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APPLICATION OF SENSITIVITY THEORY
TO FUZZY LOGIC BASED FDI

TracY DALTON*, PETrRA KLOTZEK*
PauL M. FRANK*

This paper describes an application of sensitivity theory to the analysis of a
certain class of fuzzy systems which can be used for fault detection and isolation
(FDI). The work is divided into three main tasks. The first is the mathematical
representation of some class of fuzzy systems. This is followed by an application
of sensitivity theory to fuzzy systems based on the approach detailed in the
first part. Finally, this method is applied to a fuzzy fault diagnosis scheme
for the two-tank system, and the results compared with those achieved by the
application of sensitivity theory to a non-fuzzy diagnosis scheme for the same
system. Simulation results for the fuzzy and non-fuzzy fault diagnosis schemes
are presented, which verify the results obtained via the application of sensitivity
theory.

Keywords: fuzzy systems, fault detection and isolation, fuzzy inference, sensi-
tivity theory, residual analysis, two-tank system.

1. Introduction

In the last few years fuzzy systems and fuzzy models have been used intensively for
numerous applications as a new method in control theory. Fuzzy systems are char-
acterised by a high robustness, i.e. control loops are less susceptible to deviations of
the plant parameters. With classical design methods, however, the analysis of the
system sensitivity is a well-defined science. The problem arises with fuzzy systems
where such analysis methods do not exist. Also, the inclusion of a fuzzy component
produces a heterogeneous system (see e.g. Fig. 1): a plant described by a mathemat-
ical model and a knowledge-based fuzzy controller. Since the two methods used to
describe the constituent parts of the overall system are completely different, it is dif-
ficult (if not impossible) to establish a method to analyse the entire loop. A solution
to this problem is to represent the elements of the system in the same way, i.e. either
by transforming the description of the plant into a fuzzy model, or by transforming
the fuzzy component into a mathematical description to gain a homogeneous overall
system. The second approach offers the possibility of applying well-known mathe-
matical methods to the analysis of the system, and it is this approach which will be
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considered in more detail in this paper. Since a fuzzy system is not a mysterious
black box, but simply a nonlinear function designed using the tool of fuzzy logic, it
is (under certain assumptions) possible to derive this mathematical function.

Fuzzy u > Y
Controller Plant >

Fig. 1. Fuzzy control loop.

Robustness is often defined in terms of a system property (e.g. a steady-state
value) and a class of disturbances (e.g. parameter changes) towards which the system
property should be robust. Parameter sensitivity is in general the impact of parameter
deviations on a variable which describes the system dynamics, e.g. the output y. In
the literature, robustness and sensitivity are given various definitions. Some authors
use robustness as a modern synonym for insensitivity, whilst others distinguish the
two using e.g. the following criteria:

A. Robustness is concerned with finite parameter deviations (global property),
whilst sensitivity applies to infinitesimal parameter deviations (local property).

B. The problem of sensitivity is the maintenance of nominal values whilst the
problem of robustness does normally not consider nominal behaviour.

Although sensitivity theory does indeed consider very small parameter deviations, for
finite but small parameter deviations, sensitivity functions can be expected to provide
satisfying results for engineering practice. Such a definition is also dependent upon
the system in question: for some systems even very small parameter deviations can
cause undesired behaviour, and thus affect the robustness of the system in the sense
of criterion (A) above.

The sensitivity function can be regarded as one tool to consider robustness, as-

suming the following four categories of parameter deviations A« are to be taken into
account:

1. A« infinitesimal: The sensitivity function predicts nearly exactly the deviation
A£ of some system variable £.

2. Aa small (up to 30% (Frank, 1978)): The sensitivity function yields satisfying
results for engineering practice.

3. A large (nominal parameter value multiplied several times): The sensitivity
function indicates a tendency of how the control system will behave. This can be
useful for the determination of the time interval in which A« has the strongest
influence and for the analysis of two different controllers for the same system.

4. Aa very large: The system reacts unpredictably.
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The above approach to obtain a mathematical description of a fuzzy system, and then
to use this mathematical form to determine the sensitivity of the system to changes
in system parameters has successfully been applied to the analysis of a fuzzy control
loop (Klotzek et al., 1998; Klotzek and Frank, 1997).

Fuzzy models and fuzzy systems are of use not only in the field of control, but also
within fault diagnosis, both as models of systems and as decision making elements
(Isermann and Ballé, 1996). The properties of robustness and sensitivity play an
important role in the effectiveness of a fault diagnosis system. A system should be
sensitive to faults and robust to parameter changes (when such parameter changes
are not themselves considered as faults). The ability to state in what way a system is
robust to certain parameter changes can be used to aid the design of the system, and
also to state minimum detectable fault sizes without the need for extensive simulation
runs.

2. Sensitivity Theory

Parameter sensitivity provides information regarding the impact of deviations of a
parameter o on a variable ¢ which describes the system dynamics. The deviation of
the parameter « is given by (Frank, 1978):

AOA:OZ-—OLO (1)

where o is the nominal value of the parameter and « denotes the actual parameter
value. Similarly, the resulting change in the system variable { is given by

AE=¢— & (2

where & = £(t,a0) is the nominal value of the system variable and ¢ stands for the
actual system variable value. A sensitivity function S(ag) = S(ao,&,t) can then be
defined by the relation between Aa and A¢:

A€ =~ S(a)Ac (3)

The sensitivity function can be considered as a mapping from the parameter space to
the system variable space, as shown in Fig. 2.

Fig. 2. The sensitivity function.
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For £(t) = y(t), the output sensitivity function for one parameter « is derived
from the Taylor series at «yq:

y(t.a) = y(t,a0) + 22 (Aay+ - (1)

oo

a = Qg
The linear approximation (terminating after the first-order term) is

t
y(t,0) ~ y(t, a0) + 220

da Aa (5)

o = Qo

For infinitesimally small parameter deviations Aa we have

Byt
Byt 0) = 202

3. Mathematical Representation of a Fuzzy System

In order to apply sensitivity theory to a fuzzy system, the system has to be trans-
formed into its mathematical representation. The study is limited to fuzzy systems
with the following characteristics, since for fuzzy control and fuzzy fault models these
type of fuzzy systems are applied most often:

e Sugeno-type system (Takagi and Sugeno, 1985);

¢ Two input variables fuzzified using triangular and trapezoid membership func-
tions with complementary overlaps;

One output variable fuzzified using singleton membership functions;

AND operator: Algebraic product

pans(z) = pa(z)ps(z)

¢ OR operator: Absolute sum

paus(z) = pa(z) + pp(z)
e Defuzzification method: Centre of gravity for singletons.

For this class of fuzzy systems the absolute sum can be used (as opposed to the
algebraic sum) because with complementary overlaps all truth values will be in the
interval [0, 1].

A general form of the input membership function is shown in Fig. 3. The capital
letters denote linguistic variables, whilst the small letters describe the borders of the
intervals where the same fuzzy sets are valid.
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Fig. 3. A general form of input and output membership functions.

With such a system, it is possible to derive a mathematical function for the
membership grade, for each interval along the input axis. For example, in the interval
e1 € [ai,ai+1] =: I;, the membership grades are

€1 — a4

1A (e1) Gt — a; (7)
ai+1 — €1
HAi4 (61) Qit1 — G ( )

Similar relationships can be derived for e; € [bj,b;41) = J;. This gives a math-
ematical function relating the input membership grades to the inputs. In order to
determine a function relating the output y to the inputs e; and e, i.e. to describe
the fuzzy systems as a mathematical function, the contributing rules of the fuzzy sys-
tem have to be combined. A tool has been implemented in Maple (a computer-algebra
tool (Redfern, 1994)) which automatically derives the function over all intervals, for
the class of systems described above. This tool processes different components of the
fuzzy symbolically and so it generates a mathematical function representing the fuzzy
system analytically, where the influence of all variables becomes visible (Klotzek et
al., 1999).

For each pair of intervals (;,J;) the mathematical function is found in the form

yij(e1,e2) = 7~91,~,~ erez + ka, €1 + ];?3,-3-62 + 764,~J- (9)

This can be written as

yij(e1,e2) = ( er 1 )Mij ( 612 ) . (10)

were



624 T. Dalton, P. Klotzek and P.M. Frank

The final result is thus a mathematical description of the fuzzy system in terms of
the parameters of the input and output membership functions, i.e. the function for
the fuzzy system over all intervals is

¢

- - - - e; € I

kloo e1es + k?ag €1 + k3oo€2 + k4oo7 ! o
e € Jy

- ~ ~ ~ e1 €I;

yruz(er,e2) = { ki eres + koe1 + ks e + kayj, ; (12)

€9 € Jj

- - - - e1 €1,

ki,.eies+ks,  e1+ks  es+ ka,.., ! "
e € Iy

\

Each part y;; of the fuzzy controller is represented unequivocally by the coeffi-
cient matrix M;;. So the analytical function of the fuzzy controller ypuz(ei,es) is
described completely by the following table of coefficient matrices:

es€Jo |- €2€Jj oo les €Jn
e1 € Iy Mo |-+ Mo; |- Mom
: : . : . : (13)
esr€ly | My |- | My || M
e € In MnO T Mnj Tt Mnm

The matrices M;; can be determined by the following calculation:

For each pair of intervals (I;,J;) the relevant section of the rule base (A4,
Aiy1,B; and Bjy; are the only fuzzy sets that contribute with a truth value > 0) is

Bi | Bin
A, e Cijr1 | (14)
Aigr |- | Cit1,j | Citl,j+1

where c¢; j,cij4+1,¢i+1,; and cijp1,541 are the corresponding values of the singletons
Cij Cij+1: Citr,j and Cigy jya.

The matrix of coefficients M;; can then be calculated by the following formula
(dependent on the relevant entries of the rule base and the boundaries of the appro-
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priate intervals in which e; and e, are located):

Cij — Ci,j+1 — Cit1,j + Cit1,541
(@i — ait1)(b; — bj1)

M;;=
—Cij0i+1 + Cij4+1Qi41 + Cit1,j@i — Cit1,j4104

(@i = aip1)(bj = bj41)

—Cibja1 + Cij1b) + Civ1,jbjn = Cir1a by
(a; = ait1)(bj — bj+1)

(15)
Cij@ir1bj41 — Cij+1Qit1D5 — Ciy1,j0ibj11 + Cit1 j+1a4b;

(@i — ait1)(b; — bjt1)

Note that by inserting for all variables the appropriate values, all matrices M;;, i =
0,...,mn, j=0,...,m arein R?*?, so0 a very simple mathematical function for the
class of fuzzy controllers under consideration has been found.

4. Application of the Approach to Fuzzy Fault Diagnosis
Systems

In this section, the previous investigations of the functional description of fuzzy sys-
tems and sensitivity theory will be applied to fuzzy fault models. Consider a system
with output y and inputs e; and e;. In the case of a fault diagnosis scheme the
system may represent a fault model of the plant. The sensitivity of the output y of
the fault model to a particular fault f is given by

Oy _ Oy der | Oy des

- = _ 1
8f ~ Be, 0f | e, Of (16)
A similar sensitivity function can be written for disturbances d to the plant:
Oy Oy Oe; Oy Oes
A S AT S 7
9d ~ De; 0d ' De; 0d )

If the sensitivity functions of eqns. (16) and (17) can be calculated, then it is possible
to derive an expression for the relative sensitivities with respect to disturbance d
and fault f. This expression should then be maximised to ensure that the effect of
faults on the output of the fault model is large when compared with the effects of
disturbances,

%y
of :
5 (18)

ad

max
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The results from the application of sensitivity theory to fuzzy systems can be
used by the designer of a fuzzy FDI system in the following ways:

e To assess the relative robustness to system parameters of fuzzy and non-fuzzy
models.

e To determine which parameters of the fuzzy system itself (i.e. which input mem-
bership parameters) affect the response of the system to particular faults and
disturbances. This information can be used in two ways: firstly, as a guideline
to the designer as to which parameters should be tuned when attempting to
improve the system manually, and secondly, as the basis for a mathematical op-
timisation of the system parameters given certain constraints or specifications.

4.1. An Example System

In the following, a simple fuzzy system with two inputs and one output is consid-
ered. The theory detailed above is not limited to the number of inputs, however the
representation becomes much more complex as the number of inputs increases.

The system under consideration is shown in Fig. 4, and consists of two tanks,
connected via a valve. The input to the system is the pump outflow @; and it is
assumed that the height ho is available as a measurement.

1(),
y Y
A A

SlZ _'> Q12
h,

h)

h,
5 q,

\ 4 0

Fig. 4. The two-tank example.

The equations of the system are

1
1 = A_l [Q1 - azSIQ 29(h1 - hv)Vl] (19)
: 1
b= - |0:512v/29(h1 = h)Vi = @821/ 2ghs] (20)
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Q. is a control input given by
Q= 10—3(71)1 - hl) + 5 % 1078 /('U)l - hl) dt (21)

where w; is the desired set-point of the level in Tank 1. Moreover, Ay, Ry, az, Si2
and S, are parameters of the system and g is the acceleration due to gravity.

We consider the case where the valve Vi between the two tanks is nominally
70% open (i.e. Vi has a nominal value of 0.7). A fault can occur in the system if the
position of this valve changes by + 30%. A fuzzy fault model is constructed whose
inputs are two measurements taken from the system, i.e. e; = @, and ez = hy. The
desired output from this fuzzy model is the actual valve position. The input and
output membership functions are given in Fig. 5.

p'(c‘)AloW

normal high ke Mow

» ¥ =V ny (valve position)

I
< 04 055 0.7 085 10
Valve closed too far Valve open too far

-

Fig. 5. Input and output membership functions for the two-tank example.

The rule base for the fuzzy fault model consists of a set of rules, each with two
terms in the premise, e.g.

IF @, is LOW AND h; is LOW THEN V; is LOW

where the low valve position is a closure of less than 70% (Vi =0.7). The rules were
derived from visual inspection of the outputs of a simulation in the presence of faults.
The rule base can be summarised in Table 1 which gives the change in the value of V3.
A mathematical expression for this system was derived using the approach detailed
above, which results in a table of coefficient matrices (Tables 2 and 3).
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.Table 1. The fuzzy rule base for the two tank system.

ho
low | normal | high
low -0.3 -1.5 0
@7 normal | —0.15 0 0.15
high 0 0.15 0.3

Table 2. Coeflicient matrices for the fuzzy system.

ho €] —00,b1] | ha € [b1,ba] | ho € [bo,b3] | ha € [b3, 0]
Q1 €] — 00,a1] M, M M3 My
Q1 € [a1,a2] Mo Mo Mas Moy
h € [a2,a3] M3, M3 Mss May
@1 € [as, o0 My My Mys May

As an example of the procedure whereby the functions of Table 3 were derived,
consider the case of M3 which corresponds to Q1 € [a1,a2], ha € [b2,bs]. From
Fig. 5 it can be seen that the corresponding linguistic values for these ranges are
Q1 is low or normal and hy is normal or high. The corresponding output singleton
values for these ranges can then be obtained from Table 1. Thus, for this case,
a; = ai, Q41 — Qag, bj = bz, bj+1 = bg, Cij = -—0.15, Cij+1 = 0, Citl,5 = 0,
Ci+1,j+1 = 0.15. Substituting these values into (15) yields the function for Mag
shown in Table 3.

The above can then be differentiated (for each interval) to yield the sensitivity
of the output of the fuzzy system with respect to the inputs @1 and hy. This gives

|
|

Viruz
0Q1

[au]

0 0
00

h
f2

0 0

I

0 0
00

h
f2

0 0
0 0

h

I

00
00

I

]_




Application of sensitivity theory to fuzzy logic based FDI

629

Table 3. Expressions for the coefficient matrices of the fuzzy system.

0 0 0 0
M, = (0 03 )7 Mis = ( -0.15 —0.151)1 + 0.3b5 )
) b1 — b by — by
0 0 00
Mz = 0.15 —0.15b3 |, My = 0 0>
b3 —by b3 —bo
e
M21 — 1 2
0 —0.15a3 + 0.3a-
g — ay
-1
0 -
s — 6.67a; — 6.67a;
2= -1 0.15a1bs + 0.15a5b1 — 0.3a2bs
667b1 — 667b2 albl e albg - a2b1 -+ G,gbg
0 -1
6.670,1 - 6.67@2
Mys =
1 *0.150‘1[)2 + 0.15a2b3
6.67bs — 6.67by —a1by + a1b3 + agby — asbs
—0.15 0.1
0 a Q 0 Q E;
Moy = 1-az | Mot — 3 — Q2
> o ~0-15a o o ~0-15a3
a; — ay asz — aq
0 1
6.67(13 - 6.6702
Msy =
—1 —1.5a9b1 + 1.5a3bs
6.67b; — 6.67by azb; — azbs — asby + as by
1
O -
e 6.67a3 — 6.67a
B 1 3agby — 0.15a5b — 0.15a3bs
6.67b3 — 6.67by  —asby + azbs + asby — asbs
0 ————0'15 0 0
My = s~ G2 Mo = (00, My =
34 = . —3ay +0.15a3 | a=\50) 42 = b~0.1b5 5.151)1
0 —ay 1—by by —bo
0 0 00
Myz = 0.15  —3by +0.15b5 |, Mus= 03
—by + b3 —by + b3
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where
0 0 0
fi= 0 015 |+ fo= o 015
ay — ag asg — Qg
and
o o] [0 0]
0 0 fa fu 0 0]
[0 0] [0 0]
fa fa
oViruz 00 0 0 hs
— [Ql 1] - : n - (23)
Ohs 0 0) o 00 1
oo 7 o o]
[0 0] [0 0]
oo s fa gy _
where
0 0 0 0
f3= 015 |» fa= 0 0.15
b —bs bg = b

In order to demonstrate the use of the analysis method described in this paper,
the fuzzy FDI system will be compared with a non-fuzzy alternative which is derived
from the mathematical equations of the system. If we consider the steady state of
the system, i.e. by = 0 and hy = 0, then, from (19) and (20), assuming S12 = Ss, we

have
Q1 = azS12v/29(h1 — hy)V1 (24)
hy = Vi(h1 — hy) (25)
Furthermore, from (24) it follows that
Vl = Ql (26)

a:S12v/29(h1 — hy)

This equation can now be used to derive an estimate VigsT of the valve position V)
from the measured variables ()1 and h;:

@1
ViEsT =
a;512v/2g(h1 — hy)

Partial derivatives of ViggT with respect to system parameters can then be
found. For example, consider the derivative with respect to the parameter a,:

OVigsT —@Q1

Ba:  a2S19\/29(hy — hy)

(27)

(28)
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Similarly, the effect of the parameter a, on the output Vigpyz of the fuzzy system
can then be found in the following way:

OVipyz _ OViruz 0Q1 | Viruz Ohy

da,  OQ; Oa, Ohy  Oa,
OViruz . —-0.15

80, ~a—ar Q1€ [él,az]
oV 0.15 .

LA Q1 € [az,a3]

8Q1 B 03—02’

From (24) we have

%le = S,/29(hy — hy)V4 (29)

and from (25) we get

Ohy
o = 0 (30)
Thus
—0.15512 2g(h1 — hv)Vl Q
— , 1 € [alaaz]
oViruz 9274 (31)
Pa: | (15503 (i — ho) Vi
. - L'U
2200 R, ¢ oy 0

There are two sensitivity functions which are relevant in different ranges of the input
variables.

The above sensitivity functions were calculated using the following nominal sys-
tem parameter values:

( Gznom = 1
A = 0.0154
g = 9.81
hy = 0.3 (32)

S1 = S12 = 0.00002
hlnom =05
\ anom = 0.0000278

This gives the fuzzy sensitivities

v
—0594x1075—2— @, € [a1,a0]
OViruz — az —ay (33)
Oa, Vi
0594 x 1075—2— Qi € [as, as]
as — as
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The sensitivity of the fuzzy system to the parameter a, is seen to be linearly
dependent upon the valve position V; and the parameters of the fuzzy membership
functions a1, as and az. The parameter as corresponds to the nominal value of the
input @1 when Vi = 0.7. With this value inserted, the sensitivity functions can now
be plotted (Fig. 6).

Q€ {a,a;) 0, € [a,a;]

2T
SERETLD
ASRLIER2
Sosei 0
SKRSERRAL - T
02 LS 18 A \“\\\\“‘\\\\
03 X 2 1.4 W !&\\\\“\}t\“k\ X
. B R N
Wiruz -0.4 Wirvz § o1\ \\8\'\;‘?‘33\:3*“"
da, 05 daz he RORS Ss
‘06 067 NURSRIRESRSS
0.7 02
1.2¢-5 0.4 3.0e-5 0.4

2e-51 0.7

Fig. 6. Sensitivity functions for the fuzzy system.

The plots show clearly that the fuzzy system is increasingly less sensitive to the
change in a, as the parameter a; decreases and ag increases. This is no surprise as
it corresponds to a decrease in the gradient of the input membership functions, thus
to less sensitivity overall to changes in the inputs to the fuzzy system, irrespective
of the cause of those changes. The choice of the parameters a; and as is, as usual,
a compromise between the sensitivity to faults and insensitivity to disturbances. Of
more interest is the fact that the sensitivity is proportionally dependent on the valve
position V.

If the parameters a; and ag are fixed (e.g. at values determined from the values
of @y and h; for the maximum fault cases), the relationship between the sensitivity
to a, and the valve position V; can clearly be seen (Fig. 7).

For the non-fuzzy sensitivity, we have

OVigsT — 5 % 10° Q1 (34)
Oa, v19.62h1 — 5.886

The non-fuzzy sensitivity is shown as a function of @; and hy in Fig. 8. The sensi-
tivity is dependent upon )1 and h;. However, the variable h; varies so little that
the effect of changes in h;y is negligible. The sensitivity of the function to a. can
therefore be considered to be linearly dependent upon );. When ; varies from
2% 107% to 4 x 1073, the sensitivity function varies from —0.5 to —1.

The results of the analysis of the fuzzy and non-fuzzy FDI systems above show
that for this fault (a change in position of V;), the fuzzy system is less sensitive to a
change in the parameter a,. Note that it is not the result itself which is of importance
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Q) 4 [ﬂpﬂg] G, € [apa5]

Fig. 7. The sensitivity of the fuzzy system when a; and as are fixed.

iesr
daz

Fig. 8. The sensitivity of the non-fuzzy system.

here, but the fact that using the method described in this paper it was possible to
obtain this result in the first place.

5. Simulation Results

Figure 9 shows simulation results for the fuzzy and non-fuzzy systems using nominal
parameter values, for the fault-free case (the valve position 0.7), and where a fault
is present in the valve position (valve positions of 0.4 and 1.0). The plots show the
estimated value of the valve position Vj, derived by the two methods using simulated
input and output data. As can be expected, for the case where the system param-
eters have their nominal values, the non-fuzzy (mathematical model-based) method
performs better than the fuzzy system. This is no surprise — it is often the case that
a model-based method will produce better results, if a suitable and accurate model is
available. In the results of Fig. 9, it can be seen that the fuzzy system necessitates



634 T. Dalton, P. Klotzek and P.M. Frank

more time to reach the desired value of the valve position, and in the case of a valve
position of 0.4, there is a small steady-state error.

4 Fault free (actual valve position = 0.7)

Results of
= fuzzy estimator
Q
g WMWM Results of
; MM * non-fuzzy
= estimator
>
0.62 14
100 200 300 400 300 _ 600
Time (sec)
Valve position changes to 1.0 at =200sec Valve position changes to 0.4 at =200sec

|

0.7

g o9 806
.g ?’-”! ,g
o H o
o 08 o
>
N Rl -; £os

Bl

0.4
My
400 500 600 100 400 500 600
Time (scc) Time (sec)

Fig. 9. Estimation of the valve position with nominal parameter values.

Figure 10 shows the same cases (fault-free, and valve positions of 0.4 and 1.0),
this time with the parameter of interest (a,) at 70% of its nominal value. Both of
the systems, fuzzy and non-fuzzy, are affected by the parameter change. Even in the
fault-free case, the estimated parameters reveal large errors. For the fuzzy estimator,
the steady-state error is approximately 15% when compared with the non-fuzzy error
of approximately 30%. Thus, the fuzzy system is only half as sensitive to the change
in the system parameter as in the fault-free case. When the valve is open too far
(the actual valve position 1.0), the fuzzy estimate gives an error of approximately
18%, when compared with 30% in the case of the non-fuzzy system. For the last case,
where the valve is closed too far (the valve position of 0.4), the fuzzy system yields a
steady-state error of 5% when compared with 32% for the non-fuzzy system.

These simulation results confirm the findings of the sensitivity analysis of the
previous section. The application of sensitivity theory revealed that the sensitivity
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Fault free (actual valve position = 0.7)
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Fig. 10. Estimation of the valve position with a. at 70% of the nominal value.

of the fuzzy system is dependent on the position of the valve itself. This can clearly
be seen in the results of Fig. 10: the smaller the valve position, the smaller the
parameter-change induced error between the estimated and the actual valve position.

For the non-fuzzy system, the sensitivity analysis revealed that the sensitivity of
the estimate of the valve position was linearly dependent on ;. The faults consid-
ered, however, did not cause enough change in the value of {); for this effect to be
seen.

6. Conclusions

The method of deriving a mathematical description of a fuzzy system (under certain
constraints) described in this paper allows for an analysis of the sensitivity of fuzzy
systems. An example of a simple fuzzy FDI system for the two-tank system is given,
along with the method used to allow for an analysis of the sensitivity of the system
to a parameter change. This analysis provides information about the way in which
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the sensitivity of the fuzzy system changes according to the conditions under which
the system operates. A comparison with a non-fuzzy system, also analysed using
sensitivity theory, makes the advantages of a fuzzy FDI system evident. Note that
the purpose of this analysis was not to show that one system was better than the
other, but to demonstrate the power of the analysis tool described in this paper.

The type and structure of the fuzzy models to which the method of deriving
the mathematical function described here can be applied is restricted. This may
cause some problems in applications where the fuzzy model is of a more complex
nature, i.e. in extensive fuzzy models. For simple controllers and for FDI, however,
the restrictions do not affect the validity of the approach.

One of the main applications of fuzzy systems in FDI is the decision making stage
(i.e. the analysis of residuals or other symptoms). Such fuzzy reasoning systems are,
or can be, of exactly of the form which is considered in this paper.

Further work is required to determine the extent to which the application of
sensitivity theory to the robustness analysis of fuzzy systems can be of use to fuzzy
FDI system designers. This paper represents a basis upon which such investigations
can be based.
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