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THE GRAM-SCHMIDT METHOD IN
THE IDENTIFICATION OF A GENERALIZED
CONTROL SYSTEM

HuBERT WYSOCKI*

This article discusses the identification of a generalized linear control system
described in the Bittner operational calculus by an abstract linear differential
equation with constant coeflicients. The identification problem leads to that
of the best approximation in the vector space £2, and is solved by using the
Gram-Schmidt orthonormalization method. The classical Strejc method and the
Shinbrot modulating function method are generalized here.
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1. Introduction

Control theory deals with systems whose dynamics are described, among others, by
differential and difference equations. The analogies existing between them and their
common features can be formulated in a uniform and unified way using Bittner (1974)
operational calculus or Przeworska-Rolewicz (1988) algebraic analysis (cf. Sieficzew-
ski, 1982).

In the paper, we consider the problem of identification of the coefficients
ag, - - -, 0, Of the linear system

anS™y + 18"y 4 -+ a1Sy +aoy = u (1)

generated by means of the so-called abstract derivative S in the Bittner operational
calculus. Due to the operational calculus model (i.e. the form of the operation S),
(1) can be a differential or difference equation.

The basic notions of the Bittner operational calculus, which are used throughout
the paper, are introduced in Section 2. In Section 3, the notion of the generalized
control system described by the abstract differential eqn. (1) is introduced. In Sec-
tion 4, the problem of the identification is carried over to determine the numbers
ag,ai, .. ., 0y, which quarantee a minimum of some functional J(ao,a1,...,a,). The
problem is solved as the best approximation problem in the vector space £2, using the
Gram-Schmidt orthonormalization. Section 5 includes a generalization of the classical
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method of the identification elaborated by Strejc (1961). A method which enables us
to apply the Gram-Schmidt algorithm is obtained. In Section 6, it is shown how to
use that algorithm for the identification of the system (1) by means of the modulating
elements. This method was treated by the author and Zellma (1991) and it consti-

tutes a generalization of the classical method of modulating functions presented by
Shinbrot (1957).

The general theory elaborated in this paper is illustrated with a few numerical
examples of various models of the operational calculus. They unify the identification
of continuous and discrete, stationary and non-stationary, lumped- and distributed-
parameter systems.

2. Operational Calculus
The Bittner operational calculus (Bittner, 1974) is a system
CO(LO7L1;S1TQ7SQ’Q)7

where L° and L' are linear spaces over the same field T' of scalars and L' C
L, the linear operation S : L' —» L° (written as S € L(L!, L)), called the
(abstract) derivative, is a surjection. Moreover, @ is a non-empty set of indices ¢ for
the operations T, € L(L° L'),s, € L(L',L") called integrals and limit conditions,
respectively, and such that ST,w =w, w € L%, T, Sz =z — s,z, = € L.

By induction we define a sequence of spaces L™, n € N such that
L":={zeL"':Sze L™t}
Then ---CL™CcL™*cC---cL'cL® and
S™(L™t™) = L™,
where

L(L™ L% 38":=S0.---08, neN, melN :=NuU{0}
\—V_"

n times

The kernel of S, i.e. the set KerS := {¢ € L' : Sc = 0}, is called the space of
constants for the derivative S.

For an element z € L™, n € N the Taylor formula takes place:

=52 +TysgSz+ -+ T 's,S" 'z + TpS™z, q€Q. (2)

3. Generalized Control System
Let T' be the field of reals R. Consider the abstract differential equation

anS™ + an_1S" Yy + - + a1 Sy + apy = u, (3)
where a; € R, 1€0,n:={0,1,...,n}, ue L% ye L" neN.
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In control theory we are concerned with systems whose dynamics, in suitable
models of operational calculus, is described by (3). The model (3) of those systems
is called a generalized linear differential stationary lumped-parameter control system
(briefly: generalized control system) (Bellert, 1975). The given element u and the
unknown element y are called the input signal (control) and the output signal (re-
sponse) of the system (3), respectively. The set @ is called the instants set (Wysocki
and Zellma, 1991; 1993; 1995).

4. System Identification

Assume that from (3), after some operations which are described in what follows, we
obtain a vector equation

E a;V; = W,
=0

where @ and T;, ¢ € 0,n are m-dimensional vectors depending on the control u
and the response y, respectively, i.e.

w=w(), 7;=0y), 1€0,n (4)
such that
w(0) =0, ©;(0)=0, i€0,n.

The cases when
w*,v; € (Ker 8)p :=PKer S, i€ln, m2n+1 (5)
v=1

for a fixed identifying pair (u*,y*) € L® x L™, where @ means the direct sum?, are
discussed in (Wysocki and Zellma, 1991; 1993; 1995). In those papers, by identification
of a control system (3) we understand the problem of choosing the coefficients of (3)
with given elements u*,y* so that the functional

n
J(O’O)aly' "7an) = ” Zaiﬁf _m*” (6)
=0
(called the identification performance indez) attains its minimum, where || - || is the

norm induced by the inner product (-|-) in a fixed Hilbert space H and wW*,7},i €
0,n are the vectors of the form (4) determined for u* and y*.

k
1 If X is a linear space over T', then the direct sum €D X means the set of all k-tuples T =
=1
(z1,%2,...,2x) such that z; € X,i € 1,k, with the usual operations of coordinate-wise addition
and multiplication by scalars.
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That problem has been solved by means of the orthogonal projection theorem
(Luenberger, 1984, Th. 2). Solving the system of normal equations

n

0 s~ 0
Za’ibij:cj; ]eO,TL,
=0

where bi; 1= (Uf[7}), ¢; := (@*[v}), j € 0,n, optimal coefficients a,af,...,ad of
(3) are obtained.

Now the problem of the identification of (3) will be transformed to the best
approximation in the vector space ¢2,. We solve that problem using the Gram-
Schmidt orthonormalization method (Alexiewicz, 1969; Musielak, 1976). Accordingly,
we assume that the condition w*, o} € £2,, i € 0,n, m > n + 1 will be satisfied
instead of (5).

The elements of the real space £2, are systems of m real numbers with common
operations on vectors and with the inner product

m
@w) ==Y vow,, v,Te€L (7)
v=1

inducing the norm

1ol =

Assume that
B := {v;,7%,...,05}
is the set of linearly independent vectors in £2,. From

iaiSiy* =0

=0

we obtain
n
Z a‘iﬁ: = Oa
1=0

which implies ap = a1 = --- = a, = 0. Hence we have to assume that »* € L°\ {0}.

From the Schmidt Theorem (Alexiewicz, 1969, Th. IX, 5.2) it follows that we
can transform linearly the set B and obtain the orthonormal set

Z={%0,%1,.--,%n }-
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The elements of the set have to be defined by means of the so-called Gram-Schmidt
orthonormalization process in the following way:

o F;_Z( 1lz])
Zo = —0, Zi= , i€1,n. 9)

I[oF = ) (i 125 )7l
i=0

From (9) it follows that the elements of Z can be expressed as

Zi = poilp + p1ivi + -+ +piv;, i €0,m. (10)

Only one non-singular upper-triangular matrix

DPoo Por Poz - DPon
P . 0 pu piz - Pin
(n+1)x(n+1) *=
0 0 0 Pnn
corresponds to the system (10).
Let l§mx(n+1) and me(n+1) be the matrices in which vectors ¥g,@},...,v%
and Zg,Z2,...,2, are the columns, respectively, i.e.
B :=[o},5},...,7%), Z:=[20,%1,...,%n]

With this notation, the system (10) can be represented in the matrix form
Z = BP. (11)
The elements of the columns of P are the coefficients of developments of the columns

of Z in the basis B which is formed of the columns of B.
From (11) we obtain

B=ZR, (12)

where R := P~1. In this case the elements of the columns of R are the coefficients
of developments of the columns of B in the basis Z which is formed of the columns
of Z.

In the numerical examples which will be presented in what follows, the Gram-
Schmidt algorithm (Fortuna et al., 1982) has been applied for the distribution (12)
of B to the orthonormal matrix Z and the upper-triangular matrix R.

The problem of determining P = R~ is reduced to that of solving n + 1 linear
algebraic equations

Rp;=¢;, jeO,n, (13)

where p; is a vector which is the j-th column of P and €; is a vector which has
unity in the j-th position and the other elements are equal to zero. Each of the
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dependencies (13) is the system of equations with the triangular matrix R, which can
be solved recursively (Fortuna et al., 1982).

From the Schmidt Theorem it can also be concluded that Lin B = Lin Z.2 Thus
the criterion of choosing optimal coefficients of eqn. (3) can be presented in the equ-
ivalent form

2

:ﬁfeB,aieR,iEG,—ﬁ}

n

min{” Zaﬁf —w*
i=0

=min {||t -@*|*: v€LinB} =min{ ||Z—w*||*: zeLinZ}. (14)

Since Z 1is a set of orthonormal elements, from the Bessel Theorem it follows
(Alexiewicz, 1969, Th. IX, 5.4) that the above-mentioned minimum is attained for
n
2 =310z (15)

=0

and it equals
(1 = > @)?, (16)
i=0 .

where b) are the Fourier coefficients of the element w* for the system Z, i.e.

b = (W*|z;), i€0,n. (17)

Using (15) and (10), we can represent the optimal vector z° as an element of the

linear span Lin B. Namely, we get
n i n n
2= 0( X mm) =3 (o ma)or
i=0.  j=0 =0  j=i
According to the above remark and (14), we conclude that
n
of =) Wpy, i€l (18)
Jj=i

are coefficients of (3) minimizing the identification performance index (6).

2IfY = {y1,y2,---,yx} C X and X is a linear space over T, then LinY means the linear
k —
span of V,ie. LinY:={z€X: z=) vy, i €,y; €Y,i € 1,k}.

i=1
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It is obvious that

J(a3,a?,...,a%) = J(b3,09,...,02).

Moreover,
m n 2
J(a$,ad,...,al) = Z(Z(L?‘Q”——WV) (19)
v=1 =0
and
TR, = | S -3 (S wez), (20)
v=1 =0 wv=1

where W¥, V¥, Z¥ mean the v-th coordinates of vectors w*, T}, Z;, respectively.

Formulae (19) and (20) follow from (6), (16) and from (7), (8), respectively. To
calculate the values of J, (19) is applied in numerical examples in this paper.

In suitable models of operational calculus, the elements v* and y* mean ap-
proximates, on the basis of the values obtained from measurements on a real system,
input and output signals of the system. Spline interpolation of the signals is discussed
in (Wysocki and Zellma, 1993; 1995).

On account of the above remarks, it may be deduced that the identification of (3)
based on the orthonormalization method comprises the following stages:

1. Determining the distribution (12) by means of the Gram-Schmidt algorithm.
2. Determining the matrix P = R~! by recurrently solving the system (13).

3. Determining the optimal coefficients b? from (17).

4. Determining the optimal coefficients af from (18).

Now we shall generalize two classical identification methods of control systems.
We get the generalizations pertaining to the vector equation

n
E aiﬁi = w,
=0

where T;,W € £2,. This enables us to appy the Gram-Schmidt method.

5. Strejc Methods

The classical Streje method (Eykhoff, 1974; Strejc, 1961) concerns a continuous sta-
tionary lumped-parameter system and it depends on the multiple integration of the
equation describing its dynamics. The problem of choosing the best model is not
considered in the classical method.
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5.1. One-Point Method

Let 7, be a fixed integral corresponding to the derivative S§. Moreover, let
T1,72,...,Tm € No be given such that r; # r; for i # 7, where 4,5 € I,m, m > n+1.
For each pair of signals (u,y) € L° x L™ satisfying (3) with given coefficients
ap,ai,.-.,a, we have

anTy* Sy + an_lT;"S”_ly + ot a Ty Sy +acly y =T u, vel,m. (21)

Let € be a given non-empty set. Consider an indexing family of linear functionals
{F,}weq defined on L°. The set Q will be called the observation set of (3), while
its elements the points. The examples given below indicate in which way it is easiest
to define Q and F_’s.

Assume that a mapping F,, is fixed. Then from (21) we get

n
E a;V; = W,
=0

where
FTr Sty F,Tru
v; 1= , W= , 1 €0,n. (22)
F, TSy E,Tu
Using the Taylor formula (2), we can reduce the order of the derivatives of the output

signal y in coordinates of vectors 7; and express them using limit conditions. Namely,
for i 2 r we have

r—1
T;S'y =T, 8" (S Ty) = 85Ty = Y Tis Sy, (23)
J=0
However, for i < r we obtain
. . . . . z-l . . .
Ty 8%y =T, HTiSy) =Ty 'y = > T+, S0y, (24)
j=0

Now, the identification problem of the control system (3) consists in minimizing
the functional

n
Jqf,w (a(], (25 PN a.n) = ” Z ai'ﬁz - " ”, (25)

=0

where U}, W* € £2, are the vectors of the form (22) determined for the fixed elements
u* € L°\{0}, y* € L™\Ker S™. The identification performance index (25) depends on
the point g € Q defining the integral T,, on the vector 7 := [ry,7s,... ,Tm] defining
iterations of Ty and on the point w €  defining the mapping F,,. It is necessary to
choose those quantities in a such way that B = {73,9},...,7%} be a set of linearly
independent vectors in £2,.
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Example 1. In the operational calculus (Bittner‘ and Mieloszyk, 1982) with the
derivative

_ dx(t, 2) + 0z (t, z)

Se: ot 8z ’

integrals '
t
Tow = / w(r,z —t+7)dr
7

and limit conditions
sqz :=z(q,z — t +q),

where ¢ € Q := [to,t;] C R, w=w(t,2) € L° := CY(Q xR R), z = z(t,2z) € L' =
{z € L% : Sz € L°}, the operational equation

1Sy +agy =u
takes the form of the quasi-linear partial differential equation

Oy(t,z) | Oy(t,=2)
a1( ot y+ 0z

) + apy(t, 2) = u(t, ). (26)

Equation (26) describes the dynamics of a stationary distributed-parameter system in
the classical sense. The elements u* = u*(t,2) € L°\ {0}, y* = y*(¢,2) € L* \ Ker S
are such that u*|o and y*|q are respectively the input and output signals of the
system (26) approximated in the rectangle € := [to,tx] X [20, 2] (on the basis of the
values obtained from the measurements on a real system). The point w = (a,b) € Q
defines the functional

EF y(t,2) :=y(a,b), y=y(tz2) € °

uniquely. With m = 2, for F,, so determined, from (22)—(24) we get

y*(r,b—a+7)dr for =1,

Vo = /qa (27)

y*(r,b—a+7)dr for ro =1,
(28)

SN
Il
n\\ n\

/y*(ﬁ,b—a+§)d§d7 for 7o =2,
q

L %y éa, ) + % a(a,b) for r; =0,
V1 = t z (29)
y*(a,b) —y*(g,b—a+q) for r =1,
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y*(anb)_y*(Qab_a’+q) for T2=1>

vy @ (30)
(q—a)y*(q,b——a+q)+/ y*'(r,b—a+7)dr for 7y =2,
q .

1u*(a, b) for m =0,
Wt = @
/ u (r,b—a+7)dr for r =1,
q
> (31)
/ u(r,b—a+7)dr for =1,
w=2q !
// (€ b—a+&)dédr for 7 =2,
a/q J

where ¢ € [to,tx] and q # a.

Table 1 contains numerical results of the identification of the system (26). In
the example, the coordinates of vectors 7} and W* are determined directly from the
formulae (27)-(31) using the analytical forms of u* and y* which are given in the
table. The table also contains the absolute errors

AQ,F,wy(tj:Zj) = Iy*(tjazj) - y(tj)z])|7 (tj)zj) €.

To define them, first we need to determine the system response y(t,z) to the input
signal w*(t,z). This is achieved by solving the equation

af (aygé 2+ ayg;z)) +agy(t,2) = u"(t,2) (32)

with the limit condition

y(9,2) =y"(q,2). (33)

The solution to the problem (32), (33)is expressed by the following formula (Mielo-
szyk, 1986):

vit.2) = e [P gz -t

1t ~q)al
+-—0/ u*(r,z —t+T1)exp {ET—(I)&] dT}.
1Jg

a/ ad

¢
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Table 1. One-point Strejc method in identification of a
partial differential equation of the first order.
0 ¢
Q:[O,Q]X[O,2] ai (a—g+a—z>+a0yzu
g=0 u* = 3.98t + 6.04z+ 5.03, y* = 2.01¢ + 3.04z — 4.97
T'—[T‘l,’f'z] 7‘1:0, T‘2:1
w = (a,b) a=1, b=2 a=2, b=2
ad 1.98416 1.98416
af 2.95038 2.94877
o7 w 8.33000 x 10~° 3.79907 x 108
t Z v y Agrwy Y Agrwy
0.5 1 0.25 | —3.205 | —3.20647 | 1.46769 x 103 | —3.20529 | 2.93676 x 104
1.0 | 0.50 | —1.440 | —1.44302 | 3.01952 x 102 | —1.44101 | 1.00690 x 10~3
1.5 | 0.75 0.325 0.32043 | 4.57158 x 10~3 0.32304 | 1.95988 x 1073
2.0 | 1.00 2.090 2.08392 | 6.08102 x 10~% 2.08696 | 3.04131 x 103
T = [re,m2] ri=1, ro=2
w=(a,b) a=1, b=2 a=2, b=2
ad 2.00000 2.00000
ad 2.94851 2.94851
Jyrw 1.30385 x 108 3.72529 x 108
t Z y* Y Agrwy Y Ayrwy
0.5 | 0.25 | —3.205 | —3.19510 | 9.90471 x 10~3 | —3.19510 | 9.90468 x 103
1.0 | 0.50 | —1.440 | —1.42633 | 1.36706 x 10~2 | —1.42633 | 1.36706 x 102
1.5 | 0.75 0.325 0.33777 | 1.27688 x 102 0.33777 | 1.27687 x 102
2.0 | 1.00 2.090 2.09833 | 8.33180 x 102 2.09833 | 8.33176 x 1073

Example 2. Let

L*={f(y): f=f(t), y=y(t) € C"(R,R)},

n =201

For any f(y),9(y) € L' and «, € R the operation defined by

Sf(y) =

df(y)

dy

dy(t)

dt
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satisfies the condition

Slaf(y) + Ba(y)] = aSf(y) + BSy(y).

An analogous linearity condition is satisfied by the mappings

Tog(y) = / dy@]dn, @) = ()], (35)

where g € Q@ :=R and f(y) € L', g(y) € L°.

The operations (34), (35) form the so-called pseudo-nonlinear model of operatio-
nal calculus (cf. Bellert, 1963). In that model the equation

a1SY +aY = u : (36)

describes a generalized pseudo-nonlinear control system in which ¥V = f(y) is a
function of the output signal y.

Consider the identification problem of the coefficients g, a; of the non-linear
system

a1y ()y' (t) + aoy®(t) = u(t). (37)

Let the elements u* = u*(t) € L%\ {0}, yv* = y*(t) € L' \ KerS be the identifi-
cation pair for that problem, i.e. u*|q and y*|q are the input and output signals
approximated in the interval Q := [to,t;] (based on the values obtained from the
measurements). To use the outlined identification method, we convert (37) to the
form (36) by letting f(y) := y* and a; := 0.5a;, ap := ag. For that case, m = 2
and

wa(y) = f[y(w)]’ we Q: f(y) € LD:
from (22)-(24) we get
[y*(w)] for 7, =0,

Vo = w ) (38)
/ [y (m)]" dr for r; =1,

/ [y*(T)]sz for 7y =1,
q

/w 7-[y*(E)P dédr for 7y =2,
qJq

2y* (w) [y*(w)]' for r, =0,

[y @)]* - [y*@]° for =1,
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[y*(w)]z - [y*(Q)]z for 79 =1,
V= 2 “ 2 (41)
(@-w)y (@] + / [y*(")]*dr for ry =2,

q

u*(w) for r =0,
wl = w (42)
/ w*(r)dr - for r; =1,
q
/ uw*(r)dr for 1y = 1,
q .

w2 (43)

) [ v@aar o r=s

where ¢ € [to,tx] and ¢ # w. Table 2 contains numerical results for the above model.

The coordinates of the vectors T} and @W* are determined from (38)—(43) using
the forms of «* and y* shown in the table. Solving the initial-value problem

oJy(t)y' (1) + agy’(t) = u*(t), y(to) =y*(to),
the absolute errors
Aq,?,wy(tj) =

are also determined. ¢

yi(t;) —y(ty)|, t;€9Q (44)

5.2. Multi-Point Method

Let the integral T, and the functionals F,,, F,,,..., F,,., m > n+1 be fixed. Then
for a fixed pair (u,y) € L® x L™ satisfying (3) and for a fixed r € Ny we have

anFou, Ty S™y + a1 F,, T 8™ 1y

+tan by, T Sy +aoFL,, Ty = Fu, Tju, velm,

i.e.
n
Z a;V; = W,
i=1
where
leT;S"y leTun
7, = : , W= : , 1€0,n (45)
F,.. Tqr Sty E,., Tqr U
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Table 2. One-point Strejc method in identification of an ordi-
nary non-linear differential equation of the first order.

Q=10,3] a1yy + oy’ = u
¢=0, w=3 u* =2.97t2 —3.03, y* =098+ 1.02
7 = [ry,ra] r1=0, r=1 rn=1 ry;=2
ad 3.06880 3.05826
a? ~6.29347 —6.26359
Ty 1.59275 x 1077 2.16964 x 107
¢ y* y Agrwy y Agrwy

0.5 1.51 | 1.50668 | 3.32324 x 10~% | 1.50802 | 1.98046 x 103
1.0 2.00 | 1.99518 | 4.82482 x 10~% | 1.99779 | 2.20607 x 103
1.5 249 | 2.48405 | 5.94941 x 1073 | 2.48800 | 1.99556 x 103
2.0 2.98 | 2.97261 | 7.38697 x 10~% | 2.97805 | 1.94912 x 10~°
2.5 3.47 | 3.46029 | 9.70998 x 1073 | 3.46746 | 2.53579 x 103
3.0 3.96 | 3.94640 | 1.35969 x 10~3 | 3.95571 | 4.28992 x 103

Now the identification performance index (6) depends on the point ¢ € @ defining
the integral T,, on the number r € Ny defining its iteration and on the vector

W= [w1,Ws, .. .,wn] defining the mappings F,,, where w, € Q. Thus
N ka3
quw(ag, Ay, ... aan) = ” Zaiﬂz - _117*”,
1=0

where 7}, w* € {2, are vectors of the form (45) determined for fixed elements u* €
L\ {0} and y* € L™\ Ker S™. To obtain the coordinates of T}, we use (23) and (24).

Example 3. In the classical model of operational calculus in which
L" :=C"(Q,R), neNy, ¢ge€Q:=[,t]CR

and

d t
Si=—, T,:= /, Sq = jt=
dz q \ q q

the second-order equation
a5y + a1Sy + apy = u (46)
takes the form

azy"(t) + a1y (t) + aoy(t) = u(?) (47)
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and describes the dynamics of a linear stationary lumped-parameter system. For
Fo,y@) :==y(wy),w, € Q:=[to,t], vel,m, m>3, y={y@)}ell
from (45) and (23) we obtain

y*(wy) for r =0,
Vo = Wy (48
° / y*(r)dr for r=1, )
q
y*(wy) for r=0,
W= (49)

y*(wy) —y*(q) for r=1,

§* (wy) for r=0,

U*(wy) —9*(q) for r=1,

u*(w,) for =0,

WY = Wy (51)
/ u*(r)dr for r=1,
q :

g # wy, v € 1,m, where u* € L%\ {0},y* € L?\ KerS? and functions u*|g and
y*|o have the same meaning as before.

To assess the applied method by means of the absolute errors (44), first we have
to determine the model signal y(¢) by solving the initial-value problem

ady" (t) + aly' (t) + ady(t) = u*(t), ylto) =y’ (t0), ¥'(to) = " (to).

Table 3 shows numerical results of the identification of (47) in which V¥, W" are
determined directly from (48)—(51) by using the analytical forms of u* and y*. ¢

Example 4. Consider the difference equation
| azy(k +2) + ary(k + 1) + aoy (k) = u(k) (52)

describing the relationship between the input and output signals of a discrete statio-
nary lumped-parameter system.

Let C(Np) be the real linear space of real sequences y(k), k¥ € Ny (with usual
operations on sequences). The difference eqn. (52) is a particular case of the abstract
differential eqn. (46) if we consider the operational calculus with the derivative

Sy(k) = y(k +1),
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Table 3. Multi-point Strejc method in identification of an ordi-
nary differential equation of the second order.

2 =10,1) asy" + a1y’ +agy = u
g=0 u*=009t3 +6.2t2 - 53t +4.1, y =t>+t+2
T r=10
w, 025 0.5 1 025 0.5 0.75 1
ad 1.05135 1.05156
a? 1.97838 1.97196
a9 —1.03649 —1.03223
Jor i 6.39704 x 10~8 3.17772 x 10~°
t y" y Dgray y Dgray

0.25 | 2.26563 | 2.26524 | 3.83224 x 10™* | 2.26509 | 5.33074 x 10~*
0.50 | 2.62500 | 2.62382 | 1.17932 x 10=% | 2.62333 | 1.67065 x 1073
0.75 | 3.17188 | 3.16930 | 2.57758 x 10~2 | 3.16836 | 3.51706 x 10~2
1.00 | 4.00000 | 3.99466 | 5.34326 x 10~2 | 3.99310 | 6.89621 x 1073

T r=1
af 1.04641 1.04996
al 2.00261 1.99206
al —1.04706 —1.04326
Jor 2.07898 x 107® 4.23165 x 10~
t v Y Ay y Agray

0.25 | 2.26563 | 2.26559 | 3.97973 x 10~° | 2.26553 | 9.85786 x 10~°
0.50 | 2.62500 | 2.62496 | 4.05535 x 1075 | 2.62486 | 1.36968 x 10*
0.75 | 3.17188 | 3.17169 | 1.87866 x 10~ | 3.17168 | 1.98998 x 10~*
1.00 | 4.00000 | 3.99943 | 5.70748 x 10~* | 3.99955 | 4.53703 x 10*

integral

0 for k=0,
Toy(k) :==
ylk—1) for k>0,

and limit condition

Soy(k) = y(o)dga
where y(k) € L° = L' := C(Ny),¢ =0 € Q := {0} and &% is the Kronecker symbol.
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Let :=0,l,] € N. The sequences u* = u*(k),y* = y*(k) € L® are such that
u*|o and y*|o denote the observed values of the input and output signals of the real
system for k € 2, respectively. For

Fw,,y(k) = y(wu): wy € Q: vE 17m: m 23, y(k) € L07

based on (45), we get

*(wy for r=0, y*(wy, +1) for r=0,
WZ{y() W:{J( )

y*(wy, —1) for 7=1, y*(wy) for r=1,

K

y*(wy +2) for 7=0, u*(wy) for r=0,
VY = WY =
y*(wy +1) for r=1, v (wy—1) for r=1

where w, € 1,1,v € T,m.

Using the recurrent formula

y(k+2) = 513 [u* (k) — agy(k) — ay(k + 1)}, y(0) =y*(0), y(1) =y*(1),

2

we determine the model signal y(k) as the response of the system to the input signal
u*(k).

We shall use the above model in identification of eqn. (52) describing the motion
of a submarine. In a submarine the change in the increment H(t) := h(to) — h(¢) in
the draught depth of the vessel depends, among other things, on the change in the
trimming moment M (¢). In (Stepien, 1981) one can find results of the measurements
of H(t) versus M(t) caused by the weight of the water translocated in the trimming
tanks from the bow to the stern with constant speed v = 2 m/s. Those measurements
are shown in Table 4, where

u(k) .= M(10k), y(k):= H(10k), k €0,23.
This table also contains the corresponding identification results. ¢

From the examples it follows that the Strejc methods can be applied to various
models of operational calculus. The examples impose no limits on those models. In
the modulating-element method, which we are going to describe, the operations S
and s, require some additional conditions.

6. Modulating-Element Method

According to (23) and (24), in Strejc methods it is necessary to know the limit condi-
tions for the derivative of the output signal. Practically determining the derivatives
is rather difficult. To avoid it we can apply the modulating-element method (Wysocki
and Zellma, 1993). The classical modulating-function method (Eykhoff, 1974; Loeb
and Cahen, 1963; Shinbrot, 1957) concerns a continuous stationary lumped-parameter
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Table 4. Multi-point Strejc method in identification of a difference equation
of the second order describing the draught depth increment of a
submarine depending on the trimming moment.

ary(k +2) + ary(k + 1) + apy(k) = u(k)
N=0,23 u*(k) = M(10k) - trimming moment
y*(k) = H(10k) — draught depth increment

T r=0 | r=1

Wy w,=v+3, rel 19

al —3.44701 —3.42016

a? ~1.00670 ~1.11835

a3 5.02896 5.10437

oz 5.61696 5.63108
k| uw [Tm} | ¢* [m] | y [m] | Avgy [m] | y [m] | Arzy |m]
0 0.0 0.0 0.0 0.0 0.0 0.0
1 1.6 0.1 0.1 0.0 0.1 0.0
2 2.8 0.2 0.0 0.2 0.0 0.2
3 4.0 0.5 0.4 0.1 04 0.1
4 5.2 0.9 0.6 0.3 0.6 0.3
5 6.6 1.7 1.2 0.5 1.2 0.5
6 8.1 2.1 1.7 04 1.7 0.4
7 8.5 2.7 2.5 0.2 2.5 0.2
8 9.5 3.3 3.3 0.0 3.3 0.0
9 10.6 4.1 4.0 0.1 4.0 0.1
10 12.2 4.7 4.9 0.2 4.9 0.2
11 13.3 5.7 5.9 0.2 5.9 0.2
12 14.0 6.9 7.0 0.1 7.0 0.1
13 16.1 8.0 8.1 0.1 8.1 0.1
14 17.6 9.1 9.2 0.1 9.2 0.1
15 18.9 10.1 10.6 0.5 10.6 0.5
16 20.3 11.3 11.9 0.6 11.9 0.6
17 21.5 12.7 13.4 0.7 13.4 0.7
18 23.0 14.1 14.9 0.8 14.9 0.8
19 23.7 15.9 16.4 0.5 16.5 0.6
20 24.6 17.9 18.1 0.2 18.1 0.2
21 254 19.5 19.6 0.1 19.6 01
22 25.4 21.2 21.2 0.0 21.2 0.0
23 25.4 22.6 22.7 0.1 22.8 0.2
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system and depends on the integration by parts of the equation describing the sys-
tem dynamics when multiplied by the so-called modulating function. The problem of
choosing the best model is not considered in the classical method.

Based on (Wysocki and Zellma, 1993) we review how to get the vector equation

n
E aim = W.
=0

For this purpose we suppose that

(A1) @ has more than one element,

(A2) L is areal algebra and L' is its subalgebra,
(A3) the derivative S satisfies the Leibniz condition

S(my):'smy'*'iﬁs% m,yELl,
(A4) the operations sq,,Sg,, ¢1,92 € @ satisfy the multiplication condition
Sqi(w.y):Sqiw.Sqiy7 i:1727 ‘/B:yeLl'

Applying (A3), by induction on k € N we prove (Wysocki, 1994; Wysocki and
Zellma, 1991), the formula of integration by parts:

IE(z- Sty) = E(—l)iRZf (S'z- S*hy) + (~D)FIE(S* e ),  (53)
i=0
where S%z =1z, q1,q2 € @, z,y € L*, k € N and the operations
1% € L(L°,Ker S), R® € L(L!,KerS)
are defined by
Iw = (Ty, — Tg)w = s, Tyyw, RZw = (84, — 84,)T, WE L° yelL.

The mapping [J? is called the operation of definite integration (cf. Przeworska-

Rolewicz, 1988).
Assume that fi, fa,..., fm € L™ satisfy the conditions

fv & Ker S, S(Iiijl/:O) velm, 1=12 jeln-1 (54)

Then fi, fa,..., fm are called the modulating elements of the system (3) correspon-
ding to q1,¢2 € Q.

If a pair (u,y) € L x L™ satisfies (3) with given coefficients ag, a1, ..., an, then

for each modulating element f,,v € 1,m we have

anfuS™y + an 1 fS" Yy + -+ @ fuSy + aofoy = fou, vELm. (55)
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Applying 12 to both sides of (55) and then using (53), (54) and (A4), we obtain

Z( 1)ia, 12 (S f, ) =I2(f,-u), velm. (56)

The system can be rewritten in the form

Y T =, (57)
=0
where
(=1 18(S*fi-y) IE2(f1 - u)
;= : , W= : , 1€0,n. (58)
(=1)'182(S* fm - ) I#(fm u)

From the definition of ]gf it follows that

v;,w € (KerS),,, i€0,n.

Now, if KerS ~ R, then T;,w can be treated as elements of £?. Otherwise,
from (56) we obtain the system (57) such that

VY= (R RIS f, - y), W= FI2(f,-u), i€On, vel,m, (59)

where F,,w € ) is a mapping from the family {F,},eq. Moreover, v;,W € £2,,i €
0,n.

In the method considered, the identification performance index (6), i.e. the func-
tional

n
J7(ao, a1, ... ,an) = ” Zai_f

=0

depends on the vector f := [f1, f2,..., fm] of modulating elements. Vectors 7F and
w* are elements of the form (58) or (59) determined for fixed u* € L%\ {0} and
y*e L™

Let

co(L®, L', 8", T,,5,,Q) (60)

be an operational calculus satisfying the same assumptions as before. Moreover, let
L° be an algebra with unity.

Consider the equation

a1p1S'y + aopoy = p, (61)

where po,p1 € Inv(L%), p € L%, y € L', ap,a; € R and Inv(L®) denotes the set of
all invertible elements in LO.
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To determine the coefficients ap and a; of (61) we can apply the foregoing
identification method, but we have to introduce a new operational calculus in which

Sz :=bS"z, Tyw:=T,(b"'w), s.z:=sz, (62)
where b:= py'p;. Then (61) is a particular form of (3), i.e.

a1Sy + apy = u, (63)
where u = py 1p. Moreover, S satisfies the Leibniz condition and the operations

S¢,9 € @ are multiplicative (Mieloszyk, 1987).

From what has already been said, we are able to consider the identification pro-
blem for certain types of non-stationary lumped- or distributed-parameter systems.

Example 5. Let (60) be the classical model of operational calculus as in Example 3.
Then (61) takes the form

aip1 (t)y' (t) + aopo(H)y(t) = p(t), (64)
where po(t), p1(t) # 0 for each t € [to, tr].

Here (64) is the dynamic equation of a non-stationary lumped-parameter system.
The modulating elements of the system corresponding to g1 = to, g1 = t are arbitrary
functions 0 Z £, (t) € C*([to, tx], R) satisfying

fute) = f,(tx) =0, vel,m, m3>2. (65)

Let p* = p*(t) € C°([to,tx], R) and y* = y*(¢) € C*([to,tx], R) be functions appro-
ximating the input and output signals of the system (64) in [to, 5], respectively (on
the basis of the measurements of a real system). Then u* = p*(¢)/po(t).

Using the operational calculus with S,T, and s, defined by (62), where
b = p1(t)/po(t), we can determine the v-th coordinates V¥, WV of vectors o}, w",
respectively. Since Ker S ~ R, we have

(= [ F OOy @)

t
to p1(t)
Tk o
¢ VP =- L (y*(¢) dt, velm, (66)
to
tr *
\ to D1 (t)

which results from (58).

To verify the applied method by means of absolute errors, first we have to solve
the initial-value problem

alpy ()Y’ (t) + adpo(t)y(t) = 5*(t), wlto) = y" (to),

where a) and a? are optimal coefficients of the system (64) obtained based on p*

and y*.
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Table 5 contains the corresponding numerical results, where k denotes the num-
ber of parts into which the integration interval [to,tx] is divided for the Simpson
method of computing the definite integrals (66). ¢

Table 5. Modulating-function method in identification of an
ordinary differential equation of the first order.

to=0,t =1 a1 (0.5t2 +t+ 1)y +ap(t+ )y =p
pr=t+1
k=128 y* = —0.001#% + 0.006¢* + 0.105¢3 + 0.375t2 + 0.5¢
fi [(t—to)(t-tk)]2 (t—to)(t — tx)
f2 (t-tk) Sin(t—to) (t—to) sin(t—tk)
al —2.96517 —3.00531
a? 1.98702 2.00098
T 1.17242 x 1077 6.75040 x 108
t y* Y Azy y Azy
0.0 0 0 0 0 0
0.2 | 0.11585 | 0.11651 | 6.58398 x 10~* | 0.11581 | 3.82815 x 10~
0.4 | 0.26686 | 0.26813 | 1.26676 x 103 | 0.26681 | 5.16484 x 105
0.6 | 0.45838 | 0.46009 | 1.71447 x 10~ | 0.45834 | 4.30896 x 10>
0.8 | 0.69589 | 0.69773 | 1.84216 x 10~ | 0.69584 | 4.86281 x 10~°
1.0 | 0.98500 | 0.98644 | 1.43772x 1073 | 0.98486 | 1.42849 x 10~*

Example 6. Let (60) be the operational calculus of Example 1. Then (61) takes the
form of a quasi-linear partial differential equation

) (202 4 DO sttt ) =t 60

where po(t,2),p1(t,z) # 0 for every (t,2) € [to,tx] X R It (67) describes a non-
stationary distributed parameter system. For Q = [to,tx] X [20,2x] the functions
p* =p*(t,2),y* = y*(t, z) have the same meaning as in Example 1.

Applying the operational calculus (62), where b = p1 (¢, 2)/po(t, z), we bring (67)
to the form (63), where u = p(t, 2)/po(t, z). The form of the limit conditions in this
operational calculus implies that the modulating elements of the system corresponding
to g1 = to,q2 = tx are arbitrary functions 0 # f,(t) € C?([to,x], R) satisfying (65).



The Gram-Schmidt method in the identification of a generalized . .. 267

As the kernel of S = 3/0t+ 0/9z is not isomorphic to R, in order to determine
the coordinates V}¥, W of o}, w* we have to use (59). For

Foy(t,z) = y(wi,ws), w=(w,w2) €Q, y=y(tz2)e L’

we get
vy = b £, (T)po(T, w1 — ws + T)Y* (T,w1 — wy + 7) dr, (68)
to pi(T,w1 — we + 7)
t
VW=~ [ f(T)y(r,w1 —ws+7)dr, (69)
to

-[/I/u _— b fV(T)p*(Tﬂ w1 — W2 +T)
to pl(T,wl —(.&)2+T)

dr, vel,m. (70)

In the numerical example whose results are shown in Table 6, the integrals (68)—(70)
are calculated by means of the Simpson method. ¢

Table 6. Modulating-function method in identification of a
partial differential equation of the first order.

2 =10,1] x [0,1] a1 (t?22 +1) (%% + %) +ao(2t* + 3)y = p(t, 2)

to =0, =1 pr=4.1t3 + 29222 + 8.2t22 + 6.2t + 11.82 + 3

k=128 yr =142z
1, e w1 | wa al a? I7

(t —to)(t — tx) 0.5 | 0.5 | 1.96848 | 1.06161 | 4.30212 x 10~°
sin(t — to)sin(t —t) | 0.5 | 1.0 | 2.05497 | 1.00506 | 9.83337 x 10~8
sin(t — to)(t — tx) 0.5 | 0.5 | 1.98078 | 1.04219 | 2.28549 x 10~
sin(t — to)sin(t —¢;) | 0.5 | 1.0 | 2.05371 | 1.00590 | 4.94313 x 10~ 7
[(t —to)(t — tk)]Z 0.5 | 0.5 | 1.97701 | 1.04814 | 6.92734 x 10~8
sin(t — to)sin(t —tx) | 0.5 | 1.0 | 2.05472 | 1.00523 | 1.52077 x 10~7
(t —to)(t — tr) 0.5 | 0.5 | 2.01455 | 0.98895 | 5.16449 x 108
[exp(t —to) —1](t —tx) | 0.5 | 1.0 | 2.01132 | 1.03414 | 1.30904 x 108
(t — to)(t — tg) 0.5 | 0.5 ] 2.01317 | 0.99112 | 2.80191 x 10~#

(t — to) sin(t — t;) 0.5 | 1.0 | 2.01014 | 1.03493 | 3.83606 x 10~%

Other identification methods of the generalized control system (3) by means of
the modulating elements are described in (Wysocki and Zellma, 1991; 1995). We can
avail of them in the Gram-Schmidt orthonormalization method.
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7. Conclusions

In this paper, we have assumed that any system whose mathematical model belongs
to the class described in the Bittner operational calculus by the abstract linear diffe-
rential equations with the constant coefficients

anS"y + an—18" "y + -+ + a1Sy + apy = u, (71)

can be a system to be identified.
~ The identification system means fixing the model (71) with the accuracy of the

parameters ag,ay,...,a,. The identification performance index
n
J{ag,a1,...,a,) = ”Zaﬁ;—iﬁ*” (72)
i=0

introduces an order in the considered class of models. Its value was adopted to assess
the accuracy. The model with coefficients af),a?,...,a% for which the functional (72)
takes the minimum value was accepted as the best model. The optimal parameters
in this sense were obtained using the Gram-Schmidt orthonormalization in the space
£2,. This method involves simple and fast algorithms because it uses the procedures
which are available in practically all numerical environments.

The basic requirement to define the identification performance index (72) is the
following vector equation in £2 :

n

Z aiv; = w. (73)

=0
It was obtained by generalization of the classical Strejc and Shinbrot methods. The
generalized Strejc methods can be theoretically used in any operational calculus mo-
del because they do not require any restrictions on the derivative S, the integrals
T; and the limit conditions s,. However, there may exist some practical restrictions
which arise from the required knowledge about the limit conditions on the derivatives
of the output signal. Those derivatives are determined based on experimental data.
We can avoid this inconvenience using the modulating-element method which consti-
tutes a generalization of the classical identification method employing the Shinbrot
modulating function. On the other hand, the modulating-element method restricts
the number of the operational calculus models in which it can be applied. This is
because the derivative has to satisfy the Leibniz condition and the limit conditions
have to be multiplicative. Accordingly, the method can be applied in neither the
non-linear system described in Example 2, nor the discrete one from Example 4.

Using operational calculus, we have obtained the possibility of the uniform perfor-
mance of two identification methods for linear continuous (Examples 1-3, 5 and 6) and
discrete (Example 4) systems, for stationary (Examples 1-4) and non-stationary ones
(Examples 5 and 6), for lumped (Examples 2-5) or distributed (Examples 1 and 6)
parameter systems, as well as for some non-linear systems (Example 2). From the
above it follows that the operational notion of a linear differential stationary lumped-
parameter control system is much wider than the classical one. It encompasses all
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the system descriptions which can be converted to the form (71), when assuming the
models of operational calculus which satisfy the assumptions of the elaborated general
identification methods.

In particular, if we consider a model with the ordinary derivative S = d/dt, the
general methods discussed here constitute some modifications of the classical Strejc
and Shinbrot identification methods of continuous stationary lumped-parameter sys-
tems. In classical methods the problem of choosing the best model is not discussed.

FEach of the general methods presented here depends on one or some parameters p.
In the Strejc methods the parameters p = [¢,7,w] or p = [q,7,@] define the integral,
its iterations and the points of the observation set determining the proper functionals.
On the other hand, in the modulating-element method we have p = [f1, f2,. .., fml,
where fi, fo,..., fm are the modulating elements. The parameters of those methods
are chosen in such a way that the identification condition of the system (71) is satisfied.
This condition is the linear independence of the vectors o§,v7,...,7;,. They have the
form of the vectors existing in (73) and are determined for a fixed identifying pair
(u*,y*).

Therefore the optimal coefficients a3, al, ..., al of (71) define the best model only
for the fixed identifying pair and for the fixed parameters of the selected method, i.e.
ad = a?(u*,y*,p). For another identifying pair or other parameters of the identifica-
tion method we usually get different coefficients of the best model, and in that sense
the best model should be understood (cf. the best model notion in Bubnicki, 1974).
Consequently, for a given identification method we can also formulate the problem of
choosing the best set of parameters. Namely, if pg and p; are different parameter sets
of the method, we can ask the question: Which of the numbers Jp,(ad,a?,...,a2)

1

and Jp, (ag,al,...,al), obtained for the same identifying pair (u*,y*), is smaller?

At present this question is far from being solved.

From the examples included in this paper it follows that for the identification
method chosen and for various parameter sets the difference between the system
output and the model output for the same input is negligible, so that in practice
we can use an arbitrary parameter set. From a theoretical point of view there exist
parameters for which the system (71) is ‘better’ or ‘worse’ identified. In this sense,
the identification is a ‘soft’ notion, which suggests the possibility of using fuzzy sets
theory.

Let P denote the parameter set for the chosen identification method of the
system (71). Moreover, consider a decreasing function

A [0, 400] — [0,1]
such that

A(0) =1, tl_grolo At) = 0.
Then P can be presented as a set of pairs

P ={(p,pr(p)},
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where

.U"P( ) /\[J (0’090’?:"'90’%)]' (74)

In this manner the identification order of the system (71) is assigned to every element
p € P (with given identifying pair (u*,y*)). Namely, the system (71) is

o unidentified, if up(p) =0,
o partially identified, if pp(p) € (0,1), and
o totally identified, if up(p) = 1.

Here (74) defines the membership function of the fuzzy set P. In such an appro-
ach, the problem of choosing the parameters p can be replaced by the problem of
constructing the set P.
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