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AN EXPERT SYSTEM COUPLED WITH
A HIERARCHICAL STRUCTURE OF FUZZY
NEURAL NETWORKS FOR FAULT DIAGNOSIS

JoAo M.F. CALADO*, Jose M.G. SA pA COSTA**

An on-line fault diagnosis system, designed to be robust to the normal tran-
sient behaviour of the process, is described. The overall system consists of an
expert system cascade with a hierarchical structure of fuzzy neural networks,
corresponding to a multi-stage fault detection and isolation system. The fault
detection is performed through the expert system by means of fault detection
heuristic rules, generated from deep and shallow knowledge of the process under
consideration. If a fault is detected, the hierarchical structure of fuzzy neural
networks starts and it performs the fault isolation task. The structure of this
diagnosis system was designed to allow for the diagnosis of single and multiple si-
multaneous abrupt and incipient faults from only single abrupt fault symptoms.
Also, it combines the advantages of both fuzzy reasoning and neural networks
learning capacity. A continuous binary distillation column has been used as a
test bed of the current approach. Single, double and triple simultaneous abrupt
faults, as well as incipient faults, have been considered. The preliminary results
obtained show a good accuracy, even in the case of multiple faults.

Keywords: fault diagnosis, fault detection, fault isolation, expert system, fuzzy
neural network, abrupt faults, incipient faults, shallow knowledge, deep knowl-
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1. Introduction

Fault diagnosis systems play an important role in modern control systems, especially
for safety-critical systems such as chemical plants, nuclear reactors, spacecrafts, air-
crafts, etc. (Patton et al., 1989). Accurate and timely information enables operators
to respond rapidly to plant failures. Also, it minimises the effects of faults on the
plant itself, both in the plant production and in the environment. For this reason,
there is a growing need for on-line fault diagnosis systems in order to increase the
reliability of such safety-critical systems.
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In early stages of process control, skilled operators were used to detect and isolate
a process failure in order to prevent a process or production breakdown, by taking
appropriate corrective actions. Nowadays, the complexity of modern plants and the
availability of inexpensive computer hardware allow us to develop automatic fault
diagnosis systems. These fault diagnosis systems, also called Fault Detection and
Isolation systems (FDI), usually perform two basic functions, i.e. fault detection and
fault isolation, which can be performed sequentially, or parallelly, or even simultane-
ously in one stage. Fault detection gives a binary indication if all parts of the systems
are running fine or if something is wrong, i.e. if a failure occurs. Fault isolation, also
called fault localisation, gives an indication of the fault localisation within the system.

Linear models of the process usually support FDI systems based on conventional
techniques. For non-linear processes, the usual approach is to linearise the process
model around the operating point. This approach is effective for many non-linear
processes if the operating range is limited and the FDI system is designed to be
robust enough to tolerate small perturbations around the operating point. However,
for processes with strong nonlinearity behaviour and a wide dynamic operating range,
the linearised approach fails to give satisfactory results. One solution is to use a large
number of linearised models, corresponding to a range of operating points, which is
not very practical for real-time applications (Chen, 1995). Another possible solution
makes use of the so-called intelligent techniques based on fuzzy systems, or artificial
neural networks, or a combination of both.

Since artificial neural networks (ANNs) can be trained to have the required map-
ping between inputs and outputs, they can be used to overcome the difficulties of
conventional FDI techniques to deal with non-linear behaviour. ANNs are properly
aimed at processes that are ill-defined, complex, non-linear and stochastic. However,
most studies using ANNs for fault diagnosis only deal with processes under steady-
state conditions and do not consider explicitly the dynamic change in the ANN input
due to normal transient process behaviour. This change in the ANN inputs can also
affect certain features of the ANN outputs, giving rise to incorrect information about
a failure in the process in the presence of a normal transient behaviour due to changes
in the operational settings.

In order to overcome the previously mentioned problems, in this paper we pro-
pose an FDI system using a deep/shallow knowledge-based system coupled with a
hierarchical structure of fuzzy neural networks. The on-line FDI system is designed
to cope with normal transient behaviour of the process and to be able to diagnose
multiple simultaneous faults from only single abrupt fault symptoms. The fault de-
tection is performed by an expert system which encodes fault detection heuristic rules
generated from deep and shallow knowledge of the process under consideration, fol-
lowing a systematic methodology. The deep knowledge is obtained from structural
decomposition of the overall process into subsystems according to the plant topol-
ogy (Calado and Roberts, 1996a), while the shallow knowledge is extracted from the
operational experience in conducting the plant.

The fault isolation stage is based on a hierarchical structure of several fuzzy neural
networks. The use of ANNs for fault diagnosis purposes has received increasing at-
tention in both research and applications. The number of publications on this subject
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demonstrate the interest and potentiality of this new tool (Kavuri and Venkatasubra-
manian, 1994; Patton et al., 1994; Sorsa and Koivo, 1993; Tang et al., 1998; Watanabe
et al., 1994; Zhang and Roberts, 1992). Here a fuzzy-neural system that combines the
advantages of both fuzzy reasoning and neural networks will be used. Fuzzy reasoning
is capable of handling uncertainty and imprecise information, while an ANN is capa-
ble of learning from examples. In contrast to the conventional multilayer feed-forward
neural network, the adopted fuzzy neural network (FNN) system has an additional
fuzzy input layer which maps the increment of each on-line measurement into fuzzy
sets.

As was previously mentioned, the overall fault diagnosis system is designed to
cope with on-line fault detection and isolation in the presence of normal transient
behaviour of the process. This is achieved without the FNN outputs being affected
by the measured variables transient response to changes in the operational settings
of the system. The FDI system has been implemented and successfully applied to
a continuous binary distillation column (CBDC). Single and multiple simultaneous
abrupt faults, as well as incipient ones have been considered to validate the FDI
system developed.

The paper is organised as follows. In Section 2 the overall description of the
FDI system architecture is given. Section 3 describes the design of the expert system
used at the fault detection stage. Section 4 provides a description of the hierarchical
structure of the fuzzy neural networks used for the fault isolation stage, and explains
the design of this FNN. Section 5 describes the CBDC process and the results obtained
with the developed FDI system for single and multiple faults. Finally, in Section 6
some concluding remarks are given.

2. System Architecture

A knowledge-based system, also called the expert system, performs reasoning using
pre-established heuristic rules for a well-defined narrow domain. They combine knowl-
edge bases of rules and domain-specific facts with information about specific instances
of problems, provided by a domain expert. Ideally, in these systems, reasoning can be
explained and the knowledge bases can be easily modified or updated, independently
of the inference engine, as new rules become available. These features made expert
systems suitable for building diagnosis systems. However, a major limitation of the
knowledge-based approach comes from the fact that domain experts do not always
think in terms of heuristic rules. Moreover, domain experts may not be able to explain
their ways of reasoning, or they may explain them incorrectly, which makes it difficult
or even impossible to build the necessary knowledge bases. Thus, for a well-behaved
process with well-defined failure rules, knowledge-based systems can be developed to
provide a good performance in the fault detection assessment.

On the other hand, artificial neural networks rely on training data to model
the process. Establishing an appropriate training set that allows the neural network
to learn and generalise for operation on future input data, permits us to develop a
particular application. The inputs that match the training data exactly are recognised
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and identified, while new data, or incomplete or even noise versions of the training
data can be closely matched to patterns recognised by the network. This learning
capacity also makes ANNs suitable for designing diagnosis systems. However, in
the neural network approach, the knowledge is represented as numeric weights and,
hence, the rules and the reasoning process are not readily explainable. An ANN can
be preferable to a knowledge-based system when rules are not known either because
the topic is too complex or no domain expert is available. As a matter of fact, while in
some cases an ANN can perform tasks better or faster than expert systems, in most
instances the two technologies are not in competition. In fact, the characteristics
of both techniques are so useful that they can complement each other giving better
results in some practical applications. This fact leads us to build the FDI system in a
multistage way, using an expert system for fault detection and a fuzzy-neural system
for fault isolation. As will be explained latter in Section 4, fuzzy-neural systems can
be interpreted in terms of a hierarchical topology to make the training task easier and
to allow for isolation of multiple abrupt and incipient faults from symptoms of single
abrupt faults. Figure 1 shows a diagram of the proposed FDI system.

Once a fault has been detected by the expert system, the fault isolation system
is triggered to locate the hypothetical failure in the process under consideration. On-
line measurements, after the pre-processing stage, are then fed forward through the
FNN system and the corresponding output values processed to make a final decision
about the fault localisation.

Supervision System

Fig. 1. Architecture of an on-line fault detection and diagnosis system.
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The external data handled by the FDI system are the changes that occur in the
measured variables of the process, after a pre-processing stage. Besides the usual
filtering operation to reduce noise measurements and variable reconstruction, in this
pre-processing stage a normalisation operation is performed to obtain all changes in
the range [—1, +1], for the sake of numeric simplicity. A man/machine interface
keeps the operator informed about all diagnosis (fault detection and isolation) given
by the FDI system.

3. Expert System for Fault Detection

A number of expert systems have been reported, which perform fault diagnosis by
the method of heuristic classification (Chitarro et al., 1993; Clancey, 1985; Moor
and Kramer, 1986; Swartout, 1983). In this methodology, diagnostic knowledge is
represented mainly in terms of heuristic rules which perform a mapping between
data abstraction (usually called symptoms) and solution abstraction (typically called
faults). Such a knowledge representation, usually called ‘shallow’ knowledge, does not
contain much information about the causal mechanisms underlying the relationship
between symptoms and faults. The rules typically reflect empirical knowledge derived
from an operator’s experience, rather than a theory of how the system under diagnosis
actually works and how the fault propagates in the system. However, sometimes this
latter knowledge, called ‘deep’ knowledge, is also used in designing expert systems,
since it involves the understanding of the structure of the system and the way its
components operate (Jackson, 1990). ’

Knowledge acquisition is a key issue related to the design of expert systems, being
very time-consuming since the process operators may know little about knowledge en-
gineering, and therefore the interchange of information between a knowledge engineer
and a process operator may not be carried out efficiently. Moreover, in an industrial
process, many faults to be detected and isolated may never have been experienced
and, for new or recently developed plants, there may be little applicable past experi-
mental knowledge. Furthermore, the heuristic rules used in designing expert systems
based on shallow knowledge lack process generality and they tend to fail under new
circumstances. On the contrary, deep knowledge can provide reliable behaviour for in-
frequently occurrences. However, as Clancey (1985) has pointed out, the deep models
required for building expert systems are hard to construct, even for relatively simple
processes. Therefore, to narrow the diagnosis focus on the process under consider-
ation, as well as to facilitate the analysis of the behaviour of the process variables,
several researchers have pointed out some methodologies. Moor and Kramer (1986)
report a fault detection and diagnosis system based on a deep knowledge approach
which tries to explore the causal path from the observed abnormalities to their causes
and, hence, to locate any associated fault. Finch and Kramer (1988) propose a differ-
ent methodology, where the process is decomposed into several subsystems according
to their functions, and then it identifies the subsystem where the fault occurs. A sim-
ilar approach is pointed out by Steels (1989), but in his approach the function of the
system being diagnosed is hierarchically decomposed. Zhang and Roberts (1992) have
proposed a fault diagnosis system based on structural decomposition of the process
under consideration and component functions.
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However, most of these reported fault diagnosis systems only deal with a single
failure assumption. Moreover, in most of these approaches, in order to avoid false
diagnosis under normal transient process behaviour, the decision of the diagnosis
system is based on threshold values, set properly according to previous operational
experience, or simply switch off when a set-point change in the process is performed.
The use of these threshold values will affect the performance of the diagnosis system.

Due to the above reasons, the expert system approach will only be adopted here
for fault detection. This expert system will use a combination of deep and shallow
knowledge, but where deep knowledge plays a dominant role. A systematic method-
ology for generating fault detection heuristic rules with abilities to cope with multiple
fault situations and to increase the system reliability under transient behaviour sit-
uations will be proposed. The fault detection heuristic rules are generated from the
knowledge about the system structures, component functions, and system operation.

To deal with normal process transient behaviour, the process reference signals
are explicitly included in the heuristic rules antecedents, being the expert system
designed to take into account these operating situations. In this way, if a setting
point change occurs in the reference signal, the proposed FDI system is not affected
and, therefore, it does not recognise such a situation as a fault.

During the design phase, to make the behaviour analyses of the process variables
easy, the process under concern is structurally decomposed into several subsystems.
Usually, this structural decomposition corresponds to the plant topology (Calado and
Roberts, 1996a). Even though not necessary for design proposes, a graph similar to
a directed graph (Oyeleye and Kramer, 1988) can be used as a modelling tool to help
the designer to understand the important subsystems of the process and the causal
relationships between them. With this tool, the process can be represented by a graph
that contains nodes and directed edges. Each node represents a subsystem and the
directed edges represent interactions between subsystems, giving an indication about
the causality between them. For instance, if a hypothetical system is divided into
four subsystems, S1, S, S3 and Sy interacting with each other, we can represent
such a system by a directed graph that is depicted in Fig. 2.

Fig. 2. A directed graph.

As was pointed out by Calado and Roberts (1996a), the system structure is rep-
resented by a set of three matrices, namely the connection matrix, the causal matrix,
and the self-causal matrix, represented in the following by C, CM and CS respectively.
The rows and columns of these matrices represent subsystems or measured variables,



An expert system coupled with a hierarchical structure of fuzzy ... 673

as appropriate. If there is a possible interaction between a specific row and a spe-
cific column, the corresponding matrix element takes the value 1. Otherwise, that
matrix element will take the value 0. Hence, the connection matrix C, will be used
to represent the interaction between subsystems. If the process is decomposed into
n subsystems S, then the connection matrix for such a system is an n x n matrix,
where each element c;; is given by

1, if subsystem S; can directly affect
subsystem S;, with i # j
Cij =

(1)

1, ifi=j
0, otherwise

The state of a system is given by its measurements. A subsystem is said abnormal
if one of its measurements departs from the normal expected values. As is pointed out
in (Zhang and Roberts, 1991), such a situation can be represented by the following
equation:

3k, k € T,m;, AB(mix) = AB(S;) )

i.e. if in subsystem S; there exists at least one measurement m,; which is abnormal,
then this subsystem is abnormal. In (2) the following notation is used: AB is a
predicate meaning abnormal, m; denotes the total number of measurements in S;,
m;x 1S the k-th measurement in S;.

As was previously mentioned, the connection matrix only states if there exists a
relationship among subsystems. However, the measurement causal matrix CM;; gives
a more refined description about the relationship between subsystems S; and S;. If
there are n measurements in S; and m measurements in S, then the measurement
causal matrix between S; and S; is an n x m matrix, where each element cm} is
given by

—

, if the k-th measured variable in S; can

cmf} = directly affect the I-th measured in S; (3)

0, otherwise

Causal relationships also exist between measured variables within a subsystem.
The self-causal matrix, CS;, represents these relationships. If there are n measure-
ments in subsystem S;, then the self-causal matrix for subsystem S; is an n x n
matrix, where each element cs¥ is given by

1, if the k-th measured variable in S; can
directly affect the I-th measured in S;

1, ifk=1

0, otherwise
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The reasoning for generating fault detection heuristic rules, corresponding to the
single fault scenarios, is based on the predicate stated by (2). If we assume that
the j-th measurement in the ¢-th subsystem presents an abnormal behaviour, which
is represented by AB(m;;) according to (2), then a search is conducted to causally
look for any measured variable in subsystem S; that could be responsible for the
observed abnormality in m;;. If such a variable exists, then it is retained and a fault
detection heuristic rule must be generated. The self-causal matrix of subsystem S;
guides this search. Similar searches are also performed to find further causes in S;
for the retained variable. If there is another variable in S; which can directly affect
the retained variable behaviour, then this one is also retained and another diagnostic
rule is generated. If there are no more variables in S; that could be responsible for
the observed abnormality, then the causal search at subsystem S; is terminated.

This search procedure continues, driven by the connection matrix, in order to
find all the subsystems that are connected with subsystem S; that can directly affect
any measurement variable in S;. The goal is to identify all the subsystems whose
measurement variables can directly affect the measurement variables in the subsys-
tem where such an abnormal behaviour is observed. Following this reasoning, all
subsystems satisfying the condition

VSjcij=1, j#i (3)

form a set of subsystems that can directly affect the subsystem presenting an abnormal
behaviour.

Next, a search is conducted through all the subsystems that form the above set in
order to find all the measured variables in other subsystems which could directly affect
the retained variables. At this stage the measurement causal matrix plays the main
role and, hence, if such variables exist, then other heuristic rules are generated. Once
this search procedure is terminated, important shallow knowledge about the process
in the form of heuristic rules can be added to the previously generated heuristic rules.
In this way, the reliability of the fault detection system can be enhanced by including
operators’ experience about the process.

The heuristic rules based on the deep knowledge of the process have an output in
the form ‘enable fault detection flag.” However, as shallow knowledge does not contain
much information about the causal mechanisms underlying the relationship between
symptoms and faults, the heuristic rules based on shallow knowledge are here used to
fire the rules based on deep knowledge about the process.

When multiple faults occur at the same time, it is assumed in our design that
fault effects on the measurement variables are of additive type. In this way, fault
detection heuristic rules for multiple fault scenarios are also generated at the design
stage.

The knowledge base of the fault detection system will be built up with the fault
detection heuristic rules achieved following the procedure described above. An infer-
ence engine makes the reasoning in the expert system. The fault detection heuristic
rules will be searched in a forward manner and then, when the data acquired match
the antecedent parts of a heuristic rule, a fault detection flag will be enabled. This
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flag will be used to trigger the fault diagnosis system and to locate a fault or faults
in the process.

The main advantage of the present approach is that the fault detection task is
based on heuristic evaluation of the time variation of the process variables (input,
output and state). In this way, normal transient behaviours of the process can be
considered, as well as incipient faults whose development occurs gradually, instead of
suddenly as for the abrupt fault case.

4. Hierarchical Structure of Fuzzy Neural Networks

The adoption of a hierarchical fuzzy neural network approach for fault isolation aims
at the development of an architecture that can localise abrupt and incipient single
and multiple faults correctly, or at least with a minimum misclassification rate, from
only single abrupt fault symptoms, and be easily trained. In such a architecture,
measurements and/or faults act as antecedents from which we can infer a classification
of the pattern input, which means to localise the failure. For each expected single
fault scenario there exists a corresponding FINN at the medium level of the hierarchical
structure of the FNN.

The number of single faults considered determines the number of fuzzy neural
networks used in the hierarchical structure. Other authors (Watanabe et al., 1994)
using feed-forward artificial neural networks have already followed the procedure.

The topology of each FNN has been achieved through a trial-and-error procedure
until the expected fault diagnosis performance has been achieved. Two degrees of
freedom have been considered in this design. The first is related to the number of
processing elements in the fuzzification layer. The other is related to the number of
neurons of the hidden layer of the neural network.

The number of processing elements in the fuzzification layer depends on the
number of measurement variables used for fault diagnosis purposes and on the number
of fuzzy qualitative values used to describe the behaviour of the process variables.
However, once the number of measurement variables has been fixed, the number of
fuzzy sets used depends essentially on the following aspects:

e The number of considered faulty scenarios. It has been observed that the number
of faults that can be diagnosed increases with the number of fuzzy sets used to
discretise the fuzzy quantity space. Thus, by increasing the number of fuzzy sets,
the number of possible patterns to recognise can be increased.

e The ratio of expected data compression. By using fuzzy sets to describe the
process variables’ behaviour, due to the fact that similar training patterns are
transformed into the same fault symptoms, training data will be compressed and
the training effort can be lightened.

e The noise level in the measurement variables. The fuzzy approach makes the
system less sensitive to the measurement noise (Zhang and Morris, 1994).

A similar topology for an FNN applied for fault diagnosis has already been re-
ported, as well as a comparison between the performance achieved with such an FNN
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and the classical multilayer feedforward neural network (Zhang and Morris, 1994).
Some results are presented which demonstrate that a fault diagnosis system based on
a fuzzy neural network performs much better than the one based upon a conventional
neural network.

A trade-off between all the above-mentioned aspects, which are very problem
dependent and sometimes difficult to evaluate, determines the number of processing
elements in the fuzzification layer that allows us to achieve the desired performance.

The second degree of freedom in the design concerns the number of processing
elements in the hidden layer. In order to achieve the desired performance, the com-
plexity of the relationships between faults and fault symptoms determines the number
of processing elements in the hidden layer. Once again a trial-and-error procedure has
been followed, due to the inherent ambiguity associated with most above-mentioned
aspects. If the complexity of the relationships between faults and symptoms increases,
the number of processing elements in the hidden layer has to be increased to achieve
the performance desired. Furthermore, it has also been observed that the number
of processing elements in the hidden layer could determine how early an incipient
scenario could be isolated, especially when the fault development speed is quite low.

The outputs of each network take values in the range [0,1]. A fault is diagnosed
when the corresponding FNN output is close to 1. If all FNN outputs take values
close to 0, this corresponds to the normal operation case. Hence, in training an FNN
to diagnose single faults by using deterministic data, which is concerned with abrupt
fault symptoms, the input matrix has the number of columns equal to the number of
measurement variables used for fault diagnosis purposes and for each fault the num-
ber of rows which depends on the number of operating regions that can be defined
for a specific process. Obviously, the input matrix has also the number of rows cor-
responding to the input patterns associated with the normal process behaviour, each
one concerning each operating region. However, by using an FNN with a fuzzification
layer consisting of three fuzzy sets, the fault symptoms, as well as the input patterns
associated with the normal process behaviour, are compressed. Thus, independently
of the operation state of the process only one row for each single fault considered is
achieved.

The output decision matrix would have only 0’s in the row corresponding to the
normal case, one 1 in each row corresponding to a single fault, two 1’s in each row
corresponding to the double faults, and so on if more than two faults are considered.
However, previous research work (Calado and Roberts, 1996b) has shown that the
fault symptoms concerning multiple simultaneous faults are harder to learn than those
associated with single faults. Furthermore, the larger the set of faults, the larger the
set of fault symptoms will be and, hence, the longer and less certain the training
outcome.

In order to overcome this problem, the current approach has a hierarchical struc-
ture of three levels where several FNNs are used, as shown in Fig. 3. The lower level
consists of one FNN where all variations of the measured variables are used as inputs.
At the medium level a number of FNNs (structurally identical or different) which is
equal to the number of single fault scenarios considered, are used. Each FNN at the
medium level is also fed with all the measurement variables and each one is associated
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' OR operation I

A4 y Upper Level
Medium Level

Lower Level

Measurement variables

Fig. 3. The hierarchical structure of FINNs.

with an output of the FNN at the lower level, corresponding to a particular single
fault. The upper level consists of an OR operation of the outputs of the FNNs of the
medium level.

The elements of the set used in the OR operation are determined by the outputs
of the FNN at the lower level. Thus, if the i-th and j-th outputs of the FNN at the
lower level are taking values close to 1, then the outputs of the i-th and j-th FNNs at
the medium level form the elements used in the OR operation. However, if only one
output of the FNN at the lower level is taking a value close to 1, then the diagnosis is
deemed to be the single fault corresponding to that output. Following this procedure
the hierarchical structure can cope with situations involving multiple simultaneous
faults (Calado and Sa da Costa, 1998).

Both the lower level and the medium level networks are made up of three layers:
a fuzzification layer, a hidden layer, and an output layer. The FNN is trained using
an extension of the backpropagation learning algorithm (Calado and Roberts, 1996b).

The fuzzification layer converts each input into the quantity space, ¢y =
{decrease, steady, increase} by association with three types of neurons in the fuzzi-
fication layer. The processing elements of the fuzzification layer related to the fuzzy
sets ‘decrease’ and ‘increase’ use the complement sigmoid function and the sigmoid
function, respectively, as their activation functions. The other processing elements
of the fuzzification layer related to the fuzzy set ‘steady,’ as well as the processing
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elements in the hidden and output layers use the Gaussian function as their activation
function.

During the current studies, it has been observed that the neural network’s gener-
alisation ability has a great importance in the diagnosis of incipient faults, since the
training patterns used include only abrupt fault symptoms. A description of some
achieved results is given in the next section.

5. A Case Study

A continuous binary distillation column (CBDC) is used as the test bed to evaluate
the performance of the proposed FDI system. Distillation is a process in which a liquid
or vapour mixture of two or more substances is separated into its component fractions
of desired purity by the application and removal of heat. Figure 4 shows a diagram
of the CBDC under consideration, with eight trays, reboiler and condenser, reflux
accumulator,; and level control in place. The primary controlled variables are distillate
and bottom-product compositions, liquid level in the column base and accumulator,
and column pressure. The manipulated variables are the product flow rates, reflux
ratio, heat input (steam rate), and heat removal (cooling-water flow rate). The feed
rate is fed continuously as a saturated liquid into Feed Tray 5. This feed stream is
not normally manipulated, since it is a product from the upstream operation.

A mathematical model, based on a material balance, a molar balance and the
liquid-vapor equilibrium equation is used to simulate the CBDC (Ingham et al., 1994).
We assume a pure binary system with constant relative volatility throughout the col-
umn and perfect, 100 per-cent efficient trays, i.e. the vapour leaving the tray is in
equilibrium with the liquid on the tray. The feed rate is F' (moles/s) and compo-
sition is X (mole fraction more-volatile component). The overhead vapor is totally
condensed in a condenser and flows into the reflux drum, whose hold up of liquid is
Mp (moles). We assume that the content of the reflux drum is perfectly mixed with
composition Xp. The reflux is pumped back to the top tray (1) of the column at a
rate L (moles/s). The overhead distillate product is removed at a rate D (moles/s).
At the base of the column, the liquids bottom product is removed at a rate W
(moles/s) and with a composition Xy. Vapor boil-up is generated in a thermosiphon
reboiler at a rate V7 (moles/s). It is assumed that the liquids in the reboiler and in
the base of the column are perfectly mixed together and have the same composition
Xg and a total hold up of Mp (moles). The composition of the vapor boil-up is then
Y, and the vapor composition is in equilibrium with the liquid at Xj.

It is clear that changes in any of the five input variables will affect all output
variables. The same is also true when a fault occurs within the process.

Following the methodology proposed in Section 3, fault detection heuristic rules,
based on deep and shallow knowledge of the CBDC, have been used to build up the ex-
pert system knowledge base. To assure a good reliability of the fault detection system,
in some pre-condition of the heuristic rules the linguistic statement ‘continuously’ is
used. Therefore, for implementation purposes, the last two changes in the measure-
ment variables should be retained to give an indication of this linguistic statement.
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According to the system architecture described in Section 2, the ‘data pre-processing’
module performs this task, besides the pre-processing and data normalisation.

Following the methodology proposed in Section 3 for generating fault detection
heuristic rules, the CBDC process represented in Fig. 4 was decomposed into three
subsystems. The first subsystem, S;, consists of external feed elements and associated
sensors. The second subsystem, S, includes the following components: distillation
column, Pipe 1, Pipe 5, reboiler level control valve, Pipe 6, reboiler heat exchanger
and associated sensors. The remaining components form the third subsystem, Sj,
which are all the components related to the surge drum part of the process. The
directed graph corresponding to this decomposition is shown in Fig. 5.

Taking into account this decomposition, the corresponding three matrices de-
scribing the process structure are obtained as described previously. According to (1),
the connection matrix for the CBDC process is as follows:

S1 Ss S3
S111 10 (6)
C= 68,1011
S31 0 1 1
U, vl
| Pipe 1
L, X0
: Condenser
i
[_
2
]
3
L, %3 4?
4 Ref lux
F.® ‘!?IL,X4
Q

7
Pipe 4 D, X0
8
| Vi, v¥9 A
i Reboiler
P
M
B []Stean
[ 4]
Pipe § Pipe 6

Fig. 4. The continuous binary distillation column.
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@ »( S,

Fig. 5. The directed graph for the continuous binary distillation column.

To perform the process behaviour analysis, nine measurement variables are con-
sidered. For the first subsystem, S, two measurements F' and z are considered
which are the column feedrate and the feed composition, respectively. From (4) the
self-causal matrix for the first sub-system is given by

Fz ‘
CSle[IO] (7)
z| 0 1

Following an analogous procedure, the self-causal matrix for the second subsys-
tem, Ss, is

MgW WV
Mg[1 00 0
cs,- W11 (8)
Vi o1 1 1
v, oo11

where Mp stands for the hold-up in the reboiler, W is the bottoms flow rate, ¥}
denotes the vapour boil-up rate and V stands for the vapour flow rate.

For subsystem S3 the following measurement variables are considered: L ~ the
liquid flow rate, Mp — the hold-up in the surge drum and D - the distillate rate,
which determines the self-causal matrix

Mp L D
Mp| 1 0 1

9

CS3= L 0 1 1 ©)
D |1 11
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From (3) the measurement causal matrix from subsystem S; to subsystem S,
is given by

MW WV

v~ Flo 001 (10)
2= 2]l0 0 0 0

The measurement causal matrix from subsystem Ss to subsystem Ss is

Mp L D
Mgl 0 0 O
CMys = W1 10 00 (11)
i 1000
V L0 11

The measurement causal matrix from subsystem S; to subsystem S is given by

Mg W WYV
Mp| O O 1 O

12

CM3; = L 01 00 ( )
D 0100

Based on these matrices, heuristic rules are automatically generated as explained
previously in Section 3. For illustration, let us consider the situation where the hold-
up in the reboiler is subjected to an abnormal behaviour taking a value higher than
its set point. It can be seen from (8) that the hold-up in the reboiler can be directly
affected by itself and by the bottoms flow rate W. Furthermore, from matrices (6),
(10) and (12), we conclude that there are no variables in other subsystems which
could be directly responsible for the observed abnormality. From (12) it is possible to
conclude that the process variables L and D can directly affect the process variable
W. However, Mp is not directly affected by such variables. From this search, the
following fault detection heuristic rules are generated:

IF (Mg is higher than its set-point AND W is continuously decreasing)
THEN enable fault detection flag

IF (Mg is higher than its set-point AND Mp is continuously increasing)
THEN enable fault detection flag

From the point of view of the knowledge base implementation, the two heuristic
rules presented above, which have been generated from deep process knowledge, can
be integrated with heuristic rules generated from shallow process knowledge and the
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result is as follows:

IF  (Pipe 5 valve is not saturated AND no Mp set-point change takes place)
THEN
{

IF (Mg is higher than its set-point) THEN

{
IF (W is continuously decreasing OR Mp is continuously increasing)
THEN enable fault detection flag

ELSE
{

}
}

The fault isolation system is based on a hierarchical structure of fuzzy neural
networks with the characteristics presented in Section 4. Six measurement variables
were used as input data to the all FNNs. These are Mp, the hold-up in the surge
drum; D,, the distillate flow rate; Mp, the hold-up in the reboiler; W, the bottoms
flow rate; F', the column feed rate; V, the vapour flow rate. Thus, the fault isolation
task is performed by presenting changes in the measurement variables to the FNNs,
which are propagated in a feed-forward manner through the FNNs. Then, to locate a
fault or faults in the process, an analysis of the fuzzy neural networks’ output values
is carried out as described previously.

All FNNs used in the hierarchical fault diagnosis structure have the same topol-
ogy. The FNN fuzzification layers have 18 processing elements arranged in 6 groups
corresponding to the 6 information sources, where each group contains 3 neurons.
The number of neurons in the hidden layer is determined by the complexities of the
relationships between the faults and the fault symptoms. During the current studies,
it was found that 13 hidden processing elements assure a good performance.

As there are six single faults considered, six FNN output neurons exist, each
one corresponding to a single fault. Each FNN at the medium level contains seven
inputs corresponding to six measurement variables plus an input corresponding to a
particular single fault, which is an output of the FNN at the lower level.

Training and test data were obtained from simulation of the model of the CBDC,
taking into account all the faulty scenarios being considered and the nominal oper-
ational conditions. The six single faults considered are: F; — Pipe 2 blocked, F,
— Pipe 4 blocked, F3 — Pipe 5 blocked, F; — Pipe 6 partially blocked, F5 - the
external feed rate too high, and Fg - the external feed rate too low. Also, a selected
set of 10 double simultaneous faults achieved through an AND operation in the single
fault space, and a selected set of 5 triple simultaneous faults also achieved through
an AND operation in the single fault space, were considered.

All FNNs were trained by using an extension of the classical backpropagation
learning algorithm already reported by the authors (Calado and Roberts, 1996b).
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According to that algorithm, the learning task was performed through the following
equations

AWJ[f](k + 1) = lcoef * eg.s] « 2" + momentum x Awg";] (k)

K3

= [£1(1) + o] + 3 (el sl (3)
: k

egco] = (di — o) * [f’(Ik) + f(l)ffset]

[s]
71
the j-th neuron in layer s, e
(s

i

where w:; is the weight of the connection joining the i-th neuron in layer s — 1 to

5.5] stands for the current error of the j-th neuron in

~U denotes the current output state of the i-th neuron in layer s — 1,
]

layer s, z

‘Icoef’ signifies the learning coefficient, k is the adaptation step, I J[S is a weighted

sum of the inputs to the j-th neuron in layer s, f'(I J[-s]) denotes the derivative of
the transfer function associated with the j-th neuron in layer s, di is the desired
output, o stands for the actual output produced by the network with its current set
of weights.

It was observed that with 5000 iterations on average, a learning coefficient equal
to 0.9, a momentum term equal to 0.6 and a derivative offset equal to 0.2, a LSE
error smaller than 0.015 was achieved. Although the training was based on single and
double abrupt faults, the testing was carried out on single, double and triple faults
considered as abrupt or incipient.

Several simulation studies were performed and it was considered that a fault
existed in the test set when the output of a neuron in the output layer was greater
than 0.65. During the studies conducted with the CBDC process, under abrupt faulty
scenarios a very accurate diagnosis was obtained. Note that all single abrupt faults
considered were successfully detected and localised in less than one second. Under
incipient faulty scenarios, it was observed that the results achieved are dependent on
the fault development speed.

However, all single faults were simulated and successfully diagnosed with different
fault development speed values. It is worth noticing that the networks were trained
with stronger faults (abrupt fault symptoms) and the tests were performed with small
degrees of faults. A number of tests were also performed with double and triple
simultaneous faults. The results achieved under these faulty scenarios are quite good
but further research is needed to obtain exhaustive conclusions.

In the simulation of incipient faults, it was assumed that the component degra-
dation follows a linear law. Therefore, incipient faults are simulated through the
equation

My = M, (1 +t) (14)

where My is the value of a process variable when there is a fault, M, is the nominal
value of a process variable when there is no fault, v stands for a constant which
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determines the speed of the fault development (s7!), and ¢ denotes time (s). In order
to test the performance and reliability of the FDI system, the softest incipient fault
behaviour was assessed. Note that the common situation is a component degradation
following an exponential law. Thus, in this case, the behaviour of the process variable
affected by that fault will be closer to a behaviour under an abrupt fault scenario.
Therefore, since in our design the FNN training patterns used include only abrupt
fault symptoms, the diagnosis of an incipient fault can be achieved with less effort,
where the component degradation follows an exponential law.

Several simulation studies were performed under incipient fault scenarios. For in-
stance, Fig. 6 illustrates the diagnosis achieved after the single fault F; was simulated
with a speed development value equal to 0.006 h=1. It is worth pointing out that since
the surge drum level control loop masks the fault effect, the incipient faulty scenario
which has a speed development value very low is particularly difficult to diagnose.
Under this faulty situation, the change in the liquid flow rate, L, which is directly
affected by that fault, is depicted in Fig. 6(a). However, as is shown in Figs. 6(b) and
6(c), since the surge drum level control loop compensates the decrease in the liquid
flow rate L by an increase in the distillate flow rate D, only a small perturbation in
the surge drum level Mp is observed. Even in this case, the proposed FDI system
is still able to diagnose the correct fault after the control valve saturation has been
reached. If such a situation takes place, the fault detection flag is enabled and in less
than half a second the output of the FNN at the lower level corresponding to F}
takes the value 0.78 and the fault is thus diagnosed. All the other outputs of such a
network take values close to zero.

As was previously described, the diagnosis achieved under multiple fault scenarios
is a result of an OR operation on the outputs of the FNN at the medium level.
Furthermore, the elements used in the OR, operation are determined by the outputs
of the FINN at the lower level. For example, when abrupt faults F; and Fs occur
simultaneously, the outputs of the FNN at the lower level corresponding to such faults
take the values 0.995 and 0.998, respectively. Therefore, as we consider an FNN output
which takes a value greater than 0.65 as active, the outputs of the first and fifth FNNs
at the medium level form the set used in the OR operation at the upper level. During
the studies conducted under the above-mentioned faulty scenario, it was observed
that the outputs of the first FNN taking values greater than 0.65 correspond to faults
Fy and Fs. The output of the fifth FNN corresponding to fault F) takes the value
0.996 while the output corresponding to fault Fy takes the value 0.999. Thus, the
OR operation was carried out between the sets {F1F5} and {F;F5} and hence the
result was the diagnosis of the double simultaneous faults F; and Fs.

6. Conclusions

An on-line fault detection and isolation system, consisting of an expert system cas-
caded with a hierarchical structure of fuzzy neural networks, has been proposed.
Successful results have been achieved during simulation studies conducted with a
continuous binary distillation column plant. Because the fault detection task is per-
formed through an expert system containing deep and shallow knowledge, the overall
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Fig. 6. The process variables under a faulty scenario.

computational fault detection and isolation system has an ability to cope with tran-
sient behaviours of the process variables avoiding false fault detection and isolation
under such situations. Furthermore, the system is able to diagnose multiple simulta-
neous faults from only single fault symptoms.

Following a systematic methodology described here, fault detection heuristic
rules, based on deep and shallow knowledge of the process under consideration, have
been used to build up an expert system knowledge base. The advantage of such an
approach is that the fault detection task does not depend on quantitative threshold
values and, hence, the performance and reliability of the fault detection and diagnosis
system is increased.

The fault isolation system is based on a hierarchical structure of FNNs, which
combines the advantages of both fuzzy reasoning and neural networks learning capa-
bilities. Thus, the approach described here compresses the on-line measurement data
into qualitative values whose semantics are represented by fuzzy sets and, hence, the
training of the FNNs and the diagnosis of the faults can be carried out more efficiently.

Since in the current approach the relationships between fault and faults symp-
toms are distributed through several FNNs, one can conclude that the training of a
hierarchical structure of fuzzy neural networks can be done more easily than that of
a non-hierarchical neural network for the same purpose.
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The successful results achieved so far during simulation studies with the continu-
ous binary distillation column plant indicate a great potential for the use of the fault
detection and isolation system proposed in this paper.
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