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FUZZY-LOGIC FAULT DIAGNOSIS OF
INDUSTRIAL PROCESS ACTUATORS
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The paper presents an idea of decomposition of diagnostic tasks in complex
systems. Such decomposition consists in splitting basic diagnostic functions
into lower-level units existing in decentralised structures of automatic control
and supervision of the process. An example of a unit that realises this concept
and includes a positioner that controls and diagnoses an assembly consisting of
a servomotor and a pneumatic control valve is also given. An application of
fuzzy logic to the actuator diagnosing algorithm is presented and results of the
corresponding fault detection tests in an industrial environment are discussed.
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1. Introduction

Problems of diagnostics of industrial processes have been investigated for about thirty
years. Many methods of early detection and investigation of faults have been de-
veloped. Such methods base most often on analytical models of processes (Clark,
1978; Frank, 1990; Gertler, 1995; Isermann, 1994, Patton, 1994) or apply artificial-
intelligence techniques (Frank, 1994; Korbicz, 1997; Sotsa et al., 1991; Ko&cielny and
Bartys, 1997). Expert diagnostic systems co-operating with automatic control systems
have attracted attention only recently (Betz et al., 1992; Koscielny and Zakroczymski,
1997).

Diagnostic functions of a process are usually realised in a centralised way. The
paper presents a concept of local realisation of diagnostic functions for measurement
instruments, actuators and other components of a technical installation by the lowest-
level units existing in the automatic control structure. An example of a positioner is
given that not only controls movements of a pneumatic servomotor’s piston, but also
makes a current diagnosis of the servomotor-control valve assembly.

We propose an application of fuzzy logic to the algorithm of diagnosing the as-
sembly. A fuzzy model of the assembly operating in normal conditions is identified by
means of a modified Wang-Mendel method (1992). The modification was introduced
in order to meet some needs of industrial applications. Verification of such a method
was performed in an industrial environment.
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2. Local and Distributed Realisations of Diagnostic Functions

Current diagnostics of measurement instruments, actuators and other components of
an industrial installation is realised most often by special diagnostic systems existing
in supervisory layers of complex automatic control and monitoring systems of the
process under consideration , e.g.

e ABB’s MODI expert system is an extension of Procontrol P or Advant OCS
automatic control systems (Betz et al., 1992),

e Siemens’ KNOBOS expert system is a part of the Teleperm XP system,

o the DIAG diagnostic system developed at the Institute of Automatic Control and
Robotics of the Warsaw University of Technology is designed to co-operate with
many SCADA and DCS systems (Koscielny et al., 1998).

Diagnostic systems should detect and isolate faults of measurement instruments,
actuators and other technical devices. When only one diagnostic system is applied
for a complex industrial installation, it should handle a very large number of fault
combinations. In order to isolate faults, a relation between faults e; € E and symp-
toms (test results) d; € D has to be known (Koscielny, 1995). Such a relation can
be represented by a diagnostic matrix (Table 1). The number of possible fault states
is equal to 2!7l. Tt is easy to observe that differentiation of all faults is ensured when
the signatures of particular faults (the corresponding column vectors of the diagnos-
tic matrix) are different. In this context, the best diagnostics matrix structure exists
when the diagnostic matrix is square and diagonal (Table 2). Such a form of the
matrix means that for each fault a separate test is applied. The number of tests in
such a case equals the number of faults. The set of the test results defines the state
of the system since it indicates all the existing faults. In this case, all the states of
the system can be easily distinguished, e.g. the state of complete efficiency, states
with single faults and states with multiple faults. At the same time, the fault iden-
tification algorithm seems to be trivial. However, many different faults may act as
sources of the same symptoms, and vice versa: each fault may cause many different
symptoms (Table 1). In industrial processes, the number of possible faults is usually
very high. The necessity of taking into account states with multiple faults complicates
fault identification algorithms.

The above considerations show that one should strive to ensure a diagonal struc-
ture of the diagnostic matrix as shown in Table 2. A sub-optimal diagnostic structure
(Table 3) can be realised in such a way that particular tests control tolerably small
subsets of faults, and appropriate subsets of tests are attributed to specified devices of
the system. It is therefore useful to perform a decomposition of the diagnostic system
that consists of separate diagnosing subsystems. Each diagnosing unit detects and
isolates a specified set of faults within this diagnosing subsystem. Such a situation
corresponds to a sub-optimal structure of the diagnostic matrix (Table 3). Thus the
number of considered states can be significantly reduced. Problems of decomposition
of large-scale systems as well as decentralised diagnosing were studied in (Koscielny,
1991; 1999).
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Table 1. An example of the diagnostic matrix.

[ D/E [ e [ea |es | eafes [coferfes|es]

dv 1 1] 1

d || 1|1 1 1 1
ds 1 1 1

ds 1 1 1

ds 1111 11
ds 1 1)1

dy 1 1 1

ds 1 1

do 1011 1

Table 2. Optimal structure of the diagnostic matrix.

[ D/E [[er ] esfes e fes [eoferes e
d |1
d; 1
d 1
ds 1
ds 1
d 1
dr 1
ds 1
do 1

Table 3. A sub-optimal structure of the diagnostic matrix.
[ D/B e [e2[es | ea|es[es|er|es]e]
dy 1 1
da 1
ds 111
dy 1
ds 1 1
de 1 1
dr 1 1
ds 1 1
dyg 1 1
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Decentralisation of diagnostic tasks consists, among other things, in supplying
automatic control and technical devices with autonomous diagnosing units. The func-
tions of a central diagnosing system are in this case significantly reduced. This leads
to:

e shortening the time needed to obtain the diagnosis because diagnostic functions
- are realised in parallel by many units,

e casy implementation in stages and extension of the diagnostic system,
¢ simplification of diagnostic conclusion algorithms,

e the possibility of applications of conclusion algorithms under the assumption of
the existence of single faults,

e eagy isolation of multiple faults,

e higher robustness of the diagnostic system due to the fact that the results of faults
of particular diagnosing units have only a local meaning.

Realisation of decentralisation of diagnostic tasks in industrial processes requires the
development of a new generation of automatic control and technical devices. The
following devices can be proposed:

1. Intelligent measurement instruments that perform diagnostics of measurement
loops. They should test the instrument efficiency, as well as the correctness and
credibility of the output signal. Since such tests base only on an analysis of a
single signal and do not comprise its connections with other process variables,
parametric faults cannot be detected in this way.

2. Intelligent actuators equipped with auto-diagnostic functions. An example of
such a device is described in detail in what follows.

3. Control units, e.g. programmable controllers equipped with auto-diagnostic soft-
ware, as well as software that would allow for diagnostics of measurement loops
with the use of relations existing between measurement signals. At present,
auto-diagnostic functions are commonly realised by such devices, but advanced
diagnostics of measurement loops is practically unattainable.

4. Analysers of the states of technical devices such as pumps, motors, etc.

3. Positioning Devices in Decentralised Diagnostic Systems

The basic function of the positioner (Fig. 1) is automatic control of the servomotor’s
piston displacement X. On the basis of the control error defined as the difference
between a set point U and the process variable X, the positioner generates a control
signal Py in order to reduce the control error. Application of the positioner renders
it possible, among other things, to shape dynamic properties of the actuator (a ser-
vomotor A and a valve V), to reduce the hysteresis width of the servomotor’s static
characteristic and to improve the accuracy of positioning the piston at a steady state.

Due to realisation of diagnostic functions in decentralised structures, the posi-
tioner is supplied with a full duplex digital communication system (frequency FSK
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Fig. 1. The diagram of the positioner and servomotor-valve assembly (Notation: A — ser-
vomotor, V - valve, ACQ — data acquisition system, CPU - central control and
diagnostic unit, E/P — electro-pneumatic transducer, MODEM - system for digital
communication with external supervising control and diagnosing system, X — servo-
motor’s piston displacement transducer, F' - volume flow transducer, Py — output
pressure of the E/P transducer, Uy — full duplex digital communication link, U, —
bi-directional analogue communication link).

modulation) and an additional analogue (420 mA) system. Application of the com-
munication standard HART makes it possible to couple both the kinds of systems in
one analogue communication channel.

The positioner can also realise local control tasks, e.g. control of the volume
flow F'. A characteristic feature of the presented positioner is realisation of diagnostic
tasks of the actuator consisting of the servomotor and control valve.

4. Fuzzy Models of the Servomotor-Valve Assembly
4.1. Wang-Mendel’s Method

Wang-Mendel’s identification method allows us to construct a fuzzy model of the
system from numerical data. The main advantage of the method is the simplicity
of the identification algorithm. This also means the time of training which is much
shorter than e.g. in the case of neural networks. Much lower are also the necessary
calculation expenditures. Such features mean that the method seems to be suitable
for an intelligent positioner.

Application of fuzzy models to fault detection can be split into two stages. The
first one consists in construction of a fuzzy model. The second one lies in generation
of the so-called residuals (the differences between model outputs and real process
values) on the basis of this model.
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The process of identification in Wang-Mendel’s method is performed in four steps:
Step 1. Definition of the input, output and corresponding fuzzy sets.

Step 2. Generation of a fuzzy rule base from experimental data. Each rule has the
following form:

IF (z;=A!) AND ... (zx=4%) ... AND (z,=A4") THEN y=4"*' (1)

where z; is the k-th input, y denotes the output, and A* stands for a
fuzzy set defined for zx or y. It is created for a finite set of input-output
data. The rule contains fuzzy sets Aj,..., A" and A"*! for which the
degree of the membership of z1,...,z, and y to an appropriate fuzzy set
is maximal.

Step 3. Assigning a weight to every rule. Since each pair of data generates one rule,
it is highly probable that there will be some rules with the same premises
but different conclusions, i.e. there will be conflicting (inconsistent) fuzzy
rules. In order to reject such conflicting rules, each rule is fitted with a
weight. It is calculated as a product of the degrees of membership of the
rule’s premises and that of the conclusion:

w = praner (y) [] ar(ax) (2)
k=1

Step 4. Creation of the fuzzy rule base. Only the rule from the set of conflicting
rules that has a maximal weight is accepted.

Some tests of the actuator valve assembly modelled by Wang-Mendel’s method
have been performed. They show that the method is sensitive to measurement dis-
turbances.

4.2. Modified Wang-Mendel Method

Figure 2 shows the block diagram of a modified Wang-Mendel algorithm. The fuzzi-
fication block is responsible for the calculation of a fuzzy representation of variables.
Successive input and output values of the modelled system obtained at successive
time slices (on-line or off-line data from the training set) are fed to the input of that
block. For a specified partitioning of particular variable ranges, the assignment of Ay
(a fuzzy set) and pj (the value of the membership function) to a particular variable
is performed according to the following equation:

¥ par = max {as ()} (3)

where zy is the k-th input value and p 4% (z1) stands for the value of the membership
function of the k-th input to the i-th partition. The fuzzy rule

IF (z3=A") AND ... (z=4" ... AND (z,=A") THEN y=A"*' (4)

being actually calculated in the rule generation block is memorised in the rule base
in an appropriate way. Partitions A; defined for particular variables and denoted by
R; act as the rule premises.
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Fig. 2. Modified Wang-Mendel identification algorithm.

In the modified method, all of the rules having the same premises are memorised
in such a way that the average value of conclusions is calculated as follows:

AB Antl
IF (w >0) THEN AB, — _ﬂ%

(5)
where m is the number of rules having the same premises, A2 denotes the average
value of the conclusions of n rules, and AZ_, stands for the updated value of the
conclusion after addition of the next rule. During calculation of the average value,
each of the conclusions is fitted with the coefficient equal to 1/n.

The presented algorithm allows for creating models with many inputs and single
output (MISO). Models with many inputs and many outputs (MIMO) are easy to
obtain by putting several MISO-type models together with the help of an AND-type
operator.

4.3. Residual Calculation on the Basis of a Fuzzy Model

The algorithm of the residual calculation based on the obtained fuzzy model is pre-
sented in Fig. 3. It corresponds to the well-known Mamdani’s scheme. The model’s
output is compared with the real variable value, and the result is cast as the percent-
age value of the modelled span, according to the dependence

Res = (y - y)

(yma.x - ymin)nominal

100% (6)

where Res is the value of the residual, y is the actual value of the modelled variable,
7 stands for the model output, and (Ymax — Ymin )nominal Signifies the nominal range
of the modelled variable. During normal operation, the residual value should oscillate
around zero. The appearance of a fault causes an adequate deviation of the residual
value from zero.
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Fig. 3. Algorithm of the residual calculation on the basis of a fuzzy model.

The following parameters have an effect on the quality of modelling: the model’s
structure, the number of fuzzy sets into which particular inputs of the model and
its output are divided, the shape of the membership function, and the ‘quality’ of
the training set. These parameters can be defined according to the existing needs by
taking into consideration experimental data.

In a laboratory, when several tests of the modelled assembly can be performed
and when complete training data are easily attainable, precise fuzzy models of the
servomotor-valve assembly can be obtained. It is possible to achieve the accuracy
of modelling within the range of 1 to 2%, even while taking into account both the
dynamics and static non-linearity of the system. Figure 4 shows exemplary changes
for the modelled valve having a constant percentage characteristic. In this case, the
static model with 31 fuzzy sets at its inputs and at the output was applied. The
model had the following form:

Fy = f(Ux) (7)

where Uy and Fj; denote respectively the control signal and flow values, both nor-
malised to the (0,1) range.
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Fig. 4. An example of the servomotor-valve assembly modelled in a laboratory.

4.4. Tests Performed in an Industrial Environment

Fuzzy models for the servomotor-valve assembly were applied in the diagnostic system
DIAG developed at the Lublin Sugar Factory (Lublin is a town in the south-eastern
part of Poland). The assembly consisting of a pneumatic servomotor and a valve
controlling the raw juice inflow to the first stage of the evaporation plant was modelled.
In this case, three process variables related to the valve operation were attainable:
flow F(F51_01), value of the control signal U(LC51_03.CV) and raw juice pressure
P(P51_04). A part of the installation including the chosen valve is shown in Fig. 5.
Data were collected with the sampling interval 10s.

Based on an expert’s knowledge, two models were proposed:
Model A : Fy = f(Ug-1,P) (8)

Model B: Fj = f(Ux_1) 9)

In both cases, the inputs and output of the model were divided into 31 uniformly
distributed fuzzy sets having trapezoidal membership functions shapes. The extents
of the inputs and output were defined by the corresponding ranges of the measurement
transducers. A relatively large number of partitions was chosen because a sufficiently
accurate modelling was required within the whole accepted input signal ranges. Fuzzy
sets were uniformly distributed due to the lack of prior knowledge (e.g. provided by
an expert).

The models were trained according to the modified Wang-Mendel algorithm pre-
sented in Section 4.2. This produces especially good results when applied during
training with large data sets. Data obtained during half-a-year’s measurements were
used for training. Owing to calculation of the average value during memorisation of
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Fig. 5. Part of the installation at the Lublin Sugar Factory.

a rule, the method produced satisfactory results. In addition, modification of the
model on the basis of the evaluation of the obtained rule base (fuzzy relations) by
an expert can be performed after the training process is completed. As an example,
Fig. 6 illustrates the rule base obtained for Model B. Version B.1 is the rule base
obtained at the beginning, but after the training process via the modified algorithm
was completed. Then, on the basis of an expert’s evaluation, the model was modified
into Model B.2 that was the final product of the identification process. Rule base B.2
was applied to generate residuals.

ModelB.1 Model B.2

25} md
= F‘ - 20;_’-2-“’!
15 - 15

Fuzzy sets U

Fuzzy sets £
i
B

B
Fuzzy sets F

Fuzzy sets U

5 10 15 20 25 30
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Fig. 6. A graphic interpretation of the rule bases for Model B.

Figure 7 presents exemplary changes in the residual values based on Models A

and B.2 for normal operation conditions. Figure 8 shows the residual values obtained
in the presence of faults.
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Fig. 7. Exemplary changes in the residual values based on fuzzy models.
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Fig. 8. Residual values obtained in the presence of faults.

Fuzzy models allowed for modelling with the accuracy of +5%. This permits
detection of faults that cause relatively higher changes. Figure 8 shows the residual
changes obtained in the presence of faults introduced as changes in individual signals
by 10, 20, and 30 %. It can be seen that the residuals satisfactorily react to incorrect
situations. It can also be seen that Model B does not detect the pressure changes,
which is obvious since the value of F' in this model is calculated based only on U.

5. Fault Isolation within the Servomotor-Valve Assembly

Fault isolation was performed on the basis of the following rules given by Koscielny
and Bartys (1997):

IF (r, =B) AND (r, = B) AND (r; =S5) AND (rq =S)

THEN e; =N ELSE ¢ =P (10)
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IF (T1:S) AND (TQIB) AND (T‘3=B) AND (T‘4=S)

THEN e; =N ELSE ey =P (11)

IF (Tl :B) AND (T‘g :S) AND (7"3 :B) AND (7"4 :S)

THEN e3 =N ELSE e3 =P (12)

IF (7‘1 = S) AND (7‘2 = S) AND (T‘3 - B) AND (T‘4 = B)

THEN e; =N ELSE e; =P (13)

IF (ry=B) AND (r;=S5) AND (r3 =S5) AND (ry = B)
THEN es =N ELSE e5 =P (14)

where ry = F — F(U), ro = Py — Py(U), 13 = X — X(Py), 14 = F — F(X), € is the
fault of the electropneumatic transducer E/P, es denotes the fault of the pressure
sensor Py, e3 stands for the fault of the servomotor A, es means the fault of the
piston displacement transducer X, es signifies the fault of the valve V, and N, P,
B, S denote ‘negative’, ‘positive’, ‘big’ and ‘small’, respectively. The above rules
correspond to the diagnostic matrix obtained for the servomotor-valve assembly and
shown in Table 4 with the assumption

0 when |r;|<K
dj = ,
1 when |r;|>K
where K is chosen threshold.

Note that the fuzzy inference procedure proposed in (Koscielny et al., 1999) can
also be applied to the process of diagnosing.

Table 4. The diagnostic matrix obtained for the servomotor-valve assembly.

| D/E Jlesleses|ea]es ]

dx 1 11011
dy 171

ds 17141

dy 1 1
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6. Summary

The paper presents a fuzzy identification algorithm that is a modified version of the
method developed by Wang and Mendel (1992). The modifications proposed in the
paper ensure robustness of the algorithm to measurement disturbances. Some tests
performed in a sugar factory show that the fuzzy models obtained can be applied for
fault detection purposes.

A low computer power needed for the construction of the model and generation of
residuals are advantages of this method. The algorithm can therefore be implemented
in a microprocessor-based positioner that performs not only control of the servomo-
tor’s piston displacement, but also detects faults and performs diagnostic tasks of the
pneumatic servomotor-valve assembly. Such an intelligent positioner acts as an ex-
ample of the device that embodies the proposed concept of distribution of diagnostic
tasks for complex systems into the lowest-level units existing in the automatic control
structure. Such a concept offers many advantages that were stressed in Section 1. The
performed tests were the initial phase needed for the application of the algorithm in
the A785 MERA-PNEFAL positioner.
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