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CRITERIA FOR STABILITY OF UNCERTAIN LINEAR
SYSTEMS WITH TIME-VARYING DELAY'

QING-LoNGg HAN*, KeqQiN GU*

This paper focuses on the stability problem for uncertain linear systems with
time-varying delays. Based on a discretized Lyapunov functional approach,
delay-dependent criteria that are formulated in terms of linear matrix inequali-
ties are proposed to guarantee asymptotic stability for such systems. Numerical
examples are also included to show the effectiveness of the method.

Keywords: stability, time-varying delay, uncertainty, linear matrix inequalities,
Lyapunov functional

Notation
R — real number field
R — n-dimensional real vector space
Rrxn -~ (n x n)-dimensional real vector space
I — identity matrix of appropriate dimensions
wT — transpose of W

W >0 (W < 0) — symmetric positive (negative) definite matrix
W >0 (W < 0)— symmetric positive (negative) semi-definite matrix

w — derivative of W with respect to time ¢
W (a) — derivative of W evaluated at a
C - set of continuous R"-valued functions on [—rar, 0]
r(t) - time delay
Tm — lower bound on r(t)
TM — upper bound on r(t)
B — upper bound on the rate of increase in the delay
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1. Introduction

Stability analysis and stabilization of time-delay systems have received much attention
in the past decade. This is due to theoretical interests as well as a need for practical
system analysis and design. Delays are frequently encountered in various engineering
systems, and their existence is often the source of instability, the generation of osci-
lation, and poor performance (Malek-Zavarei and Jamshidi, 1987). Numerous works
on this topic have been reported in the recent few years. Depending on whether the
stability criterion itself contains the delay argument as a parameter, stability crite-
ria for time-delay systems can be classified into two categories (Mori, 1985), namely
delay-dependent stability criteria (Gu, 1997; 1999a; Han and Mehdi, 1999a; Li and
de Souza, 1997; Niculescu et al., 1995; 1996) and delay-independent ones (Chen and
Latchman, 1995; Han and Mehdi, 1998; 1999b; Phoojaruenchanachai and Furuta,
1992).

Many delay-dependent results have been pursued based on the Razumikhin the-
orem (Han and Mehdi, 1999a; Li and de Souza, 1997; Niculescu et al., 1995; 1996).
Although these results are usually less conservative than the delay-independent re-
sults, they can still be rather conservative. Moreover, there are no obvious ways to
obtain less conservative results even if one is willing to spend more computational time
on the problem. Furthermore, most criteria do not reduce to a necessary and suffi-
cient condition when applied to uncertainty-free systems. Gu (1997; 1999a) proposed
a discretized Lyapunov functional approach to check the stability of uncertain linear
systems with constant time delays. The criteria showed significant improvements
over the existing results even under very coarse discretizations. For uncertainty-free
systems, the analytical results can be approached with fine discretization. The re-
sults have also been generalized to systems with multiple delays (Gu, 1999b) and
distributed delays (Gu et al., 1999).

In this paper, we deal with the stability problem for uncertain linear time-delay
systems. The delay is assumed to be a single, time-varying, bounded function. Based
on the discretized Lyapunov functional approach, we develop delay-dependent criteria
for stability analysis. The proposed results are generalizations of the results derived
in (Gu, 1997) to the case with a time-varying delay. Numerical examples are also
included to show the effectiveness of the method.

2. Problem Statement
Consider the uncertain linear system with time-varying delay

&(t) = At)z(t) + B(t)z(t — r(¢)), (1)
where z(t) € R™ is the state, A(t) € R**" and B(t) € R**™ are uncertain matrices,

which are unknown and possibly time-varying, but known to be bounded by some
compact set {2, i.e.

la) B(#)] €QCR™™ forall ¢ € 0,00),
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and the delay r(¢) is a time-varying bounded function satisfying

0<rm <r(t) Srar, 7(H) SB <, (2)
where r,,, ras and B are constant. For ¢t € [0,00) define

2 €C, z:(0)=zx(t+6), 0€][-rm,0]. (3)

In this paper, we will develop a practical delay-dependent criterion to check the
stability of the above system. More specifically, given three scalars r,,, rp and
B, our objective is to determine if system (1) is asymptotically stable for any r(t)
satisfying (2).

Since z(t) is continuously differentiable for ¢ > 0, one can write (Hale and Lunel,
1993)

—r(t)
z(t—r(t)) = z(t—rM)+/ (t+60)dd

—rMm

—r(t)
=zt — rM)+/

—rMm

[A(t +0)x(t+6) + Bt +0)z(t+ 0 —r(t+ 9))] dg.
Using this expression for z(t — r(t)) in (1), we obtain

z(t) = A@)z(t) + B{t)z(t — rar)

+ B(t) /vr(t) [A(t+9)z(t+9) +B(t+0)z(t+0—r(t+ 6))]d9. (4)

—TM

Then the stability of system (1) can be investigated by choosing a quadratic Lyapunov
functional candidate

V(Ilit) :C—-R

Viz) = 52 OPe) +270) [ Q@)+ &) de

de, (5)
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where

((PeR*n, P=pPT >0,

Q:[-rum,0] - R¥>",

S [=ry, 0] = B, ST(€) = S(€) > 0, (6)
R:[=rp,rm] = R R(=€) = RT(¢),

( K;e R, K;=KI >0, i=1,2.

The following theorem is well-known (Hale and Lunel, 1993):

Theorem 1. System (1) is asymptotically stable if there exists a quadratic Lyapunov
functional V(z:) of the form (5) such that for some € >0 and arbitrary x; € C

V(i) > ea? (t)a(t) (7)
and 1ts derivative along the solution of (1) satisfies

d

3V (@) < —eaT (B)a(0). ®)

Using (4), it can be easily verified that

%V(zt) = zT(t)P[A(t)z(t) + B(t)z(t — )]

—r(t)
+ T (H)PB() / (At +6)a(t +0) + Bt +0)a (i + 6 —r(t + 9))] o
0

+ [A®)z@) + BM)at —ra)]” [ QE)z(t+€)de

—ryp

+ { / U T4 907 df]

—Tpf

—r(t)
x B(t)/ [A(t+9)m(t+o) +B(t+0)x(t+0—r(t+9))]d0

—rMm

+aTw)f i?f“i"“ +9ae+ [ OTM [ / }WT(t + OR(E ~ )it + 1) dn] a

0
+ [ AT OS©s(+ At + 2 rag — r)aT(0)(Ks + Koa(t)

— %/—*Tm [mT(t—I-G)le(t-i-O) + (L= F(t+0)aT(t + 60— r(t +6))

x Kozt + 60 — r(t + 0))]d0. 9)
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Noting that (Gu, 1997)

0 0
i {/ 2T (¢ + E)R(E — m)alt +n) dn| dé = 0 (10)

—TM —T™m
and integrating by parts in (9), we have
d

S V(@) = 557 O[PAD+ ATOP+5(0)+ QU0+ Q7O+ (ras — ) (K1 + Ko)]a(0)
+ 2T (1) [PB(t) — Q(—ran)]a(t — rar) — %Q:T(t —ra)S(=ran)a(t — rag)
0
+at() [ [AT0QE) - Q) + RT@)s(e+¢) de

+aT(t ~ru) /_O [BT(£)Q(€) ~ RT(€ +7n)]a(t + €) d¢

SR

0
[ w08+ ae
+zT(t)PB(t) /_T(t)[A(t +0)z(t+0)+BE+0z(t+6—r(t+ 9))} df

v/ 00" df}

—7(t)
X B(t)/ [A(t+9)w(t+9) +B(t+0)z(t+9—r(t+9))]d9

- % /Jm [$T(t +O) Kzt +0) + (1= #(t+6))aT (¢ +6 —7(t +6))

x Kza;(t+0—r(t+0))]de. (1)

3. Discretization

Equations (5) and (11) indicate that the Lyapunov functional and its derivative are
both quadratic functions. Choosing @, R, S, T and § to be piecewise linear, we can
write (7) and (8) as regular linear matrix inequalities. More specifically, the interval
[—7a,0] is partitioned into N segments [6;—1,4;] such that

6 =—-rpy+ih, i=0,1,2,...,N, h=ry/N. (12)
Write

{ Qi=Q%),  Si=S(), T; = T(5:),
(13)



210

Q.-L. Han and K. Gu

Define

1 =14h, i=0,+1,%2,...,+N, R;=RY,=R(r). (14)
For 0 <a<1,set

Q@) 2 Qi1 +ah) = (1~ a)Qi1 + aQs,
Si(a)
T¥(a)

1]>2

S((Si_l + ah) = (1 — Oé)Si_.l + OfSi,

e

| AT((Si_l +ah) = (1 —a)Ti—1 + oT;, (15)
ng(a) =Tk (6i—1 +ah)=(1- a)Tkj’,;l + oT%j.4,

Skj(éi_l + Ozh) = (1 - oz)i‘s"kj,i_.l + agkj,i;

]

Ri(():) é R(Ti_l + Olh) = (1 — Oé)Ri_.l + aR;.

4. Characterization of the Lyapunov Functional

Using the discretization of @), S and R, we can write (7) in the form of a linear
matrix inequality.

Theorem 2.

satisfies (7) if

Given piecewise linear Q, S and R, the Lyapunov functional (5)

S;>0, i=0,1,2,...,N, (16)
R QT
. 0 17
O P >0, (17)
K,=KI'>0, i=1,2, (18)
where
Ry R., -+ R_n
. Ry Ry o+ R_np1 R
R=0 0 L Q=@ @ - Qv] )

By Ry-1 - Ro

Proof. We see that

1 0
V() > 5 OPa(t) +o7(0) [ Qe)se +8) e

0 0
AL 1 s ome o

Tm

+3 [ ot 98l + e > e (0ol

The last step was proved in (Gu, 1997). n
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5. Characterization of the Lyapunov Derivative

Now we first give the following key lemma that plays an important role in constructing
the stability criterion for system (1).

Lemma 1. Condition (8) is satisfied if there exist symmetric matriz functions
() = Tl;(f) T12(6) e = S33(6)  B34(8)
Ti5(8) T(8) 3346 Sw(§)

satisfying

0
/ T(€)dé = 0 (20)

—T

together with
S(¢) =0 (21)

and a symmetric matric

Ly Ly
L=
L%, L,

such that
Al + Y1 + Tll(f) —AZ2 + Tho (f) A3 (E) +Y3
Hpyr = —AT 4+ THE)  S(—ram) + Taa(é) A*(€) >0 (22)
| AT+ YT AT (50 +T?)
A Lis T(9) T2(9)
L Ly I3(¢,0) I(¢,0)
Hiox = >0 (23)
() T3T(,0) Ky —S33(§) —334(8)
D7) T, 0  —STE)  (1—-BKz—Su(f)
for all

§€[-rm, 0], O€[-ra,—rnl, [A(t) B(t)]eﬂ, [A(t+e) B(t+9)]en,
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where

(A = —[PA(t) + AT()P + S(0) + Q(0) + QT(0)],
A? = PB(t) — Q(-ru),

A%(€) = AT(1)Q(€) - Q(€) + RT(9),

A€ = BT(H)Q(&) — RT(¢ + ru),

Y= —(rar —rm)(L1 + K1 + K>),

M — Tm
yi=_M_'mp, (24)
TMm

ys =M Tmp
M

I''(8) = —PB(t)A(t + 6),

12,

I'?(9) = —PB(t)B(t + ),
T3(¢,60) = —rmQT(E)B()A(t +6),
( T(&,0) = ~rurQT(€) B(t)B(t + 6).

Proof. Using (2) and the fact that

—Tm —r(t)
- / zT(O)Wz(h)dd < — / =T (0)W () do

—TAr

for any W > 0, we obtain

- %/ " a7 6+ 0)Kaa(t + 6)

+ (L=t +8)aT (646~ (o4 6) Koz (t +0 — r(t +06)) | a6

—r(t)
< —5/ [zT(t+0)K1x(t+0)

+ (1= B)a" (640 —r(t+6) Koa(t+6—r(t +6)]do.  (25)
Let

97(1,6,6,r) = [27(8), 57 (¢ +£),27(t +0), 27 (t + 6 — r(t + 0)],

oT(8,r) = [wT(t +6),2T(t+6—r(t + 9))].
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Then we have

—r(t)
ST PB(Y) / (At +6)2(t +0) + B(t +8)a(t +0 — (s +6)) ] a8
0
+ U_ 27+ OQT(©) d&]

—r(t)
X B(t)/ [A(t+0)z(t+6)+B(t+9)z(t+0—r(t+6))]d6

—r(t)
- %/ ( [mT(t +0)Kiz(t+6)+ (1- )z (t+ 0 —r(t+6))

X Kya(t+0 = r(t +6))]d8

- / {/" ())PB(t) [A(t + 0)z(t + 6) + B(t + )
™M Sy | —rar

xx(t+9_r(t+e))]da}df+f {/:” 2T+ OQT(E)

x B(t) [A(t +0)z(t+6)+Bt+0)z(t+6—r(t+ 9))]d0}d§

()
I {/ [g;T(t-i—G)Kl:D(t—}—G)+(1—5);1;T(t+9—r(t+0))

2’I‘M —ra

x Kaz(t+6 —r(t + 9))]de}d§

—r(t
= 2'[‘M . {/ t (t,&,0,r YHrrrd(t, &, 0 T‘)d9} d¢

2rM / rar l / o (£)L1z(2) de] d¢
27~M/_TM [/ t+fL2$(t+£)d6] d¢

+ L i [/_ T (t)Lix(t + €) dH] d¢

™M
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1 0 —T(t)
—5= | |t ens@oenas ac
M J—rpy -TM
1 0 —r(t)
< - 5;'— / '19T(t, f,g,T)HLFKﬂ(t7£16)T) de d€
M —TM —-_TM

_ 0
" %(TM — r)eT (8) Ly (t) + ”V;TMT"‘ /_ N o (t+ &) Loz(t + ) d¢

N 0
+ —M:r-—A;CT—JJT(t) /_TM ng.T(t + 5) df

1 0 —r(t)
- [ [ oT(0,7)S(&)a(8,r) daJ de. (26)

2’I‘M —rar

Noting that (25)-(26) and using the notation of (24), from (11) we get

0
GV < =5 [ T O18© +1ate+ ) ag
0
+2T (1) / [A3(¢) + Y¥a(t + €) de

0
- %xT(t)(Al Y2 + 2T (- ra) / AY(O)a(t + €) de

— 20Tt — rar)S(—rar)alt - rag) + 2T (A2t — rag)

2
1 0 —r(t)
_m - {/; ’[9T(t7£a91T)HLFK'l?(t,é-,e,’[‘)dg} df
0 —r(t)
B 5;‘1; _ {/_ gT(g; r)S$(§)a(0,r) dﬂ} d¢ (27)
For
5@ +Yr>0 28)

which is guaranteed by (22), we can write

Q
GV < -5 [ WO+ Y w@a

—%[xT(t) mT(t—rM)]A[ =) }

z(t — M)
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1 0 —r(t)
- { / 9T (t,€,0,r)Hrrrd(t,€,0,7) de} d¢

2’I'M —rar —rur
1 0 —r(t) r
- [ { /_ o7 (60,13 (E)o (0, 7) df)] de, (29)
where
w(€) = [$(©) +Y?]aT (¢ +& — (A% (&) + Y a(t) — AT (©z(t — ),
a4yt A7
RS
0 AB Y3 . .
_/; L(fz(-; [S({) +Y2] [A?’T(E) +Y3T A4T(f)] df
o [ 1 [At+yr A2 1
N /;rM {E —~A2T S(=ra) + ,;,_A;T(‘f)
INGER I B
- |: (Afi(_; :I [S(E) +y2] [AST(E) + V3T A4T(§)] } de.
Therefore
1 (Al +Y! —A? 1
™™ | —A2T S(=ra) + ET(@
3 3
— A (Afz(-;y [S(E) +Y2] -1 [AST(é) +y3T A4T(§)] > 0. (30)

and (21) and (23) for all £ € [-7p,0] and 6 € [—rps, ~7,,] are sufficient conditions
for (8). Expression (30), together with (28), is equivalent to (22) in view of Schur’s
complement. ]

Remark 1. If rps — 7, = 01 then Y! - 07, Y2 = 0~ and Y3 — 0. Therefore
inequality (22) approaches inequality (12) in (Gu, 1997).

Remark 2. If we choose the symmetﬁc matrix function 7'(§) such that

o]

T(¢)d¢ <0, ' (31)

—Trarr

it is easy to see that the result of Lemma 1 is also true.
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Choosing piecewise linear functions as described in Section 3, conditions (21)-
(23) can be written as linear matrix inequalities. The result is as follows.

Theorem 3. If the functions Q, R, S, T and S are chosen as piecewise linear as
described by (13)-(15), then conditions (21)-(23) are equivalent to

Cx. Y
i N33,i+k—1 34,itk—1
P = 7 >0, (32)

K
oT Cx
S34,itk—1 S44,itk—1

Al + Ybl +T11 Jitk—1 —-A? 4 T12,i+k:—l A?k + Y03
R, = ASE Y A So + Toa,i4 k-1 A, >0, (33)
1
AT 4 v3T AT 7 (8 = S +75)
L, Ly I (6) ()
_ Lr Lo T3 (6 T (6
Hpsg = | 2 ) ) >0, (34)
r! (9) 1"13,3"(9) K — %33,,‘4_]@_1 _834,i+k-—1
©*e) rif®)  -SLiw:  (1—B) Kz — Sk

forall i=1,2,...,N, k=0,1, 0 € [-ry,—r], [A(t),B(t)] € Q, [A(t +6),B(t +
0)] € Q, where

(A= —[PA(t) + AT(t)P + Sn + Qn + QN
= PB(t) - Qo,
A} = hAT()Qi—1 — (Qi — Qi—1) + RRT 5 _,,
Al = hBT(£)Qi—1 — hR
) A} = hAT()Qi — (Q Qi—l) + hRT (350
A} = hBT()Q; - hRT,
Y = —(Nh—ry) (L1 + K1 + K),

Nh—r,,

VE = -
0 N

Lo,
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;

I''(8) = —PB(t)A(t + 6),

() = —PB(t)B(t +6)

[%,(0) = —NhQT | B(t)A(t +0),
I'3(8) = ~NhQTB(t)A(t +6),
% 0) = —NhQT ,B(t)B(t +6),
I'4(0) = -NhQTB(t)B(t +6)

\

and (20) is equivalent to

N-—-1
T0+TN+2ZTi:0.
=1

Proof. For any i =1,2,...,N, we have
£ €[0i-1,0:], €=06;1+ ah.
Then we can write (21)—(23) as
Qa(a) Sy
33(c) §4( ) >0
S5i(@) S

) _ | ) .
AV +Y) +Th(e) —A*+The)  Adw)+1¥¢

AT 4+ TiT (@) So+ Tiy(a) A%(a) >0

“ 1 “
i AT (a) + EYOBT AT () ——(8; — Si-1 + Y3)

Nh2

and

Ly Ly Ir'(6) r2(6)

LT, Ly (e, 8) (a,6)
7)) 17(0,8) Ky — Sis() —3,(a)
I27(6) T*7(a,0) -Sii(@) (1-B)Ks—Siy(e)

where
&%(a) = AT()Q' (@) ~ 3 (@i - Qe) + (R (@),
A4(0) = BT()Q!(0) ~ B (a),
1%(a,0) = —NRQT () B(t)A(t + 6),

I'*(a,8) = —NhQT () B(t)B(t + 6).

(35b)

(36)

(37)

(38)

(39)
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Multiplying the left- and right-hand sides of (38) by
[ 0

01,

hI

O O M~
O ~N O

we see that
(A + Y§ + Tj () —A? + Tiy(a) hA3(a) + Y
—A7T £ TiT(0) S+ Thy() hA%(a) >0.  (40)

hAST(a) + YT hAYT(a) %(Si Sl +Y2)

Note that all the terms in (37), (39) and (40) are linear in «. Therefore, (37), (39)
and (40) are valid for all « if and only if they are valid for & =0 and « = 1, which
are (32), (33) and (34) for k& = 0,1. The equivalence of (20) and (36) is proved in
(Gu, 1997). m

6. Stability Criterion

Based on the above discussion, now we state and establish the main theorem in this
paper.

Theorem 4. The time-varying delay system (20) is asymptotically stable if there exist
real matrices P, Q and R satisfying (17), S; >0, i =0,1,2,...,N, K{ = K; > 0,
KI'=Ky,>0,T;, i=0,1,2,...,N satisfying (36), SP¢, i =1,2,...,N and a
symmetric matriz L such that (32)-(34) are satisfied.

Remark 3. Theorem 4 provides a delay-dependent condition for asymptotic stability
of uncertain linear systems with a single time-varying delay in terms of linear matrix
inequalities. The criterion does not require any parameter tuning and can be tested
numerically very efficiently using interior-point algorithms which have been developed
for solving linear matrix inequalities (Boyd et al., 1994). It is interesting to note
that h appears linearly. Therefore, a generalized eigenvalue problem (GEVP) as
defined in Boyd et al. (1994), can be formulated to find a minimum acceptable 1/h
and therefore, for a fixed number N of discretization segments, the maximum time-
varying delay rp = Nh can be achieved to maintain asymptotic stability.

Some LMI solvers (Gahinet et al., 1995) may not allow for equality constraints.
Thus (36) may not be directly entered into the software. By Remark 2, condition
(20) can be replaced with (31). The corresponding discretization condition is

N-1
To+Tn+2) T <0. (41)

=1
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The LMI’s derived must hold for all possible uncertain system matrices. Here,
we assume that the uncertainty set is polytopic, i.e.

Q=Co{(Aj,Bj)|j:1,2,...,nv}. (42)

Then it is easy to see that we have to check on the satisfaction of LMI’s only at the
vertices. By Theorem 4 the following corollary is easily obtained.

Corollary 1. The time-varying delay system (1) with polytopic uncertainty (42) is
asymptotically stable if there exist real matrices P, Q and R satisfying (1 7), S; >0,
i=0,1,2,...,N, KI =K1 >0, Kl =K, >0, T;, i =0,1,2,...,N satisfying
(41), SPsc, i =1,2,..., N satisfying (32) and o symmetric matrizc L such that the
following LMI’s are satisfied:

N
S38,54k—1  S34,54k—1

g?isc — >0, (43)
Sinirho1 Saditho1
AL+ Y5 + Tiy i1 —A% + T itk A?’,uﬂ +Y3
HRse k| —AT A+ Thiner So+ Tozive Af ik >0, (44)
1
AL+ YT AL ~ (5 = Sim1 +Y7)
L, Ly I‘?l F?z
Disc—ijkl Li; Ls FJTM’G Fgl,z’k
Hrrk = st T >0, (45)
Uil Tl Ki—Ss3i4k-1 —34,54k—1
ngT F?l,ik _$g4,i+k—l (1-B)K> - 344,i+k—1
forall i=1,2,...,N, k=0,1, 5=1,2,...,n,, [ =1,2,...,n, where
(A =~[P4; + ATP + Sy + Qu + Q%]
A? = PB; — Qy,
A? o =hATQi_1 — (Qi — Qi_1) + hRT _,,
. T r (46a)
Aj,io = th Qi1 —hR;_,,
A%, =hATQ; — (Qi — Qi_1) + hRT 4,
\ A;{il = hB;'rQi - hR;ra
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( Ybl = —(Nh— Tm)(Ll +I{1 + Kz),

Nh—r

2 __ _ m

1/0 — N LZ)
Nh-—r

Yi=—"r

0 N 12,
F}t = —PBjA,

. (46b)
Fﬂ = —PB;By,

F?l,io = _NhQ;r—lBjAl,
F?’l,il = —NhQIB;Ai,
F?l,i[) = "NhQ;{lBjBl:

\ F?l,il = —-NhQ¥B;B,.

Remark 4. It should be pointed out that the results of this paper can be improved by
choosing a quadratic Lyapunov functional whose kernel is a function of two variables
and using a generalized discretization scheme proposed in (Gu, 1999).

We present two examples to illustrate the effectiveness of the approach.

Example 1. Consider the following linear system with time-varying delay which was
studied in (Li and de Souza, 1997; Niculescu et al., 1995):

. -2 0 -1 0
z(t) = l: 0 —09 :l z(t) + l: 1 1 }z(t r(t)). (47)
By the criteria given in both the papers system (47) is asymptotically stable for any
r(t) satisfying 0 < r(¢) < rpr = 0.8571 and 0 < r(t) < rpy = 0.7433, respectively.
Those criteria allow for a fast time-varying delay and impose no requirements on the
derivative of the delay.

Applying our approach, we obtain the maximum values of r; listed in Tables 1
and 2 (Figs. 1 and 2) for rp, = 05737, 8 = 0.1 and 7, = 0.97y, 8 = 0.1, respectively.
When compared with the results in (Li and de Souza, 1997a; Niculescu et al., 1995),
it is clear that we can obtain less conservative stability bounds by taking advantage
of the additional information on the delay.

When 7, = ras, Gu (1997) also studied this example and obtained the maximum
time delay which approached the analytical limit.

For N =1, Tab. 3 (Fig. 3) indicates that r,; approaches the result of Gu (1997)
as Tm — T3r even though 3 # 0. For other N’s, we also can give a similar result.
Tab. 1. Bound rp calculated for r, = 0.5ry, 8 = 0.1.
|N|1[2f3‘4l5,6|7|8|9’10—l
e | 0.942 [ 0.949 [ 0.953 [ 0.956 | 0.958 | 0.960 | 0.961 | 0.962 | 0.963 | 0.964 ]
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Fig. 1. Variability of ry for rn = 0.5ry, 8 =0.1.

Tab. 2. Bound r calculated for 7, = 0.97a7, 8 = 0.1.
(v [ 1 [ 2 [ s ] 4[5 [6 v [8[9 [10]
Lrar [ 1771 1.822 [ 1.847 [ 1858 | 1.864 | 1.867 | 1.869 | 1.870 | 1.872 | 1.874 |

186 | -

1.84 .

1.82 | * i

maximum time delay 7y
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Fig. 2. Variability of ras for rn = 0.9ry, 8 =0.1.
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Tab. 3. Bound rus calculated for rp, = drp, 8 =0.1, N = 1.

) 090 { 091 | 092 | 093 0.94 0.95 0.96
ra | 1.771 | 1.840 | 1.919 | 2.010 | 2.118 2.250 | 2.415
é 0.97 | 098 | 0.99 | 0.999 | 0.9999 | 0.99999 | 1.00
Ta | 2.638 | 2.972 | 3.566 | 4.938 | 5.258 5.296 5.30

maximum time delay ry

1 1 ‘ I

1.5 . L . 1 L
0.9 0.91 092 093 094 095 096 097 098 099 1

ratio of maximum and minimum time delay bounds delta
Fig. 3. Variability of rpr for r,, = drar, B=0.1, N =1,

Example 2. Consider the following uncertain time-varying delay system studied by
Gu (1997):

—1+p(t) 0
-1 -1 —p(t)

=2+4+p(t)  p(t)

z(t) +
p(t) =09+ p(t)

] :c(t—r(t)), (48)

Ip(8)] < 0.1.

It can be modelled as a polytopic system, with n, =2 and
-2.1 -0.1 -19 0.1
Al = ) A2 = )
-0.1 -1.0 0.1 -0.8

-1.1 0 -0.9 0
Bl = ) B2 ad .
-1 -0.9 -1 —-1.1
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The maximum time-varying delays rps are listed in Tab. 4 (Fig. 4) for 7y, = 0.97);
and 2 =0.1.

For N =1, as ry — rar, Tab. 5 (Fig. 5) shows that the maximum time-varying
delay rps approaches Gu’s result even though 3 # 0.

Tab. 4. Bound ru for rm = 097, 8 =0.1.

BEN O P N A T O 2 O O T
[rar [ 1297 [ 1.343 | 1359 [ 1.366 [ 1.370 [ 1.373 [ 1.375 | 1.377 [ 1.378 [ 1.379 |
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Fig. 4. Variability of ra for rm = 0.97a, 8 =0.1.

Tab. 5. Bound rp for rm = dra, =01, N=1.

é 090 | 091 | 092 | 0.93 | 0.94 0.95
ram | 1.297 | 1.340 | 1.388 | 1.442 | 1.504 | 1.576

0 096 | 097 | 0.98 | 0.99 | 0.999 | 0.9999
ry | 1.663 | 1.769 | 1.905 | 2.089 | 2.331 | 2.362
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Fig. 5. Variability of ryp for rp = drym, =01, N =1.

7. Conclusion

The stability problem for a class of uncertain linear system with a single time-varying
delay has been investigated. Delay-dependent criteria have been proposed by em-
ploying the discretized Lyapunov functional approach. Numerical examples show si-
gnificant improvements over the results existing in the literature. As the lower bound
approaches the upper one, a fixed delay limit is recovered even though the rate of
change of delay remains non-zero.
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