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OPTIMAL SELECTION OF MEASUREMENT
LOCATIONS FOR PARAMETER ESTIMATION IN
DISTRIBUTED PROCESSES

DARIusz UCINSKI*

The problem of locating pointwise sensor measurements so as to optimally esti-
mate unknown parameters in a class of distributed systems is studied. Based on
a scalar measure of performance defined on the corresponding Fisher information
matrix, two approaches are developed for this problem: introduction of continu-
ous designs, which allows for adaptation of well-known sequential algorithms of
classical optimum experimental desiga, and application of standard non-linear
programming techniques. In each case, particular algorithms are delineated and
analysis of the appropriate sensor placements is made. The relative advantages
and shortcomings of both the approaches are discussed and demonstrated by
applying them to a two-dimensional diffusion process.

Keywords: sensor location, distributed-parameter systems, parameter estima-
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1. Introduction

The design of measurement for estimating unknown parameters of a physical system
is related to the optimal choice of measurement conditions so as to obtain the best
information about these parameters. As far as a distributed-parameter system (DPS)
is concerned, which is understood here as a dynamic system governed by a partial
differential equation (PDE), it is generally impossible to observe the system states in
overall spatial domain. What is more, cost limitations usually severely restrict the
number of sensors which will be available for parameter estimation. Consequently,
special care should be exercised when locating a limited number of measurement
transducers, since an improper placement of sensor resources may lead to inaccurate
estimates or even involve serious problems with identifiability.

Referring to the optimal sensor location problem for parameter estimation, a
number of works have appeared in the last two decades. The existing techniques can
be split into three main groups (Korbicz and Uciniski, 1994):

1. Methods which convert the problem to state estimation,
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2. Methods which reduce the task to random fields analysis, and
3. Methods which make use of optimum experimental design theory.

The approach characteristic of Group 1 is to augment the state vector by in-
cluding the parameters to be identified and then to use well-developed methods of
optimal sensor location for state estimation. However, since the state and parameter
estimation are to be carried out simultaneously, the whole problem becomes strongly
non-linear. To overcome this difficulty, a sequence of linearizations at consecutive
state trajectories was performed by Malebranche (1988) and a special suboptimal fil-
tering algorithm was used by Korbicz et al. (1988). Nevertheless, the viability of this
approach is rather questionable owing to the well-known severe difficulties inherent
in non-linear state estimation.

The methods of Group 2 are based on random fields theory. Since DPS’s are
described by PDE’s, direct application of that theory is impossible, and therefore this
description should be replaced by characteristics of a random field, e.g. mean and
covariance functions. Such a method for a beam vibrating due to the action of a
stochastic loading was considered by Kazimierczyk (1989) who made extensive use of
optimum experimental design for random fields (Brimkulov et al., 1986). Although
the flexibility of this approach seems rather limited, it can be useful in some case
studies (see e.g. Sun, 1994)

In turn, the methods of Group 3 originate from the classical theory of optimum
experimental design (Fedorov and Hackl, 1997; P4zman, 1986; Pukelsheim, 1993; Wal-
ter and Pronzato, 1997) where the adopted optimization criteria are various scalar
measures of performance based on the Fisher information matrix (FIM) associated
with the parameters to be identified. First investigations in this spirit for dyna-
mic DPS’s date back to the work (Quereshi et al., 1980) where the determinant of
the FIM was maximized and examples regarding a damped vibrating string and a
heat-diffusion process were used to illustrate the advantages and peculiarities of the
method. The same optimality criterion was used by Rafajlowicz (1978) in order to
optimize both sensor positions and a distributed control for parameter estimation
of a static linear DPS. Reduction of the problem to a form, where results of the
classical theory of optimum experimental design can be applied, was accomplished
after eigenfunction expansion of the solution to the PDE considered and subsequent
truncation of the resulting infinite series. Consequently, the FIM was associated with
system eigenvalues, rather than with the system parameters. A separation principle
was proved which allows the possibility of finding an optimal control and an optimal
sensor configuration independently of each other. The delineated approach was ge-
neralized in (Rafajlowicz, 1981) to a class of DPS’s described by linear hyperbolic
equations with known eigenfunctions and unknown eigenvalues. The aim was to find
conditions for optimality of measurement design and of optimal spectral density of
the stochastic input. It was indicated that common numerical procedures from classi-
cal experimental design for linear regression models could be adopted to find optimal
sensor location. Moreover, the demonstrated optimality conditions imply that the
optimal input comprises a finite number of sinusoidal signals and that optimal sensor
positions are not difficult to find in some cases. A similar problem was studied in
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(Rafajtowicz, 1983) in a more general framework of DPS’s which can be described in
terms of Green’s functions.

The idea of generalizing methods of optimum experimental design for parame-
ter identification of lumped systems was also applied to solve the optimal measure-
ment problem for moving sensors (Rafajlowicz, 1986b). The approach was based on
looking for a time-dependent measure, rather than for the trajectories themselves.
Various sufficient optimality conditions were presented, among others the so-called
quasi-mazimum principle. In spite of their somewhat abstract forms, they made it
possible to solve relatively easily a number of non-trivial examples. The problem
of moving sensors in DPS’s was also revisited in (Rafajlowicz, 1988; Rafajlowicz,
1989), but without direct reference to parameter estimation. On the other hand, a
slightly different approach to the design of sensor motions was proposed in (Ucin-
ski, 1999; Ucinski, 2000a; Uciniski, 2000b), where the problem was formulated as an
optimal-control one with state-variable inequality constraints representing geometric
constraints induced by the admissible measurement regions and allowable distances
between the sensors. Taking account of the dynamic models of the vehicles carrying
the sensors, the problem was reduced to determination of both the control forces of
the sensors and initial sensor positions. A method of successive linearizations was
then employed to construct a quite efficient numerical scheme of determining optimal
sensor trajectories.

The approach based on maximization of the determinant of the appropriate FIM
is not restricted to theoretical considerations and there are examples which do confirm
its effectiveness in practical applications. Thus, in (Munack, 1984) a given number of
stationary sensors were optimally located using non-linear programming techniques
for a biotechnological system consisting of a bubble column loop fermenter. On the
other hand, Sun (1994) advocates using optimum experimental design techniques to
solve inverse problems in groundwater modelling. How to monitor the water quality
around a landfill place is an example of such a network design. Sun’s monograph
constitutes an excellent introductory text to applied experimental design for DPS’s,
as it covers a broad range of issues motivated by engineering problems. Non-linear
programming techniques are also used there to find numerical approximations to the
respective exact solutions.

A related optimality criterion was given in (Point et al., 1996) by the maximiza-
tion of the Gram determinant which is a measure of the independence of the sensitivity
functions evaluated at sensor locations. The authors argue that such a procedure gu-
arantees that the parameters are identifiable and the correlation between the sensor
outputs is minimized. The form of the criterion itself resembles the D-optimality
criterion proposed by Quereshi et al. and Rafajtowicz, but the counterpart of the
FIM takes on much larger dimensions, which suggests that the approach involves
more cumbersome calculations. The delineated technique was successfully applied to
a laboratory-scale catalytic fixed-bed reactor (Vande Wouwer et al., 1999).

Our main purpose here is to show how some well-known methods of optimum
experimental design for linear regression models can be extended to the setting of
the sensor location problem. In our opinion, the main contribution of this paper con-
cerns characterizations of continuous (or approximated) designs for a wide class of
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design criteria, which allows an easy testing of any given sensor setting for optima-
lity. This constitutes a significant generalization of Rafajlowicz’s results mentioned
above, which were centred on D-optimal designs. Moreover, it is indicated how to
adapt well-known algorithms of optimum experimental design for finding numerical
approximations to the solutions. As an alternative, it is also shown how to exploit
non-linear programming techniques to tackle problems with a moderate number of
sensors. In the final part of the paper, numerical results are presented to illustrate
the application of the delineated sensor placement methodology.

2. Optimal Measurement Problem Based on Pointwise
Observations

In what follows, we shall consider a bounded simply-connected open domain Q C
R? with sufficiently smooth boundary 0. The mathematical model of our scalar
distributed system is given by

dy Oy oy 0% d%

= =Flz,ty, +—, -, 5, —>5,0), €, teT, 1

bt (x 'Y 52y’ By’ 022 B2l TES W
where z = (z1,22) € O = QU N is the corresponding spatial coordinate vector, ¢
stands for time, T" = (0,t;), y = y(z,t) denotes the state variable with values in R
and F is some known function which may include terms accounting for given a-priori
forcing inputs.

The boundary and initial conditions for the system are

dy Oy B
g(x,t’y’éa’g:g’g) —O, JJEBQ, teT (2)
and
y(ﬂ:,O) = yﬂ(w)a TE Q: (3)

respectively, where £ and yp denote some known functions.

We assume the existence of a unique solution to (1)—(3), which is sufficiently
regular. The system model above contains an unknown constant parameter vector
denoted by # € R™ (note that it may also appear in the boundary conditions), which
is assumed to belong to a parameter space ©. The objective of parameter estimation
is to choose a parameter 6* in © so that the solution y to (1)—(3) corresponding to
= 6* agrees with the ‘true’ observed state §. In general, however, measurements
of the state may not be possible, rather only measurements for some observable part
of the actual state § may be available. In what follows, we consider the observation
process

2(t) = ym(t) + em(t), teT, (4)
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where
Ym(t) = col [y(a:l,t), .. ,y(a:N,t)],
em(t) = col [e(z,1),...,e(z™, )],
z(t) is the N-dimensional observation vector, z' € X, 5 =1,...,N denote the

pointwise and stationary sensor locations, X C Q) is the part of spatial domain where
the measurements can be made (it is assumed to be a compact set), and e(z7,1)
denotes the measurement noise.

It is customary to assume that the measurement noise is zero-mean, Gaussian,
spatial uncorrelated and white (Quereshi et al., 1980), i.e.

E{g(mi, t)e(mj,t')} = 02553-5(2? -, (5)

where o > 0 is the standard deviation of the measurement noise, §;; and ¢ standing
for the Kronecker and Dirac delta functions, respectively.

Parameter estimation is usually cast as an optimization problem, which leads to
the least-squares formulation in which we seek to minimize the fit-to-data criterion

7(0) = /T 12() — (1)1 i, (6)
where

Jm(t;0) = col [§(a*,1;6),..., §(z" , £ 6)],
9(-, -;0) stands for the solution to (1)—(3) corresponding to a given parameter 6,
and ||-|| signifies the Euclidean norm.

It goes without saying that the parameter estimate 6 resulting from minimization
of the fit-to-data criterion depends on the sensor positions owing to the presence of
the quantity z in the integrand on the right-hand side of (6). This fact suggests that
we may attempt to select sensor locations which lead to best estimates of the system
parameters. To form a basis for the comparison of different locations, a quantitative
measure of the ‘goodness’ of particular locations is required. A logical approach is to
choose a measure related to the expected accuracy of the parameter estimates to be
obtained from the data collécted. Such a measure is usually based on the concept of
the Fisher Information Matriz (FIM) (Rafajlowicz, 1986b; Sun, 1994) whose inverse
is the Cramér-Rao lower bound on the covariance matrix of any unbiased estimator
of 6 (Goodwin and Payne, 1977). When the time horizon is large, the nonlinearity
of the model with respect to its parameters is mild and the measurement errors
are independently distributed and have small magnitudes, it is legitimate to assume
that our estimator is efficient (minimum-variance) in the sense that the parameter
covariance matrix achieves the lower bound (Rafajlowicz, 1986a). This leads to a
great simplification since the minimum variance given by the Cramér-Rao lower bound
can be easily computed in a number of estimation problems, even though the exact
covariance matrix of a particular estimator is very difficult to obtain.
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It turns out that the FIM is a deterministic function of the spatial location of
the measurement sensors, as it is given by (Quereshi et al., 1980)

Nt 4
M= [ gt 06 w0 e @
j=170
Here
(O, 0\ g
o) = (L) ®

stands for the so-called sensitivity vector, 6° being a prior estimate to the unk-
nown parameter vector 8 (Sun, 1994). We assume that both y(-,-;8°) and
dy(-, -;609/00;, i =1,...,m are continuous in  x 7.

Optimal sensor positions for system identification can be found by choosing 27,
j=1,...,N so as to minimize some scalar measure of performance ¥ based on the
FIM. Various choices exist for such a function (Fedorov and Hackl, 1997; Pazman,
1986; Pukelsheim, 1993; Walter and Pronzato, 1997), including e.g. the following:

o The D-optimality (determinant) criterion

U (M) = —logdet M, (9)
e The A-optimality (trace) criterion

U (M) = trace M1, (10)
e The sensitivity criterion

U (M) = —trace M. (11)

A D-optimum design minimizes the volume of the uncertainty ellipsoid for the estima-
tes. An A-optimum design suppresses the average variance of the estimates. In turn,
the sensitivity criterion is often used due to its simplicity, but it sometimes leads to
serious problems with identifiability as it may result in a singular FIM (Zarrop and
Goodwin, 1975), so in principle it should be used only to obtain startup locations
for other criteria. The introduction of an optimality criterion renders it possible to
formulate the sensor location problem as an optimization problem.

‘I'wo simplifications come in handy, but they involve no loss of generality. Namely,
since in practice all design criteria satisfy the condition

(M) =~(B)¥ (M), B>0, (12)

7 being a positive function, we may set ¢ = 1. Similarly, operating on the so-called
average (or normalized) FIM

ty
Ntf Z/ (z7,t)gT (z7 t)d (13)

is slightly more convenient, so in the sequel we will constantly use it in lieu of M.
For simplicity of notation, we will also drop the bar over M.
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3. Extended Formulation Based on Continuous Designs

The introduction of the design criterion ¥ defined on the FIM permits the optimal
experimental design to be cast as a minimization problem

v[M(z',...,z")] — min, (14)

where 4, j = 1,...,N belong to the set X C Q in which the measurements are
allowed. This leads to the so-called exact designs which can then be calculated with
the use of numerous widely accessible non-linear programming solvers if N is not tco
large (c.f. Section 7). Unfortunately, the problem quickly becomes computationally
too demanding and intractable for larger N’s. A similar predicament in lumped sys-
tems has been addressed in plentiful works on optimum experimental design and the
most efficient solution therein is no doubt the introduction of the so-called continu-
ous designs (Ermakov, 1983; Fedorov, 1972; Fedorov and Hackl, 1997; Goodwin and
Payne, 1977; Pazman, 1986; Pukelsheim, 1993; Walter and Pronzato, 1997). Such an
approach will also be adopted in what follows.

Owing to assumption (5), we admit of replicated measurements, i.e. some values
z/ may appear several times in the optimal solution (this is an unavoidable consequ-
ence of independent measurements). Consequently, it is sensible to distinguish only
the components of the sequence z!,...,z" which are different and, if there are £
such components, to relabel them as z',...,z¢ while introducing r1,...,r; as the
corresponding numbers of replications. The redefined z'’s are said to be the design

or support points. The collection of variables

2, 2?2, ..., a2t
én = , (15)
P, P2, -.--» D¢
where p; = r;/N, N = Zz 171, is called the ezact design of the experiment. The

proportion p; of observations performed at z* can be considered as the percentage
of experimental effort spent at that point.

On account of the above remarks, we rewrite the FIM in the form

L1 ortr .
=S pt / ol 1)gT (@', 1) dt. (16)
=t/

Here the p;’s are rational numbers, since both r;’s and N are integers. Removing this
constraint by assuming that they can be any real numbers of the interval [0,1] such
that Zle p; = 1, we may think of the designs as probability distributions on X. But
if 50, we may attempt to take one more step to widen the class of admissible designs a
bit further, i.e. to all probability measures £ over X which are absolutely continuous
with respect to the Lebesgue measure and satisfy by definition the condition

/ ¢(da) = 1. (17)
X

Such an extension of the design concept allows us to replace (16) by

M(E) = /X T() €(dz), (18)
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where

1 [ T
) = [ oot @

ty Jo
and the integration in (17) and (18) is to be understood in the Stieltjes-Lebesgue
sense. This leads to the so-called continuous designs which constitute the basis of
the modern theory of optimal experiments (Fedorov and Hackl, 1997; Rafajtowicz,
1996; Pukelsheim, 1993; Walter and Pronzato, 1997). It turns out that such an
approach drastically simplifies the design.

From now on, Z(X) denotes the set of all probability measures on X. Let us
also introduce the notation 21(X) for the set of all admissible information matrices,
ie.

M(X) = {]VI({) EEEWX)}. (19)

Then we may redefine an optimal design as a solution to the minimization problem
*=arg min ¥[M(£)]. 20
& =arg_min, M) (20)

4. Representation Properties of the Information Matrices

Information matrices possess a number of very attractive features which make it
possible to take advantage of some results of convex optimization theory. In order to
demonstrate them in detail, we need the following assumptions:

(A1) X is compact, and
(A2) ge C(X x T;R™).
We begin with certain convexity and representation properties of M (¢).

Lemma 1. For any £ € E(X) the information matriz M(£) is symmetric and non-
negative definite.

Proof. The first part is a direct consequence of the definition (18). The other results
from the dependence

VM = /XbTT(:c)bf(z)

1
tr Jx

{ /0 tf[ng(:r,t)]zdt} £(dz) > 0 (21)

are valid for any b € R™. ]

Lemma 2. 9U(X) is compact and convez.



Optimal selection of measurement locations for parameter ... 365

Proof. Let us notice that by Assumption (A2) the function Y is continuous in X
(Kotodziej, 1979, Th. 22, p. 360). Helley’s theorem (Ermakov and Zhigljavsky, 1987,
Lem. 1.4, p. 91) then implies that Z(X) is weakly compact, i.e. from any sequence
{fi}zl of E(X) we can extract a subsequence {&; }:.;1 which is weakly convergent

to a probability measure & € E(X) in the sense that

ti [ f@)6,0) = [ F@)6de), VfeCER), (22)
X X

j—o0
Choosing f consecutively as the components of the matrix T, we get

Jim M(,) = M() (25)

which establishes the first part of our claim. The other follows immediately from the
implication

M1 =X&+ 6] = 1 =XM&) +AM(&), V&, & € E(X) (24)
valid for any A € [0,1]. =

Remark 1. Let us observe that Assumption (A2) may be slightly weakened: For the
continuity of T it suffices to require only g(-,%) to be continuous and to impose the
condition

Ve e X, [lg(z, t)l] < h(t) (25)

almost everywhere in T for some h € L?(T).

Let us recall that the support of a function f : X — R is defined to be the
closure of the set of points in R" at which f is non-zero. It turns out that, despite a
rather abstract framework for continuous designs, the results obtained through their
use are surprisingly closely related to discrete designs whose support consists of a
finite number of = values. In other words, the optimal design can be chosen to be of
the form

zt, 22, ..., o ¢
6*:{ . 7Tg; Zmzl ? (26)

T, T2, =1

where ¢ < oo, which concentrates N7y measurements at z;, N7y at x2, and so on.
In fact, we have the following assertion.

Lemma 3. For any My € M(X) there always exists a purely discrete design & with
no more than m(m + 1)/2+ 1 support points such that M(§) = My. If My lies on
the boundary of MM(X), then the number of support points is less than or equal to
m(m+1)/2.

Proof. We first observe that due to the symmetry of FIM’s, 1(X) can be identified
with a closed convex set of R™™+1)/2 (it suffices to use only the elements which
are on and above the diagonals). It is easy to check that the average information
matrices M(&;) = T(z) which correspond to one-point designs &, = {{}, i.e. the
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designs concentrated at a single point «, are the only extreme points of D(X). Hence,
from Carethéodory’s theorem (Pazman, 1986, Prop. IIL.8, p. 57), the first part of our
lemma follows (any point of a compact convex set 4 of R™™+1)/2 can be expressed
as a convex combination of m(m +1)/2+ 1 or less extreme points of A).

The second part is established based on the assertion that any boundary point
of a compact convex set A of R™(™+1)/2 can be expressed as a convex combination
of m(m+1)/2 or less extreme points of A (Ermakov and Zhigljavsky, 1987, Th. 1.4,
p. 96). -]

The above lemma makes it justified to restrict our attention only to discrete
designs with a limited number of supporting points, so the introduction of continu-
ous designs, which may seem at first sight a superfluous complication, leads to very
tangible results.

5. Characterization of Optimal Solutions

Our objective in this section is to study some properties of optimal designs. For
this purpose, the following additional assumptions about the design criterion ¥ :
R™*" — R will be needed:

(A3) T is convex,
(A4) If My < M,, then ¥(M;) > ¥(M;) (monotonicity),

(A5) There exists a finite real g such that

{&:¥[M(©] <g< oo} =E(g) #0,

(A6) For any £ € E(g) and £ € E(X), we have

@ (M) + MM @) — M(©))]
= W [M(E)] + A /X (o, €) E(dz) + o\ £,8), (27)

where 1 stands for a function such that ¢(-,£) is continuous in X and o
denotes the usual Landau symbol, i.e.

im 26O _ o
Al0 A

Assumption (A3) is quite natural, since it allows us to stay within the frame-
work of convex analysis, which greatly facilitates subsequent considerations. In turn,
Assumption (A4) characterizes ¥ as a linear ordering of Z. (As regards the notation
in (A4), we adopt that of the Loewner ordering of symmetric matrices, i.e. My < Ms
il M3 — M is non-negative definite.) As for Assumption (A5), it only states that
there exist designs with finite values of ¥, which constitutes a rather mild and- quite
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logical requirement. At this juncture, only Assumption (A6) calls for an appropriate
comment, as at first sight it may seem a bit odd. In practice, however, (A6) simply
amounts to the existence of the directional derivative

5, U(M(E), M(E) — M(€)) = 5‘1’[1"-’(5)“(&(5) M(€))]

, (28)
A=0+

whose form must be on one hand specific, i.e. [ ¥(z,¢) &(dz), but on the other hand,
for most practical criteria such a condition is not particularly restrictive.

In fact, requiring ¥ to be differentiable with respect to individual elements of
its matrix argument, we obtain

61U (M (), M(§) — M(¢))
trace [§(6) (M (E) - M(©))]

i

/X trace[ (6)(@)] € (dx)—trace[\l'(g)M(f)]

- /X {trace[ ()T(m)]—trace[\I’(f)M(f)]}é(dm), (29)

where

i = 2200

1M=M(€)

and therefore

¢($7§) = C(é) - (]5(.’13‘, 6)7 (30)

the functions ¢ and ¢ being respectively defined as

c(€) = — trace[ (€)M (&)] (31)

and
B(z,€) = —trace[U(§)T ()]

= - ——/ (z,t ﬁ’(é)g(:c t) dt. (32)

For most popular critera we have (see e.g. Ermakov and Zhigljavsky, 1987,
Th. 3.3, p. 309 and Th. 3.4, p. 310)

e If (M) = —Indet M, then

T(e) = - M),
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o If U(M) = trace M1, then

V() = -M(),
o If ¥(M) = —trace M, then

(&) = -1,
where [ is the identity matrix.
The next result provides a characterization of the optimal designs.
Theorem 1. Let Assumptions (A1)-(A6) hold. Then:

(i) An optimal design exists comprising not more than m(m-+1)/2 points (i.e. one
less than predicted by Lemma 3).

(it) The set of optimal designs is conve.
(iii) A design £ is optimal iff
: o
min(z,¢") = 0. (33)

(iv) For any purely discrete optimal design £*, the function (-, &%) has value zero
at all support points.

Proof. The theorem can be established in exactly the same way as Theorem 2.3.2 of
{(Fedorov and Hackl, 1997, p. 31) as the explicit form of the FIM is not essential in
the proof. |

It is now clear that the function ¢ is of paramount importance in our consi-
derations, as it determines the location of the support points in the optimal design
& (they are situated among its points of global minimum). Moreover, given any
design ¢, it indicates points at which a new observation contributes to the greatest
extent. Indeed, adding a new observation atomized at a single point z+ amounts to
constructing a new design

= (1= NE+ AN (34)

for some A € (0,1). If X is sufficiently small, then from (27) it may be concluded
that

V[MED)] - ¥ [M©Q)] = Mp(at,9), (35)

i.e. the resulting decrease in the criterion value is approximately equal to —Ay(z™, £).
This fact also clarifies why the function ¢(z,&) = —(z,£) + ¢(£) is usually called
the sensitivity function (Fedorov and Hackl, 1997) (this terminology is somewhat
reminiscent of the sensitivity coefficients introduced in (8), but we hope that it will
cause no confusion).

Analytical determination of optimal designs is possible only in simple situations

and for general systems it is usually the case that some iterative design procedure will
be required. The next theorem is useful in checking the optimality of designs.
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Theorem 2. The following characterizations of an optimal design £* are equivalent
in the sense that each implies the other two:

(i) the design & minimizes U[M ()],

(11) the design & minimizes mea;(c(ﬁ(:r,f) —c(§), and
(i) ma §(z, %) = c(€").

All the designs satisfying (i)—(ii1) and their convex combinations have the same in-
formation matric M (€¥).

Proof. With minor modifications, it may be adopted, e.g. from (Ermakov and Zhigl-
javsky, 1987, Th. 2.3, p. 109) and therefore it is omitted. |

When formulated for a particular design criterion, Theorem 2 is usually called an
equivalence theorem and the most famous is the Kiefer-Wolfowitz equivalence theorem
corresponding to D-optimum designs. In our framework, this specializes to our next
assertion.

Theorem 3. The following conditions are equivalent:
(i) the design &* mazimizes det M(£),

(i1) the design £ minimizes

1 [y
max — [ ¢ (z,t)M~1(€)g(z,t)dt, and
zeX tf 0
Loy
(#3) max — g¥ (2, )M () g(z,t) dt = m.
T€X tf 0

An interesting interpretation of continuous designs in terms of the randomized
choice is given in (Rafajtowicz, 1986b). Namely, for {x given by (15), if N sensors are
randomly allocated to the points z¢, = 1,...,£ < N according to the distribution
pi, % = 1,...,£ and such that the measurement process is repeated many times,
then (16) is the expected value of the FIM. This justifies our results as theoretically
exact from a slightly different point of view.

6. Sequential Numerical Design Algorithms

The results of the previous section provide us with tests for the optimality of designs.
In particular,

1. If the sensitivity function ¢(z,£) is less than or equal to ¢(§) for all z € X,
then ¢ is optimal.

2. If the sensitivity function ¢(z,£) exceeds ¢(§), then ¢ is not optimal.
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The interesting thing about these results is that in addition to revealing striking
minimax properties of optimal designs, they also provide sequential numerical design
algorithms. The underlying idea is quite simple. Suppose that we have an arbitrary
(non-optimal) design &, obtained after k iteration steps. Further, let ¢(-,&) attain
its maximum (necessarily > c(£)) at & = 23. Then the design

k1 = (1= Ae)&r + Mebag (36)

(recall that o stands for the unit-weight design concentrated at z9) leads to a
decrease in the value of ¥[M (£g41)] for a suitably small Ar. This follows since the
derivative with respect to Ay is negative, i.e.

)] = o6 - 6. 6) <O (37)

The steps in using the outlined gradient method can be briefly summarized as
follows (Ermakov, 1983; Fedorov and Hackl, 1997; Rafajtowicz, 1996; Walter and
Pronzato, 1997):

Step 1. Guess a discrete non-degenerate starting design measure £ (we must have
det M (&) # 0). Choose some positive tolerance 1 < 1. Set k = 0.

Step 2. Determine z{ = argmea;{cqﬁ(:n,fk). If ¢(z9,8&) < c(&) +m, then STOP.
T
Step 3. For an appropriate value of 0 < A < 1, set
o1 = (1= M)k + Al

increment & by one and go to Step 2.

In the same way as for the classical first-order algorithms in common use for
many years, it can be shown that the above algorithm converges to an optimal design
provided that the sequence {/\k} is suitably chosen. For example, the choices which
satisfy one of the conditions below will yield the convergence:

(e 0]
(i) lm Ap =0, A = oo (Wynn’s algorithm),
k—o0 k=0

(ii) Ay = arg m/\in T2 - NM(&) + )\M(fzg)] (Fedorov’s algorithm),

Computationally, Step 2 is of crucial significance but at the same time it is the
most time-consuming step in the algorithm. Complications arise, among other things,
due to the necessity of calculating a global maximum of ¢(-,&) which is usually
multimodal (getting stuck in one of local maxima leads to precocious termination
of the algorithm). Therefore, while implementing this part of the computational
procedure an effective global optimizer is essential. Based on numerous computer
experiments it was found that the extremely simple adaptive random search (ARS)
strategy from (Venot et ol., 1986; Walter and Pronzato, 1997, p. 216) is especially
suited for that purpose if the design region X is a hypercube.
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Notwithstanding the fact that the problem outlined in this section is slightly dif-
ferent from the classical formulation encountered in works on optimum experimental
design, the details regarding implementations of the corresponding algorithms remain
in principle the same and hence this topic will not be further discussed. Instead,
we refer the reader to the excellent specialized literature (Ermakov, 1983; Fedorov
and Hackl, 1997; Rafajlowicz, 1996; Rafajlowicz, 1998; Skubalska-Rafajtowicz and
Rafajtowicz, 1998; Torsney, 1988; Walter and Pronzato, 1997).

At this very moment, some interpretation of the resulting optimal design of the
form (26) would be relevant. Since we manipulate continuous designs, the products
Nm;, i = 1,...,4 are not necessarily integers. In the spatial setting, however, the
number of sensors may be quite large and the set of candidate points is continuous
so that we can expect that some rounding procedures (Pukelsheim and Rieder, 1992)
of the considered approximate designs calculated by the afore-mentioned algorithms
will yield sufficiently good designs. Alternatively, some ezchange algorithms can be
adopted from the classical theory of optimal experiments if N is relatively small, but
such a procedure does not change the underlying idea and therefore it will not be
pursued.

7. Direct Use of Non-Linear Programming Techniques

When the total number of sensors to be located in a given domain is moderate, the
very first idea, which suggests itself, is to exploit numerous well-known numerical
techniques of constrained optimization. In principle, such an approach is not difficult
to apply (Ucinski, 1998) and only computation of the gradient of the design criterion
necessitates some comments if gradient methods are to be employed.

For abbreviation, write
s=(z!,...,z™). (38)

Accordingly, the design criterion to be minimized may be rewritten as

J(s) = ¥[M(s)], (39)
where
N
M(s) = = / 7 gt 097 (@, ) (40)
Nty =170
Using the chain rule, we get
aJ(s) o OM(s)
55 trace {\Ii(s)———asr , (41)

where s, stands for the r-th component of s, and

o 0¥(M)
\I,(S) B oM 1M:M(s).
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As for computation of dM /s, let us observe first that s, appears at only one
term of the sum in (40), since s, is just a spatial coordinate of one of the sensors. If
we use the symbol j,. to denote the index of the corresponding sensor, then obviously

we have
oM 1 tr g(x?,t) i i g™ (z77 1)
5;*@;/0 {TQ (@78 + g(a7, )= = dt. (43)

o
Hence, on account of the symmetry of ¥(s), it follows that

8J(s) 2 o Y ag(ait) 3, 4
Fs. = N trace{‘I’(s)/o 55 g (zi,t)dt ;. (44)

We see at once that calculation of V.J(s) requires an efficient procedure to determine
spatial derivatives of the sensitivity coefficients. Note, however, that this does not
present a problem if we take advantage of spline interpolation (Uciriski, 1999).

Note that direct application of optimization techniques by no means excludes the
phenomenon of sensor clusterization which is encountered when a group of different,
sensors take measurements at the same point. Unfortunately, in many applications
this is indesirable since several sensors placed at a point may influence one another
and their measurements could then hardly be considered as independent. One way
to attempt to avoid this effect is to include into the non-linear programming formu-
lation appropriate constraints on the admissible distances between the sensors. An
alternative approach consists in taking account of mutual correlations between the
measurements made by different sensors, i.e. we generalize (5) to

E{e(z*, t)e(2?,t')} = ci;0(t — t') (45)

and assume that the covariance matrix C = [Cij:l may not be diagonal. For example,
its elements could be of the following isotropic form (Nychka and Saltzman, 1998):

cij = o exp (— [lz* - 27)|/B), (46)
where 3 is a positive constant. Occasionally, its extension
cij = a(z%)o(2?) exp (—|z* - :z:’H/ﬁ) (47)

is also used, which allows for different marginal variances.

Let us note that if any two sensors are placed at one point, then the corresponding
columns (and rows) of C are identical, which means that C' becomes singular.

It can be shown (Ucinski, 1999) that the average FIM is then given by

1 N N ts . T,
M) = e DY /0 diy (3)9(a, )97 (a7, 1) (48)

i=1 j=1

where d;;’s are the elements if the inverse of C' (ie. D = [dy;] = C~'). A first
inconvenience is that the form of M(s) is much more cumbersome than in the case
of independent measurements. But a more severe difficulty is that the functional
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dependence of M on s is much less regular owing to the occurence that C' may
be singular or nearly singular, which necessitates the notion of pseudo-inverses and
involves serious problems with differentiability and numerical stability. Consequently,
in practice it is much easier to simply impose additional constraints on the distances
between the sensors which will warrant the assumption of independent measurements.

8. Numerical Simulation

In this section we illustrate, by a simple illustration study, the approach to the sensor
placement developed in the previous sections. For this purpose, we considered esti-
mation of the spatially-varying parameter x = k(z) in the heat-conduction process
through a thin flat isotropic plate whose flat surfaces were insulated and which oc-
cupied the region = [0,1]*> with boundary O} along which heat was lost to the
surroundings. The unsteady state temperature y = y(z,t) over the time horizon
T = (0,1) was described by a linear parabolic equation of the form

oy(z,t) _ 0 (m(x)ay(x’t)>+ i (m(m)M> in Qx7T. (49)

at oz 9z, 94 B2

The initial and boundary conditions of (49) were
y(z,0) =5 in Q, (50)
y(z,t) =5(1—1t) on N xT. (51)
In our simulation study, the following true parameter was assumed:
k(z) = 01 + 0221 + 0322, (52)

where 6; = 0.1, 6 = 63 = 0.3. On the basis of simulated data generated with the
specified k, we tried to determine a continuous design over X = {} such that the
D-optimality criterion for 6 = (61, 6,,03) would be minimized.

In order to numerically solve the measurement location problem, a computer
programme was written in Essential Lahey Fortran 90 v.4.0 (Meissner, 1997) using a
PC (Pentium II, 300 Mhz, 128 MB RAM) running Windows NT 4.0. The state and
sensitivity equations were first solved using the finite-element method on an even grid
(with 15 divisions along each space axis and 30 divisions of the time interval). The
sensitivity coefficients were then interpolated via tri-cubic spline interpolation and
the corresponding spline parameters stored in computer memory. Finally, Fedorov’s
version of the first-order algorithm was applied to maximize the determinant of the
FIM. (The maximum number of evaluations for the performance index in the ARS
strategy was 2000.)

Starting from the design

e, = {(06,02), (02,05), (0.1,02)
°T 1 1/3 1/3 1/3
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Fig. 1. Support points of the optimal continuous design (the
axis of symmetry is represented by a sloping dotted line).

after 13 iterations (which took about two minutes), the following approximation to
the optimal design was obtained:

(0.65224,0.26353), (0.27083,0.63834),
0.33570, 0.33410,
(0.14647, 0.15668)
0.33019

for the tolerance n = 1072,

The design is concentrated at three support points with approximately equal
weights, which means that if we are to locate N sensors, then we should strive to
distribute them as evenly as possible between the three calculated potential locations
(as outlined before, sensor clusterization is inherent to the approach due to the as-
sumption that the measurements are independent even though some of the sensors
take measurements at the same point).

Let us observe that the diffusivity coefficient x together with the system of
boundary and initial conditions assume one axis of symmetry, i.e. the line z, = z;.
We feel by intuition that this symmetry should also be preserved in a way in the
optimal design. In fact, this is confirmed in Fig. 1 where the optimal sensor positions
are displayed. They are slightly shifted towards the lower-left part of the system, at
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which place the diffusivity coefficient is smaller and the system output is the most
sensitive to changes in 6.

In order to assess the applicability of the direct non-linear approach, six sensors
were to be placed with the use of the direct non-linear programming approach. At first,
the case of independent measurements was tested based on a sequential constrained
quadratic programming (SQP) method (cf. Bertsekas, 1999; Miller, 1998; Spellucci,
1998a; Spellucci, 1998b). Starting from an initial solution generated via the ARS
procedure, the SQP algorithm found the approximate optimal solution

0.1505197, 0.1505197,...
0.1505197, 0.1505197,...
0.2724469, 0.6376952,...
0.2724469, 0.6376952,...
0.6376952, 0.2724469, ...
0.6376952, 0.2724469

shown in Fig. 2(a). This means that we have three pairs of sensors and each of
these pairs tends to measure the system state at the same point. In principle, this
result should not be surprising, since it was already predicted by the continuous-design
approach, where virtually the same support points were obtained. On the other hand,
it tallies with some results on replications of D-optimal designs for non-linear models
(Haines, 1993). '

The case of correlated observations was also tested for the model (46) with 8 =
10~2. Since the gradient algorithms are 110t appropriate for this type of performance
indices, the ARS technique was employed to assess the optimal solution as

0.128788, 0.128788, ...
0.167856, 0.167856, ...
0.246423, 0.621963, ...
0.301227, 0.650355, ...
0.621963, 0.246423,...
0.650355, 0.301226

corr —

which is illustrated in Fig. 2(b). We see at once that the introduction of interrelations
between the sensors results in removing clusterizaton. During experiments, however,
some numerical instabilities were observed in addition to a considerably increased
computational burden (three minutes versus half a minute for the correlation-free
case).

9. Concluding Remarks

An approach to the sensor placement for the purpose of parameter estimation of
DPS’s has been presented. It consists in the adaptation of some well-known methods
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Fig. 2. Optimal sensor location calculated via the direct approach:
(a) Independent measurements, (b) Correlated measure-
ments.
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of modern optimum experimental design for linear regression models. The advantage
of introducing continuous designs lies in the fact that the problem dimensionality
is dramatically reduced. Moreover, with some minor changes, sequential numerical
design algorithms, which have been continually refined since the early 1960s, can be
employed here. If the number of sensors is not large, we can always resort to stan-
dard optimization routines which ensure that the constraints on the design measure
and region are satisfied (as indicated, computation of the gradient does not present a
problem). Although the numerical examples presented here are clearly not real-world
problems and their purpose is primarily to illustrate our considerations in an easily in-
terpretable manner, they are complex enough to provide evidence for the effectiveness
of the proposed approaches.

The approach suggested here has the advantage that it is independent of a parti-
cular form of the partial-differential equation describing the distributed system under
consideration. The only requirement is the existence of sufficiently regular solutions
to the state and sensitivity equations, and consequently non-linear systems can also
be treated within the same framework practically without any changes. Moreover, it
can easily be generalized to three spatial dimensions, the only limitation being the
amount of required computations.

Let us note that, in general, the optimal solutions will depend on the preliminary
estimate 8° of the unknown parameter vector, cf. (8), as the FIM will depend on it,
so logically, the optimal sensor location can never be found at the design stage unless
69 is very close to the true parameters or the sensitivity vector g is insensitive to the
values of the model parameters (in practice, the latter is unlikely in the considered
applications). But this problem is unavoidable in non-linear optimum experimental
design (Pazman, 1993). A way out of this predicament is to employ some robust-
design concepts (Walter and Pronzato, 1997), but this will constitute the subject of
a separate paper.
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