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FUZZY-LOGIC FAULT ISOLATION
IN LARGE-SCALE SYSTEMS

JAN M. KOSCIELNY*, DARrIUsz SEDZIAK*
KaroL ZAKROCZYMSKT*

Application of fuzzy logic in fault isolation is proposed. The introduced methods
assume the industrial requirements such as integration of different detection
algorithms, system complexity, data and knowledge uncertainties. Algorithms
of decreasing the calculation expenditures for diagnosing large-scale systems are
also introduced. An example of the application is also shown. The proposed
technique is a development of the Dynamic State Tables method.
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1. Introduction

Diagnosing complex technical installations (large-scale systems) poses serious prob-
lems. Such systems contain hundreds and even thousands components, and the num-
ber of possible faults can be much higher. For their detection, many detection al-
gorithms which apply process variable measurements as their input signals must be
realised. The number of signals equals likewise hundreds or thousands, and since
measuring paths can in turn have faults of their own, the set of possible faults also
contains these elements.

Calculation expenditures required for realisation of diagnostic functions are there-
fore very high. Despite decomposition of diagnostic tasks and diagnosing in decen-
tralised structures (Koscielny, 1999a), it is vital to limit calculation expenditures
needed for formulation of diagnoses in each subsystem.

Algorithms of diagnosing for complex plants and fundamental problems that exist
in diagnosing such systems have been presented by Koscielny (1994; 1995). One of
them consists in taking uncertainties of symptoms into account. The problem has
been solved in this paper by application of fuzzy logic in evaluation of the symptom
values and in formulation of diagnoses. The presented diagnosing method called F-
DTS is on that score a development of the DTS algorithm (Koscielny, 1995).
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2. Residual Generation

For every system it is possible to define the set of possible faults:
F={fr:k=12,... K} (1)

It contains faults of instruments, actuators and components. The set of residuals is
generated for the needs of fault detection and it is of the form

R={r;:j=12,...,J} (2)

The residuals are calculated on the basis of defined process variable values with the
help of models connecting the variables. Such models are created for elementary parts
of the installation, provided that they do not have any faults.

The residual values are evaluated and the results are symptoms S, based on
which one performs isolation of faults

S:{sj:j:1,2,...,J} (3)

The diagram of the residual generation and evaluation is presented in Fig. 1.
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Fig. 1. Diagram of the residual generation and evaluation.

Possible symptom values s; are described by the corresponding linguistic vari-
ables Vj,

Vi={vi:i=12,...,I} (4)

It is assumed that the set of values for each symptom can be an individual one. In
each case, the set contains a positive value and one or more negative values.

The residuals in the diagnosis of complex technical installations (large-scale sys-
tems) should be generated based on partial models obtained for elementary parts of
the installation. The set of models should cover the whole system. Such an approach
offers the following advantages:

e the models applied are of lower orders, and therefore their identification is less
difficult;

e the time of the symptoms appearing after the occurrence of faults is in this case
the shortest;
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o the susceptibility of a residual to particular faults can be easily defined without
the necessity of modelling their influences.

The residuals can be generated by various methods:
e with the use of physical equations (e.g. balance ones) (Koscielny, 1999b);

e with the use of parity equations (input/output-type models) (Gertler, 1991; 1995;
1998; Patton and Chen, 1991);

e based on local state observers (Clark, 1978; Frank, 1987; 1990; Patton, 1994;
Patton et al., 1989);

e based on current identification of the process model parameters (Iserman, 1984;
1991; 1994);

e with the use of fuzzy models (Frank, 1994; Koscielny et al., 1999);
e based on neural models (Koivo, 1994; Korbicz, 1997; Sorsa et al., 1991; 1993);
e with the use of fuzzy neural networks (Garcia et al., 1997; Zhang et al., 1996).

In the diagnosing method presented in this paper, it is assumed that application
of all the above-mentioned methods for residual generation is possible.

3. Fuzzy Residual Evaluation

The calculated value of a residual is evaluated (Fig. 1) in order to ascertain the ex-
istence of a fault in the controlled part of the diagnosing system. In the simplest
case, a threshold test is applied (Frank, 1987; Garcia et al., 1997; KoScielny, 1994;
1995). If admissible limits are exceeded, one acknowledges that a fault occurred. In
the presence of measurement noise and inaccuracy of modelling, two-state evaluation
of a residual performed based on a threshold test can be deceptive and can lead to
inconsistent reasoning or erroneous diagnoses. Application of fuzzy logic makes it
possible to take symptom uncertainties into account. Fuzzy evaluation called fuzzifi-
cation of the residuals has been applied by Sedziak (1996), Theilliol et al., (1997) and
Koscielny (1999b).

The values taken by a linguistic variable are fuzzy sets. The general equation
defining the value of the j-th symptom is of the form

Sj:{/,tjii’l)ie‘/}} (5)

where p;; is the grade of the membership of the j-th symptom to the fuzzy set w;.
The symptom values are defined by the grades of the membership of the residual value
to particular fuzzy sets. In the simplest case, the set V; of symptom values consists
of two results: ‘positive’ and ‘negative’ (Fig. 2):

Vi = {P,N} (6)

The symptom value is therefore defined by the grades of membership to a particular
fuzzy set:

55 = {pgi 1 vi = P,N} = {uyp, uyn } (7)
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Fig. 2. Two-valued residual evaluation.

One can also apply multi-valued residual evaluation. For instance, three-valued
evaluation takes into account the size of the residual value, as well as its sign (‘posi-
tive’, ‘negative—‘, ‘negative+’),

Vj = {P,N-,N+} (8)
to which correspond grades of the membership to a particular fuzzy set:
s; = {pji 1 vi = P,N=,N+} = {p;p, ujn—, N+ 9)

A three-valued partition of test results is shown in Fig. 3.
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Fig. 3. Three-valued residual evaluation.

Let us consider the following division of a symptom value into partitions as an
example of a different multi-valued evaluation:

V; = {P,NM—,NS—, ND—,NM+, NS+, ND+} (10)

where P stands for a positive test result; NS—, NM—, NB— denote negative results
having small, average and high negative values, respectively; NS+, NM+, NB+
signify negative results having small, average and high positive values, respectively.
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4. Fault Isolation System

Fault isolation requires specification of an appropriate relation between detected
symptoms (test results) and faults. Let us define the Fault Isolation System (FIS) as
the following quadruple:

FIS = (F, S, V, ¢) (11)

where F' is the set of faults and S denotes the set of symptoms—they are defined by
eqns. (1) and (3), respectively. Furthermore, V' is the set of symptom values defined
by

v=UW (12)

SJ'ES

The function @ is defined on the Cartesian product of sets F' and S and it attributes
subsets of values taken from the set V' to pairs (f,s),

d:FxS— (V) (13)
and

O(fr, 85) = Vi = {vji € Vi} CVj (14)
The FIS is therefore the table which attributes a value or a subset of symptom values

to each pair fault-symptom. It defines pattern symptom results for particular faults.
Table 1 shows an example of FIS.

Table 1. An example of FIS.

s a1 & [ x| Vi |
51 N P N Vi = {P,N}
55 P N—, N+ N— V; = {P,N— N+}
sy | NS—, NB— P NS—, NS+ | V; = {P,NS—,NB—,
NS+,NB+}

Declaration of two or more symptom values for a fault may:

e result from the nature of the fault (e.g. measuring a path’s parametric fault can
cause both an increase and a decrease in the measured signal value and thus in
the residual value), or

e express an uncertainty concerning the symptom value caused by the fault.
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5. Diagnostic Fuzzy Inference

The FIS defines pattern symptoms for particular single faults. Each column of the
diagnostic table describes therefore the signature of a particular fault. On the other
hand, the fault signature defines a rule of reasoning about the fault. For instance, the
rule for a fault f; can be of the form

IF s;=N and --- and s; =P and (sx = NM- or sg = NM+)
THEN fault f; (15)

Note that the following rule corresponds to the state of full efficiency of the system:

IF s;=P and --- and s; =P and sx =P
THEN the state of full efficiency (16)

The relation symptoms-faults can be written directly as a set of rules IF-THEN,
but the notation in the form of FIS has a clear advantage: it simplifies appreciation
of fault isolation. Each column of the table corresponds to a fault signature. If the
signatures of different faults are identical, then the faults are not isolated.

The higher the rule’s firing strength, the higher the degree of certainty that the
fault shown in the conclusion did occur. By comparison of real and pattern symptom
values, it is possible to define a degree of the attachment of a symptom to pattern
ones described by the FIS, and hence to define the rule’s firing degree.

Let us define the degree of an agreement between the j-th symptom and its
pattern value obtained for the k-th fault:

Ok = max {,Uji €55:v; € ij} (17)

The rule’s firing degree can be calculated from the following quotient of products:

[T ok
j=1,...,J
6k: J yeeey 18
S I owt 1 ar 1
n=1,...K j=1,....J j=1,...,.J

The first component in the denominator corresponds to the fault set and the second
component to the state of full efficiency. The index of firing for the rule defining the
efficiency state is calculated from the equation:

H JM;’P
i=1,...
8o = I 19
2 [T onj+ II wp (19)
n=1,...K 7=1,...,J j=1,...,J

The diagnosis consists of the faults fr € F for which the firing strength of a rule is
the highest:

DGN = {f;: 0 =max for k=0,1,...,K} (20)
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6. Example of Diagnosis Formulation

The object of diagnosis considered in the paper is a three-tank system with the inflow
forced by a pump and controlled by a valve (Fig. 4). The diagnosis is performed based
on the following signals: water levels Ly, Ly and Lg in the tanks, the flow @ and a
control signal U. The set of possible faults contains faults of instruments, actuators
and components. The list of these faults is shown in Table 2. The faults should be
detected and isolated in the diagnosing system.

u| ©

Fig. 4. A three-tank system.

Table 2. The set of faults F'.

F | Description

f Fault of the level sensor L

fo | Fault of the level sensor L,

f3 | Fault of the level sensor L3

fa | Fault of the flow sensor @

Is Fault of the actuator

fe | Partial clogging of the channel between Tanks 1 and 2

fr | Partial clogging of the channel between Tanks 2 and 3

fs | Partial clogging of the outlet

fo | Leakage from Tank 1

fio | Leakage from Tank 2

fi1 | Leakage from Tank 3
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Residual 7; denotes working characteristics of the actuator, residuals ry, 73
and 74 use balance connections for particular tanks, and residual rs corresponds
to the balance of the flows in the whole installation. The sensitivity of residuals
to particular faults results in this case directly from the form of equations, which
simplifies considerations concerning fault isolation.

Table 3. Residuals generated for the three-tank system.

R Detection algorithm

1 T1=Q-Q=Q—f(U)

dL
ro | T2 = Q — a12512v/29(L1 — L) — AIEI“

r3 | 3 = @128124/29(L1 — Lo) — a23S23+/29(La — L3) —

dL

T4 | 73 = 0238231/29(Ly — L3) — a3S3y/2gL3 — As“d-tE
dL dL, dL

r5 | 5 = Q ~ a3S83v/2gL3 — Al—dzl‘ - Az—qu - As*a—ti

Table 4. Fault isolation system having two- and three-valued residual evaluation.

F/S| fi f2 f3 fo \fs| fe | fr| fs | fo |fro|fur Vj

51 P P P N

P|P|P|P|P|P| PN

sy |N—, N+|N—, N+ P N—,N+/P|N+| P | P I[N-| P | P {P,N—, N+

s3 [N—, N+|N—, N+|{N—, N+ P N-—N+{P | P |[N-| P {P,N—, N+

ss| P |N—,N+|N—,N4| P P [IN-|[N+| P | P [N=|P, N, N+

=20 Ra v I ke v I Bav A -

s5 |N—, N+|N—, N+|{N—, N+ [N—, N+|P| P | P |N+|N—|N—|N—|P, N—, N+

The relation symptoms-faults defined by the FIS can be deduced by modelling the
effect of faults on residual values. In the case of the three-tank set it is simple, but for
complex technological installations it can be very difficult and costly. In such cases,
the relation symptoms-faults is defined by an expert on the basis of his knowledge
about the object of diagnosing and fault symptoms.
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Let us consider an example of diagnostic reasoning based on the following symp-
toms:

st = {pp =1, u5n = 0}

s2 = {pjp = 0.1, uyjn- = 0, ujny = 0.9}
s3 = {pp = 0.2, pjn_ = 0.8, jny = 0}
ss = {pp = 0.7, pjn- = 0.3, pjny = 0}
ss = {pp = 0.9, pjn— = 0, pjng = 0.1}

Table 5 shows the values of d;; which is the function of the membership of real
symptoms to symptom sets being patterns of particular faults. The last row shows
the calculated values of the firing strength of the rules for all the faults.

Table 5. The membership function of real symptoms to symptom sets which are
patterns for particular faults.

FISI fol i | fo| fa | fa| fs | fo | fo | fs | fo | fio]|
S1 1.0(1010]10|00]001] 1.0 1.0 |10}(10 )10} 10
S2 0110909010901 09 0.1 | 0.1 0 0.1 101
S3 0208|0808 |02]|02] 08 00 {02 ,02}08]02
S4q 0707103103307 ]07]| 07 {03 /00j07)]07])03
S5 09101(01]01]01,09] 09 09 (0.1 ] 00|00} 0.0

dr |/0.02|0.09|0.04|0.00|0.00|0.00]0.84| 0.000.00|0.00]0.00|0.00

In the case under consideration, the diagnosis
DGN = fq

reveals a partial clogging of the channel between Tanks 1 and 2.

7. Algorithm of Diagnosing by the F-DTS Method for Complex
Technical Installations

For complex technical installations, the power of the sets of faults and symptoms is
very high. Diagnostic reasoning in such systems is associated with high calculation
expenditures. In order to identify a particular faulty situation, it is not necessary
to analyse all the symptoms. The problem can be solved by dynamic definition of
a subset of possible faults F* and a subset of symptoms S* that are useful for
identification of the faults (Koscielny, 1995; Sedziak, 1996), including a subset of
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symptoms Sy having negative values. This means that an appropriate subset FIS is
considered at each stage of diagnosing.

The algorithm of diagnosing by the F-DTS method includes therefore three
phases:

e cyclic testing of the symptom values in order to identify a faulty situation,

e creating of the subset FIS* which includes the faulty situation that is currently
identified,

e reasoning on the basis of the FIS*.

1. Cyclic testing of symptom values

The cyclic testing of symptom values should detect symptoms of a faulty situation.

Detection of the first symptom s? having the grade of membership to any negative

value greater than a certain threshold value (e.g. M = 0.6) launches the process of
fault isolation:

332€SZU¢§£P/\M]'Z'>M (21)
At the beginning of reasoning (m = 0 in the iteration), it is assumed that
5* = 84(m=0)=s] (22)

F =90 (23)

2. Creating FIS* which includes the fault that is currently identified

Creation of FIS* is an iterative process which should define the smallest possible
subset of the FIS necessary for the diagnosis formulation. The iteration number is
denoted by the symbol m.

2.1. Creation of the set of possible faults F™*

The set of possible faults F* includes the faults belonging to F' that can be detected
with the help of symptoms belonging to the set Sf(m). Creation of the set F* is
performed according to the following equation:

F*={fy € F:3s; € S(m) N ®(fr,s;) # P} (24)

2.2. Creation of the set of symptoms S™* useful for identification of the faults
belonging to the set F™*

The set S* is created on the basis of the following equation:

S*={s; €S:3 fx € F*N®(fi,s;) # P} (25)
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2.3. Creation of the set of symptoms S (m) useful for identification of
the faults belonging to the set F* and having negative values

The set S(m) is created by the symptoms belonging to S* and fulfilling the fol-
lowing equation:

Sl*q(m):{SjGS*Z'UiZ]éP/\uji>M} (26)

2.4. Verification of the requirements for the end of dynamic FIS* definition

if S§(m) # Si(m —1) then

m=m+1

goto 2.1
else

F*=F*+ fy

FIS* = (F*,5*,V,¢*)
endif

3. Reasoning based on FIS*

Reasoning is performed according to the rules presented in Section 5. The first step
consists in the definition of the rule’s firing degree for particular faults belonging to
the set F'*, see eqn. (24). Then the diagnosis is formulated according to eqn. (20).

8. Example of a Fault Diagnosis by the F-DTS Method

To clarify the essence of the F-DTS algorithm, two examples of diagnostic reasoning
will be presented. The first one refers to the three-tank station (Section 6).

Example 1.

Stage 1. Let us assume that the diagnostic process was initiated by a symptom s
for which we have

pony =09,  Fr=0, S*=0, S%0)=s

Stage 2.
Step 1.

F* = {f1, f2, fs, fo, o}
S* = {s1,52,53,54,85}
SN(1) = {s2, 53}
Sn(1) # 55(0)
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Step 2.
F* = {f1, fa, f5, fa, fos 1, fo, fro}

S* = {51, 82,53, 54,55 }
Sxn(2) = {s2, 83}
Sx(2) # 55(1)
Step 3.
F* = {f1, f2, f3, fa, f6, f1, fo, fro}
S* = {s1,52,53,54,55
Sx(3) = {s2, 83}
Sh(3) # 5x(2)

Stage 3.

F* = {fo, f1, fas f3, f1, f&» fr, fo, Fro}

St = {81,32,33754,55}

Table 6. The membership function of actual symptoms to symptom sets which
are patterns for particular faults.

FISW fo | i | fo | fs | fa| fo | fr | fo | fro
S1 1010|1010} 00| 10 {10 ] 10| 10
So 01{09/09/01]09| 09 |01|00]|01
S3 0210808 10802| 08 |00]02]08
S4 0710710310307 07 |03]07,07

S5 091010170101} 09 {09}007]00

ér |10.02]0.09|0.04|0.00|0.00}0.84}0.00}0.00|0.00

Based on Table 6, it can be seen that the set of faults under consideration was
limited. The diagnosis formulated by the F-DTS method is the same as that obtained
from direct reasoning presented in Section 6. ¢
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Example 2.

Table 7. Fault isolation system having two-valued residuals evaluation (empty
items denote P-type values).

\F'/ S| f1| fo| fs| Fa| £5 | fo| Fo| fs| fol fro| fra| fra| Fra| fra| fus | Fre| far| Frs[ fuo | Foo | fou | Foo] V5 ]
S1 N N P, N
5 N N PN
53 N N P, N
se |N NN P, N
5 N[ N[N PN
56 N N P, N
5 N| [N P, N
58 N N[N PN
5 NIN| [N N P, N
. N N N P, N
S11 N N N P, N
S12 N N P, N
513 N N P, N
S14 N NN P, N
S15 N N P, N
S16 N N|P, N

Table 8. Exemplary actual values of the symptoms for the fault fs.
| JrJ2]s3]a[s[6[7][8]9]w]n]2]3][14][15][16]
uip ||1.0709107(08(02/05|08}03(04(1.0/09]09|08(0.7/0.6|1.0
4~ |10.0(01103{02]0.8{05]/020.7{06/00/0.1|01]0.1{03({0.1]0.0

Table 9. A subset of the FIS obtained according to the F-DTS
algorithm for the data from Table 8.

FiS go [ s [ fe [ ds [ fo | Fu | fis | fua |
Sq 0810208 )| 087 08 08 | 0.8 0.8
Sy 0.2 108 08| 02| 08 0.2 |02 0.2
Sg 050505 ]05] 05 0.5 | 0.5 05
S8 0310303031} 07 0.3 { 0.7 | 0.7
Sg 04104 |04]06] 06 06 | 04 0.6
S10 1.0 1010|101 1.0 0.0 1.0 | 1.0
S11 09,09 0909 09 09 [ 09|01
or |10.04]0.040.17]0.06 | 0.58 | 0.000.10|0.02
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The above example proves that the number of faults under consideration can
be much reduced during reasoning in comparison with the complete set of faults.
Similarly, the number of symptoms analysed is relatively small when compared with
the number of all the symptoms. ¢

9. Summary

A formalized description of the fault isolation system called FIS has been introduced.
The paper describes application of fuzzy logic for residual evaluation and fault isola-
tion. Fuzzy interpretation of residuals allows us to take the main uncertainty occuring
in the process of diagnostic reasoning into account, i.e. the uncertainty of symptoms.
Such an uncertainty results from existing disturbances, measurement noise and inac-
curacies of modelling.

The presented F-DTS method of diagnostic reasoning is adopted for diagnosing
complex systems. Appropriate subsets of possible faults and symptoms necessary
for their isolation are created at each stage of the diagnosis formulation. Such an
approach offers the following advantages:

e lower calculation expenditures needed for the diagnosis formulation;

e robustness to signal changes, i.e. changes of the detection algorithm during diag-
nosing;

e formulation of correct diagnoses also in the cases of multiple faults without the
need for taking states with these faults into account.

A computer implementation of the suggested reasoning process is very simple. The
most characteristic feature is the lack of the defuzzification phase (as opposed to fuzzy
regulation). The diagnosis indicates the faults for which the degree of the rule ignition
is the highest.
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