant
properties, the more reliable both control and fault detection is to be expected.

The signals were processed by three-layered non-linear perceptrons again, learnt
by exposition of signal time series. In order to test the fault detection ability of the
ep-signal, several plant failures were introduced:

e partial as well as complete fall-outs of the water heater via heating power degra-
dation by 50%, 70% and 100%,
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¢ hydraulic resistance changes in the secondary circuit via appropriate valve ad-
justments,

o a complete fall-out of the secondary circuit pump,

e a cut-down of the transport delay in the secondary circuit, i.e. setting aside a
part of the pipeline via adjustments of appropriate cocks,

¢ a change in the useful load simulated by a change in the cooling fan speed.

Figure 4 illustrates the ‘safe band’, i.e. bounds of normal plant operation defined
as upper and lower limits of faultless signal evolution. The neural net ALPHA is
learnt to identify all signals within these bounds as ‘normal.” We can see that the
band can be as close as the signal dynamics and the measurement precision allow,
i.e. the network is practically an arbitrarily exact detector. According to our wish,
ALPHA also classifies the artefacts ‘change of operating point’ and ‘change of useful
load’ as abnormal (see (2) and (b) in Fig. 5, respectively).

Detail

safe
7 band
0.4
-0.6
= '0 '8' """""" e | St el it Y-
"0 100 200 300 400 500

Fig. 4. The class of normal operation. Network ALPHA pre-
dicts well signals within certain bounds (SSE< 0.6).

The network BETA follows from ALPHA by further training and can classify the
‘change of operating point’ to the class of normal operation. Similarly, the network
GAMMA understands the ‘change of useful load’ as a faultless event (Fig. 6).

ALPHA distinguishes real faults based on differences in the value of the prediction
criterion SSE (Fig. 7) — the prediction of the normal operation is characterised by
average SSE = 0.326, while the cut-down of the pipeline and the heater fall-out are
indicated by SSE = 19.006 and SSE = 7.726, respectively.
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Fig. 5. Distinguishing artefacts from normal operation: ALPHA sepa-
rates the ‘change of operation point’ by the value SSE = 37.52 (a)
and the ‘change of useful load’ by the value SSE = 4.21 (b).

6. Conclusions

The fault diagnosis methods presented here have resulted from integrating model-
based residual generation with ANN prediction and pattern evaluation. Two methods
of process-model residual generation have been developed, namely a state observer
technique and a modification of the Internal Model Control scheme. In both these
cases, applications to controlled processes with distributed parameters and significant
delays have been aimed at. To make the application as simple as possible, a recently
developed technique of functional state-space models, called anisochronic ones, has
been used. This approach helps us to select a low number of state variables, while a
major part of them represent measurable process outputs. Thus the model order is
reduced and the state estimation is simplified significantly. Of course, the system ob-
servability issue has to be modified and viewed in the sense of a spectral observability
property. Similarly, the method of IMC-based fault detection uses an anisochronic
process model. Thus, since the process transfer properties are followed, transcen-
dental transfer functions serve as a process model and usually define the controller
operation as well. A benefit of the IMC approach is that the controller scheme itself
serves as a residual generator and any other specialized fault detecting scheme is not
needed. Both the models and appropriate residuals have been tested on a laboratory
scale thermal system with fairly good results.

A neural predictor applied to signals of dynamic systems can serve as a detector
of their normal or faulty operation. In these experiments our efforts were focused on
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Fig. 6. Training networks: BETA indicates the ‘change of op-
erating point’ as normal by SSE = 0.36 (a), GAMMA
indicates the ‘change of useful load’ as normal by
SSE = 0.24(b).
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Fig. 7. Classification of real faults. The network ALPHA iden-
tifies a ‘change of transport delay’ caused by excluding
pipeline parts (a) and a ‘heating fall-out’ (b).
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neural processing of observer generated residuals and IMC residuals as characteristic
signals of the process. A simple network architecture (a three-layered perceptron), the
back-propagation learning and suitable training sets enable us to find a good neural
model in every case tested. The ANN taught to predict faultless plant operation
detects any deviation from the normal behaviour, even in the case of unclear and
visually or statistically similar signals. The experiments with simulated residuals
also confirm the possibility to train the ANN on a typical faulty signal and then to
distinguish it from the other ones. This result can serve as a basis of a further fault
diagnosis and localisation.

The approach seems to be limited to discover faults which demonstrate them-
selves by crossing some bounds of residual series. That is why it should always be
combined with a simple check whether the bounds are crossed. Nevertheless, in com-
parison with the pattern recognition detection where (even in the case of finding
out an abnormal operation only) the risky dominant solution step, i.e. the prelimi-
nary feature extraction, is to be overcome, the detection based on neural prediction
provides an early, simple and reliable fault announcement without any subjective
reinforcement.

With respect to the dynamic character of the ANN application, this idea is suit-
able for identification of plant (process) malfunctions, rather than those of sensors
fall-outs only. Therefore neural detectors can be also implemented in control systems
with well-performing or sophisticated controllers that usually disguise by control in-
terventions not only disturbances from outside but also real circuit faults. As shown
in Figs. 5 and 6, a neural network can be tuned up to accept an expected event as a
normal operation or to classify it as a fault, according to the desired interpretation.

The results support the idea of this dynamic ANN application: the network has
proved to be a suitable tool of high sensitivity in fault diagnosis. The integration of
model-based generation of encoded information on plant operation and of the dynamic
neural prediction in the role of a fault detection tool offers promising results. Once
the neural predictor is designed and trained with respect to a selected set of possible
faults, it is a simple and low-cost means and it enables the real-time fault detection
with an immediate response or even a preventive message.
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