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SHAPE OPTIMIZATION OF LABYRINTH SEALS'

RaAJAE ABOULAICH*, KARIM AZELMAT***
JacQues BARANGER***, ALt SOUISSI***

In this work, we determine the optimal shape of a labyrinth seal in a hydraulic
Francis turbine. The numerical approximation of the optimal shape is obtained
using shape optimization techniques. The flow is governed by Navier-Stokes
equations. We first prove the existence of an optimal domain, and later we
present the computation of the shape gradient which allows us to approximate
numerically the optimal domain.

Keywords: shape optimization, hydraulic turbine, Navier-Stokes equations,
finite element method

1. Introduction

Optimization of the shape of a hydraulic turbine in order to minimize the leakage at
the input is an important industrial topic. A mathematical model neglecting inertia

for this problem and some numerical experiments have been described in (Samoubh,
1992).

In this work, we give a proof of the existence of the optimal shape for a model
including inertial terms using a technique described in (Haslinger and Neittaanmaiki,
1988). We also calculate the shape gradient by domain parametrization techniques
(Zolésio, 1981). The problem is then approximated by the FEM (Finite Element
Method) and a convergence result for a subsequence is proved. Finally, we report on
some numerical experiments.

2. Problem Statement

We consider the flow governed by steady Navier-Stokes equations in labyrinth seals.
Since the flow is supposed to be the same in each seal of the labyrinth, we reduce the
study to one seal represented by a domain 2 whose boundary is I' = T'oUT'; UT, UT's
where I'g, I'y and I's are assumed to be fixed. The geometrical situation is described
in Fig. 1.
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Fig. 1. The domain representing a seal.

The velocity u and the pressure p of the fluid satisfy the following system:

([ —VAu+ (u-V)u+Vp=0 in 0,
V.-u=0 in ,
PQ) : u=0 on DMToUTDy,
—p+uag?.1n = gXT, on TgUTy,
u-7=0 on [gUT,,

\

where v is the viscosity of the fluid.
We consider the spaces
H (Q) = HY(Q) x HY(),
V={veH (Q):v=0o0n T;UTs v-7=0 on ToUT,},
Q=L*(®),
H: () ={weH(Q):w=0 on I} UTs},

and the following forms:

a(u,v) = v /Q Vu-Vuds, (1)
b(u,q):/ﬂqdivvdz, (2)
o(u, v, w) =/ﬂ(u-V)v~wdx, (3)
L(v):/rzgv-nda with g € (HO%O(I‘OUI‘Q))I. (@)

where

Hgy(To UTy) = {v € LAToUT,) : 3w € H} () such that w=v on ToUT,}
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is the space of traces of H%IS(Q) on I'oUF, (Lions and Magenes, 1972). This space
is introduced to insure the compatibility with the homogeneous limit conditions on
1

other parts of the boundary. Hg (o UT2) is equipped with the norm

oo =, inf Iy w=v on TouT,}
13

which defines a lifting operator from HO%O(FO UT,) to V.

Note that a(-,-) and b(-,-) are respectively continuous bilinear forms on H! (Q) x
H! () and H'(Q) x L?(Q), c(-,-,) is a continuous trilinear form on H' (Q) x HE () x
H' () and L is a continuous linear form on H! (Q2). Moreover, we have the coercivity
property

a(v,v) > Blloll} VweV (5)
and the inf-sup condition

sup b(v,q)

i T 2
geQ vy ”U“1HQHO

where § and p are two nonnegative constants.

The two possible variational formulations associated with Problem P()) are the
following;:

P(Q) - { a(u,v) + c(u,u,v) — b(p,v) = L(v) Yv €V,
b(g,u) =0 VgeQ
and
P(Q):  a(u,v) +c(y,u,v) = Llv) Yve ),
where
Vi={veV:divv=0 in Q}.

We will use respectively P1(Q) and P»(2) to approximate the solution to Pyp; of
Section 3 and to prove the existence result.

Theorem 1. If 8 and L are such that

2
& > Il oy | ©

where 7y is the constant in the inequality c(u,v,w) < y|lull; g llv]l; o lwll, g, then
P,(Q) has a unique solution in the ball M = {v € V : |j||,, < Bl4rY.

For the proof, we consider the problem

@ Find u € V1 such that
" a(u,v) = L(v) — c(uo, uo,v) Vv €V,
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and show that the operator defined by
X { Vi — W
Ug +— U

is a contraction in M. Then the assertion follows from the Banach fixed-point the-
orem. For more details, refer to (Azelmat, 1997; Gunzburger and Hou, 1992; Orlt and
Séndig, 1994; Temam, 1983).

The existence of p in @ is obtained under the inf-sup condition (Brezzi and
Fortin, 1991; Girault and Raviart, 1979; Temam, 1983).

3. Existence of the Optimal Domain

The boundaries T'g, Iy and I's of the admissible domains are fixed. Therefore we
look for a shape of the part T's of the boundary minimizing the flow of the leakage
losses. The set of the admissible controls will be the set of the admissible functions
which parametrize I';. It is defined by

toa = {a € C*(0,0) : fa(e) = a(y)| < Klz 3],
0<b<a()<c a0) = ala) = d},

where a, b, ¢, d and k are fixed real constants, and C%1(0,a) is the set of Lipschitz
continuous functions on (0, a).

In order to minimize the flow of the leakage losses at the input, we consider the
cost functional given by

J(Q):/Fou-nda.

"To prove the existence of the optimal domain, we will use an approach similar to the
one introduced by Haslinger and Neittaanmiki (1988). For that purpose, we consider
the domains (a) parametrized by functions « € U,q such that

Q=) = {(z1,22): 0< 21 < @, 0 < 35 < o(z1)}.
and the shape optimization problem considered is
- min {J(e) = 7 (Q(a)), @ € Una }
ot such that (u,p) is a solution to P(Q)

We define the convergence of domains by the uniform convergence of the functions
which parametrize I's, i.e. '

Qp — @ <= o, Za in (0,a),

where 0, = Q(an) and Q = Q(a).
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Fig. 2. Parametrization of the domains.

Let
V() = {veHl(Qn) :v=00onT7UT(ay,), v-7=00nTYy Ul‘g}.

We establish below the continuity of the state with respect to the domain and the
compactness of UUyg.

Denote by  the open rectangle (0,a) x (0,¢) which contains all domains Qa),
@ € Uag. To prove the continuity result, we use the next proposition whose proof is
given in (Haslinger and Neittaanméaki, 1988).

Proposition 1. Given A,(y,§) = foay(zl,a(ml))f(wl,a'(:vl))d:vl, Yn, y € HH(Q)
and an,o € Uag such that y, — y in H () and an = a in (0,a), we have
Aan (ynuf) _7;::0:) Aa(yyf) VE € (COO(Q))Z

Remark 1. In order to prove the continuity property, we assume that the con-
stants 8 and v of formulae (5) and (6) do not depend on 2, when considering the
multilinear forms defined on products of H*(2), where Q(a,) C Q for all oy, € Ung

Proposition 2. Assume that 5%/16y > ][LH(IHIl (@) ond let up = u(an) € V(iay) =
V(§,) be the solution to Po(Q(an)), an € U.a. Then there exists a subsequence of
{(an,un)}, denoted again by {(an,un)}, and elements a € Uag,u € V(a) such that
‘W) = Qa)’ and ‘un, = u’ in the sense that in — @ in H' (), where @, and
4 denote respectively the uniform extensions of u, and u to Q. Moreover, u is a
solution to Py(Q(a)).

Proof. Let {an} be a sequence of functions in U,q. This sequence is uniformly
bounded and equicontinuous, and therefore by Ascoli-Arzela’s theorem there exists a
subsequence, denoted again by {an}, which converges uniformly towards « in (0,a).
We consider a sequence of solutions of the following variational equations:

/ (¥Vun - Vo + (Un - V)un -v) dz = L{v) Vv € Vi(an), (7

n
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where
Vi(ow) = {veV(ay) :dive =0 in Qo) }.

For all n, uy is uniquely determined in the ball M. To get back to a fixed space,
we extend u, by 0 in Q\Q, which is feasible through the homogeneous Dirichlet
condition on I'(a,). Denoting by i, that extension, we get

”ﬂn”]ﬂ[l = Hun”Hl (@) < C. (8)

We can then extract a subsequence of {i,}, denoted again by {@,}, which converges
weakly to @ in H! (). ,

It remains to show that i|q(q) is a solution to Pr(Q(a)).

Step 1: ii[oe) € V1(Q(ar)).

We have divi, = 0 in Q, but divi, — diva in L2(), so divi = 0 in Q.
Since T'y is fixed, we have @|p,= 0.

By Proposition 1, we have
Aa(lin,£) =0 VYnelIN, Vée (Co@)
on I'(a). Hence, in the limit, we have
/Oa&n(ml,a(xl))f(wl,a(zl)) dzy =0 Ve e (C=(D)’,
which implies
Ufr=0.

Step 2: ii|q(y) is a solution to P (02(a)).

We need to show that the restriction to (a) of the weak limit @ of 4., denoted
by i |o(a)= u, is a solution to P»(Q2(a)). To achieve this goal, we introduce the
following spaces:

Wa={® e (C®(@.)":dive =0 in 0,,8=0
in a neighbourhood of T'; U F(an)},

w={®e(C® (@)’ :dive =0 in ,8=0
in a neighbourhood of T U I‘(a)}.

We have (Tartar, 1974)

H* (Q,,)

Win{v €H () :v-7=0 on To UL} =V (an)
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and

H (Q(a)

W {v e (Qa)) v-7=0on [oUL,) Y Vi(a).

We must have & € WN{v € H' ((e)) :v-7=0 on ToUT,} = Wi, since a, 3 a
in (0,a), ® € Won{veM(Q,):v-7=0 on [yUI,} for large values of n, n >
ng, and

/ (VViy - V& + (up - V)up - @) dz = L(D). (9)
Qn
Let us examine each term separately:

/ vVu, - Védzr = /VVﬂn V®dz ~—— [ vVE-Vodz = / vVu - Vo dz,
Qn () Q(a)

where & is the extension of & by 0 in 2. To prove the convergence of the non-
linear term, we use the fact that the embedding of H!(Q) in (L2())? and the trace
mapping of H!(Q) in (L*(9))? are compact. We can then extract a subsequence,
denoted again by 4., which satisfies

iy — @ in (L))
and
i g — @il50 in (L2(00)%.

We then get

n—roo Q

- / (u- Vyu- & dz,
Q(a)

/(un-V)un'@dx=/(ﬁn~V)ﬂn-i>da:-——> (- V)a- ®dz
Q )

n

and therefore v satisfies

/Q( (Vu TR (V) @) 4= D) VE W, (10)
Since W is a dense subspace of V;(«a), we can conclude that u satisfies

/Q( | (vVu-Vv+ (v-V)u-v)dz = L(v) forall v € Vi(a). (11)

This completes the proof. |

Theorem 2. Problem Popy has at least one solution.
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Indeed, we have constructed a sequence {Q,} which converges to Q and a
sequence {u,} which converges to the solution to the state problem in the domain €,
which proves the continuity of the state with respect to the domain. Moreover, the
sequence {@in |5¢(q)tn>0 converges in (L2(89))? towards @ |5 (o) Which implies the
continuity of the cost function J(a) = fro u-ndo. Since the set Uyq is compact and
the function J(a) is continuous on Uaq, we deduce that an optimal domain exists.

Remark 2. In the case where the éequence Uy is a solution to Stokes equations, the
inequality (8) is checked through the coercivity of the bilinear form a(-,-) and the
continuity of the linear form L. Recall that a(-,-) and L are respectively defined
by (1) and (4).

4. Parametrization of the Domain and Calculation of the Shape
Gradient

To compute the gradient of J(€2) with respect to Q, we first parametrize the do-
main 2 as follows: Given an open ) with a generic point X, we transform Q into
; through the function T; defined by

ltt:Tt(X), xy €y, >0,

where z; is a solution to the differential equation

d
Ewt ZV(t,.It), Zo = X.

Here V' (t,z¢), being a regular vector field, represents the speed of displacement of
points of Q. For ¢ close to zero, we get

ze =X +t%Tt(X)|t:0 4o
and
V(z) = iTt(X)' .
dt t=0
Hence

Notice that the transformations 73(X) and X+t V(X)) are tangent at the origin.
It is well-known (Zolésio, 1981) that two tangent transformations generate the same
results of derivation at the origin. We assume that under the effect of the deformation
field V, we can transform Q into Q¢ I' into I'y and H!(Q) into H!(Q) for all
t > 0. The functional spaces on ; are defined by

Vi={uoTy ' =w :ueV}
and

Qtz{qut_l:thQEQ}.
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The cost functional 7 has the form
j(Qt) = / Ut * ndo. (12)
To

In order to minimize J with respect to 2, we need to compute the Eulerian
semi-derivative at Q in the direction of the velocity field V associated with the
deformation T;.

The variational formulation associated with the Navier-Stokes problem on €, is
given by

( Find (ug,pt) € Vy x Q¢ such that
r

l// V'U,t . V’Ut d:L‘t + (Ut 4 V)ut * VUt dil?t — / Dt div Ut d.’Et
Q Q4 Q.

P(Q) : < = gv-ndo Y € Vy,

s

/ gt divusdz; =0 ‘v’qt € Qt.
\ JQ,

‘We change the variables to get back to integrals on Q
u/ DTV (ub) - DT Vo J; dz + / (u* DTVl v Jpda
Q Q
—/pt_o T, Vv -DT; " Jyda — / pioTy Vv DTt J, dx
Q Q

:/ gv-ndo Yv eV,
T2

/qV(ut)-DT”l Jydz =0 Vg€ Q,
\ Q

1// DTV (b)) - DTV (v) Jode = V/ A@)V(u?) - Vudz
Q Q

with Ut = Ut © Tt, V=vY0 Tt, Jt = det(DTt) and A(t) = JtDTt_l tDTt.
Differentiating P({;) with respect to ¢ for ¢ = 0, we obtain the variational
equation satisfied by (%,p), where f = d(f; o T3)/dt|i=0,

.
V/A'(O)Vu—VUdz+V/ViL-Vvdw
Q Q

+‘/Q(11-V)U<vdx—/n(u- tDV(O)V)u'vdJ;+/Q(u-V)u-vdm

+/(u-V)u-vdivV(O)dx—/pdivvdx+/va'DV(O)dzt (13)
Q Q Q

~/pdivvdivV(O)da:=0 Yv eV,
Q

/qdiv&dm—/un-DV(O)dz%—/qdivudivV(O)dx:O Vg € Q.
Q Q Q

.

with A'(0) = div V' (0)I — (DV(0) + *DV(0)).
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Variational formulation of the adjoint state in Q. The variational form P» ()
of the state partial differential equation is considered as a constraint in the minimiza-
tion Problem P,pt. We construct a Lagrange functional by introducing a multiplier
function (u*,p*):

L(Q,u,p,u",p*) = j(Q)+/ z/Vu-Vu*dx+/(u-V)1L-u*d:E
Q Q

+/pdivu*da:~/ gu*-nda+/p*divudm.
Q s Q

We use it in a classical fashion to write explicitly the variational form of the adjoint
state solution (u*,p*) to the problem

L
lim 6—(Q,u+6’cp,p+6’1,b,u*,p*) =0 VYpeV, Yy eqQ.
6—0 00

Then we obtain the adjoint problem
( Find (u*, p*) € V x @ such that

v/ch-Vu*dx—%—/((,0-V)u-u*dx+/(u-V)wiu*dm
Q Q Q

P*(Q):
(@) 4 — p*divgod:v:—/ p-ndo Ypey, (14)
Q T'o
/wdivu*dx:O Y € Q.
\ JQ
In particular, for ¢ =%
—/ % -ndo = V/Vu-Vu*d$+/(1l-\7)u-u*dm
To Q Q
+/(u~V)u~u*d:1:—/p*div1ldm (15)
Q Q

and, setting v = u* in (13), we get the expression for the derivative of J in the
direction of V:

DJ(Q,V) = U/QA'(O)VU -Vu*dz
- / (u- DV(0)V)u - u*dz + / (v V)u-u*divV(0)dz
Q : Q

+ / p(Vu* - DV(0)) d:z:+/p* (Vu-DV(0))dz  (16)
Q v Q
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Calculation of the deformation field. In the last section, we have seen that the
introduction of the fictitious time ¢ leads to the mapping

O — (ug, pe) — §(t) = T (¢, ut, pt)-

We have also computed the directional derivative with respect to the deformation
created by a field V which belongs to an appropriate space.

Using Hadamard’s formula (Hadamard, 1969; Zolésio, 1981), we see that there
exists a scalar distribution G on the surface such that

DJ(Q,V):/Gv-ndJ. (17)
r

Note that our goal is to minimize the cost functional J({);) using some descent
method. In order to do that in practice, we solve the following variational problem:

Determine (W, ¥) € H x Q such that

Py(Q) : V/QVW-V"ud:c—/ U diveodx = — Gv-ndoe YveH,

Q Ts (18)

/qdivT/Vd:c:O Vq € Q,
Q
where
H={veH (Q):v=0o0nI\I3 v-7=0on I3},

I3 being the part of the boundary to be deformed.

Problem P;()) permits us to compute the descent direction in order to appro-
ximate §; by the following Euler scheme:

Ty = Tg + tW.
Here W is the solution to the elliptic problem
([ Find W € Hn {ve H(Q):divv =0} such that

AW =0 in Q,
<
?—VK:G on Fg,
on

L W =0 on F\F3
W constitutes a lifting up of G in HN{ve H(Q):dive =0}.

5. Finite Element Approximation
We recall that our abstract optimal shape design problem is stated as follows:
Find a* € U,q such that

J(a*) < J{a) Va € Uy

Popt :
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where
J(a) = / u(a) - ndo,
To

Uag is the set of admissible functions and (u(a),p(a)) denotes the solution to the
variational problem

a(u(@),v) + c(u(a), u(a),v) — b(p(a),v) = L(v) YveV,

P (o)) :
(@) b(g,u(a)) =0 Vg e Q,

where
Qo) ={(z1,22) €ER* : 0< 21 <@, 0<z <afz1)}
and

Usa = {@€ C1(0,0) :|a(a) — aly)| < kla =y,

0<b<a(r) <c af0) =ala) :d}.

The parts T'g, I'y and T's of the boundary of Q(a) being fixed, we wish to
minimize the cost functional with respect to the shape of I's. We discretize the pro-
blem by the mixed finite element method using the Q,(zg)—Pl (biquadratic velocity,
piecewise linear pressure) element on a quadrangular mesh. Qgg) is used to appro-
ximate each component of the velocity field u. It is a classical Lagrangian bilinear
element with nine nodes. The pressure p is P, with three degrees of freedom, i.e.
the value of p and its first derivatives at the barycenter. In practical calculations,
the unknowns corresponding to the values of the velocity at the barycentre and those
corresponding to the derivatives of the pressure are eliminated at the local level. The
element Q(zg)—Pl verifies the Babuska-Brezzi condition, so its order of convergence is
o(h?). For more details concerning this element, see (Fortin and Fortin, 1984; 1985,
p.912).

Our main assumptions are as follows:
e The nodes on ,\I's;, are fixed;

o I'sy, = {(z1,22) : 22 = ap(z1), z1 € (0,a) and ap is a piecewise linear
function};

e 7) is regular with respect to A such that:

— for any fixed A >0, Tx(e) depends continuously on ay € UL,

— for any fixed h >0, 74(as)’s are topologically equivalent to ay € UL, i.e.
the number of nodes from 7y(cy) is the same for all ap € U and the
nodes still have the same neighbours;
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— the family {7x(an)}, kb — 07, is uniformly regular with respect to A > 0,
ayp € Z/(:d, i.e. a constant 6, > 0 exists such that O(ay) > 6o Vh > 0,
Vap € UL, where 0j,(as) is the minimal interior angle of all triangles from

Th(an)-
Here

ap € C°(0,a) : ap is piecewise linear such that
Uk —
d — 3

a b<ap<ec ap(0)=ap(a)=d and ah(a;) — Zh(aifl) <k
i~ Qi1

and (a;) are the nodes of 75 on (0,a).

In fact, those hypotheses are required to prove the continuity of finite element
solutions with respect to discrete shapes.

The discrete problem is formulated as follows:
Find (up,pn) € Vi x Qp such that
P(ap)p : { alunsvn) + c(un, un, vh) — br(vh,pr) = L(v)  Yon € Vh(an),

by (un,qn) =0 Vgu € Qp,

where
v € C°(Qn(an))” : va |k € Qa(K)? VK € Ti(an) such that
Vi={ vn=0 on IiUTs
v -T=0 on TopUTs,
Qn={an:qn|x€ PL VK € Tr(on)}
and

bu(vh,qn) = Y / divongndz  V(vn,qn) € Vi X Qh.
KeT, 'K

For fixed h, let us prove that P(ay);, has a solution uy, which depends continuously
on Q.

Theorem 3. Under the hypothesis of the existence theorem in the continuous case,
there exists a unique solution up(ap) to P(ap)n in the ball M. Moreover, up(ap)
depends continuously on ap,.

Proof. Let us first prove that, when wup(ap) exists, it depends continuously on aj.
Let uop € Vin(ar) and K, be defined by

K Vi — Vi
A
uon +—  up(on)
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where
Vin = {vn € Vi 1 bp(va,qn) =0 Vg € Qn},
up(ap) is a solution to the problem
Pugy (@n)n = a(un(an),vn) = L{vn) — c(uon, uon,va) Vup € Vin(an).

We identify an element of V;;, with an element of R?Y, where N is the number
of nodes, i.e. up(ap) ~ z(ap) where z(ap); is the value of up(ay) at node N;.

We have to solve the linear problem
A(on)z(om) = L(an)

which has a solution owing to the ellipticity of A(ap). The existence and uniqueness
of the solution to the non-linear problem P} are proved in the same way as in the
continuous case: we check that K} is a contraction operatorin M. Moreover, up(ap)
depends continuously on «j due to the hypothesis verified by 7 (ap).

For the existence of py, it is sufficient to remark that the inf-sup condition is

satisfied for the Qgg)-approximation of the velocity and P;-approximation of the
pressure:

b
inf sup 2n(TR )
9€Qn v, ||vally llgnllo

]

where k is independent of h. This condition is sufficient to prove the existence of
pr(ap) and to prove the convergence of (un,pn) to (u,p). For more details, see
(Brezzi and Fortin, 1991; Girault and Raviart, 1979; Fortin, 1977). |

The discrete cost functional is
Jh(ah) = / uh(ah) -ndo.
Ton
Finally, the discrete optimization problem is
i Find aj, € UM, such that
Popt :
Jh(a:) < Jh(ah) Vap € U:d-

Let ¢ be the basis function in @Q9(K) associated with the node N;; = F¢(IV,),
where F; is a perturbation of the identity, i.e.

Fi(z1, 2) = (21, 22) + t Wh(z1,22),
Wh being the approximation of the deformation vector field W. Since
pri(@e) = pri(Fie(z)) = pi(z) Vz € U,

L(an) and A(ay) depend continuously on .



Shape optimization of labyrinth seals 395

Note that z(ay) is in a compact set of RV and Jy(an) = jr up(ap) -ndop, =
fr(]h ; Z(an)ip;-ndoy, is continuous with respect to ey, which proves the existence
of a solution to Problem Popt

We will study the relation between P,p; and ph opt @8 h — 0%. To say that Popt
is an approximation of P,pt, we must prove that the solutions to Popt (at least some
of them) are close, in some sense, to those of Popy. Let us introduce the following

assumptions:

A(i) For any o € Upq and Q = Q(a), there exists ay € U;"d and Qp = Qpnap)
such that

‘Qp — O as h — 0T,

A(ii) For every sequence {Qp,un(Qs)} where Qp = Qp(an) and ap € UM, there
exits a subsequence {Qnj,un;(Qr;)} and {Q,u(Q)} such that

‘Qh]’ — ﬂ,, ‘uhj(th) — u(ﬂ)’ as j — O0.

A(l) If ap € Ua’;d and a € Usq with ‘Qp — ° as A — 01 and if uh(ﬂh) €
Vin(Q), w(Q) € Vi(Q) with ‘up () = w(2)’ as h — 0T, then

hl_if&‘]h(ah) = J(a).

Theorem 4. Let Assumptions A(i)-A(iii) be satisfied, o} € UM be a solution to
Ph: and un(ag) be a solution to P(a})n. Then there exists a subsequence {a,}

{unj(ay;)} and elements o* € Uag, u € Vi(a*) such that

ap; /2" in (0,a),
j—oo

‘Uhj (ahj) —u ’,
J

—00

Moreover, o~ is a solution to Popy and u = u(a*) solves Py(a*).

For the proof, see (Haslinger and Neittaanmiki, 1988, Th. 2.3). In the following,
we check that A(i)-A(iii) are satisfied:

e From Bégis and Glowinski (1975) it follows that for any a € Ua,q, there exists
{an}n € UM such that ap, = a in (0,a) as h — 0T, ie. A(:) is satisfied.

e Suppose now that @, =3 @ in (0,a) as h — 0T. Then a sequence of solutions
{un(an)}n to the problems P(ay), exists in M. We can then extract a sub-
sequence of {in(an)}n (Gn is the extension of uy to by 0), again denoted
by {@n(an)}r, that weakly converges towards @ in HE(Q). It is proved in the
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continuous case that @ [g(a)€ Vi(a). Let us prove that @ |, solves P(a).
For all vy in Vip(an), we have '

l// Vup(ay) - Vo, dz + / (uh(ah) . V)uh(ah)vh dz = L(vp),
Q(an)n Qp

where v, = IIyv, v € Vi(a). T, is the linear interpolation operator introduced
in (Fortin, 1977, p. 346). The main property of the operator II, is that it is a
uniformly continuous operator from V into V;, and it verifies

b(v —vn,qn) =0 Vi € Qn.

For the case of the element Qgg)—Pl used for our discretisation, this operator
can be constructed based on the Babuék§~Brezzi condition (Fortin, 1977, p. 346).

Using the fact that II,v — v in H!(2) strongly and passing to the limit in
each term, we obtain

1// Vu(a) - Vo dz + / (u(a) - V)u(@)vdz = L(v) Yv € Vi(a).
Qo) Q

We have ‘@, —— Q' and the trace mapping from H! () to (L*(8))? being
h—0+
compact, which implies

In(ay) —— J(a).
h—0t

We can thus conclude that P}, is an approximation of Pypy for a small h.

6. Numerical Experiments

Algorithm
Given 2y and p

for n=0

Step 1: Solve the state problem P(Q,), compute J(Q,) and check whether
J(Qn) < J(Qp-1).

Step 2: Solve the adjoint state problem (14).

Step 3: Compute the deformation field W, by solving (18).

Step 4: If [|[Wy|| <€, then Qp = Qqpt. Stop. Otherwise, set Qpy1 = Qy + p W,
and go to Step 1.

In the following, we present numerical results obtained by using the above algo-

rithm. Figures 3-6 represent, respectively, the velocity field and the pressure lines for
the state and the adjoint state. We show in Figs. 7-10 the optimal shape obtained
and the behaviour of the cost function for » = 1, 0.3 and g = 1. For the case of
v =1 and g =2, 6, the results are shown in Figs. 11-14.
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Fig. 3. Velocity field for the state (viscosity = 1).

Fig. 4. Pressure lines for the state (viscosity = 1).
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Fig. 5. Velocity field for the adjoint state (viscosity = 1).

Fig. 6. Pressure lines for the adjoint state (viscosity = 1).



Shape optimization of labyrinth seals 399

Ao

Fig. 7. Optimal shape (v=1, g=1).
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Fig. 8. Flow leakage losses at the input with respect to the number of iterations.
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Fig. 9. Optimal shape (v =0.3, g=1).
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Fig. 10. Flow leakage losses at the input with respect to the number of iterations.
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Fig. 11. Optimal shape (v=1, g=2).
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Fig. 12. Flow leakage losses at the input with respect to the number of iterations.
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Fig. 13. Optimal shape (v=1, g =86).
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Fig. 14. Flow leakage losses at the input with respect to the number of iterations.
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7. Conclusion

Numerical tests have been carried out for different values of the viscosity v and g
which corresponds to the pressure gap between the entry and the exit of the seal.

The optimal shape constitutes an opening (of the turbine side) with an angle
increasing with 1/v and ¢ which tends to trap the water in the cavity. The de-
formation obtained has the particularity of creating a barrage effect which is much
important than the one of the square cavity used as the initial domain. Event though
the cost values corresponding to each case are different, the relative gain remains
virtually the same.
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