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A STABILIZING CONTROL LAW FOR INVARIANT
SYSTEMS ON LIE GROUPS

NikorLaos APOSTOLOU*, DEMOSTHENES KAZAKOS*

This paper deals with the stabilizability of invariant control systems defined on
Lie groups. A stabilization technique is presented which, under certain hypo-
theses, can lead to a criterion assuring the existence of a feedback controller
which steers every initial condition to a specified target point of the state space
of these systems.
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1. Introduction

‘This paper deals with the stabilization of invariant control systems on Lie groups. By
stabilizability we mean that a feedback controller which steers every initial state to
a specified target point exists. Our aim is to present a stabilization technique, based
on an appropriate decomposition of the state space, which can lead to stabilizability
criteria. The technique leads to a piecewise constant feedback control law using only
a finite set of values of the control parameter. The work is organized as follows. In
Section 2, the case where the state space is solvable is examined. In turn, Section 3
deals with the case where the state space is semi-simple. Finally, in Section 4 a general
case is treated.

Let G be a real analytic and simply connected Lie group of dimension n and
Lie(G) = L be the corresponding Lie algebra of left invariant vector fields on G. Here
(G stands for the state space of the systems occuring in the sequel. Consider also the
following control system on G:

& = f(z,u) = f*(2),

where z € G is the state of the system, and w is the control parameter taking
values in a subset U, of the control space which is an analytic manifold U. Finally,
f: GxU —= TG (where TG is the tangent bundle of G) is an analytic mapping. It
is noted that the set U, of the acceptable control values can be much ‘smaller’ than
the control space U, e.g. a discrete submanifold. The system described above is called
invariant if the vector fields f* on G are left invariant for every constant v € U,.
An invariant system on G will be identified with the subset ' = {f* u € U}
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of L,i.e. with the set of the acceptable control directions of the system. It is always
assumed that I' contains the zero vector field. We write exptX for the integral
curve of X € L passing through e (the identity element of G) at t = 0. The
integral curve of X through z € G is then zexptX. Furthermore, if W C R, we
set expWX = {exptX: t € W}. A point y € G is accessible from z € G for T if

y =zexp(t1 X1) - exp(ty Xx)

with ¢, >0, X; €I, i =1,...,k (the reader can find more details about these Lie
theoretic preliminaries in (Helgason, 1978; Varadarajan, 1984).

The Lie algebra of I' is the smallest Lie subalgebra of L which contains I. It
is denoted by Lie(I'). As is well-known, Lie(I') is closely related to the controlla-
bility properties of the system and, in fact, Lie(I') = L is a necessary condition for
controllability.

Let us now proceed to the stabilization problem (treatments of various aspects of
this problem can be found in (Isidori, 1989; Sontag, 1990; Tsinias, 1989). An invariant
system on G is called stabilizable if there exists a feedback control law u = @(x)
such that the emerging closed-loop vector field V' with

Ve = f((l), (,0((11))

steers every initial state to a specified target point (in the sequel, this target point will
be the identity element, but a modification of the results that will be presented later
covers the general case). Thus stabilization means the construction of a vector field
V on G such that for every z € G there exists some X € I with V, = X,. In the
following sections, suitable decompositions of the state space will be incorporated in
order to present a construction technique which results in a discontinuous, piecewise-
constant stabilizing vector field.

2. The Solvable Case

In this section, a stabilization technique is presented for the case where the state space
G is a solvable Lie group. This technique is based on an appropriate decomposition
of the state space. However, before the statement of the main result some technical
notions and facts, which can also be found in (Varadarajan, 1984), will be briefly
stated. Let us first give the definition of a solvable Lie algebra. This definition
requires the concept of derived subalgebras. The derived subalgebra DL of a Lie
algebra L is defined as DL = [L, L]. The k-th derived subalgebra of L is then

DFL = D(D*1L), D°L=1L.
Definition 1. A Lie algebra L is called solvable if D¥L = 0 for some k > 1.

Observe that, if L is solvable and D™L # 0, then D™+, ¢ D™L. Thus D*L
strictly decrease until they become zero. A Lie group G is called solvable if its Lie
algebra is solvable. Next, a technical key lemma is stated whose proof is omitted here,
since it can be found in (Varadarajan, 1984, Lemma 3.18.5).
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Lemma 1. Let G be a real analytic and simply-connected Lie group. Suppose that
Ly,Ls,...,L, are subalgebras of L such ihat:

(i) L=Li®---®L,, and

(i) if We = L1+ --- + Ly, then Wy is a subalgebra of L and an ideal of Wit
for every k.

Let also Gi,...,G, be the respective analytic subgroups corresponding to
Ly,...,Ly. Then the Gi’s are all closed and simply connected and the mapping
(@1, 2r) = @1y, z; € Gy, @ = 1,...,r is an analytic diffeomorphism of

Gy x--xG, onto G.

From Lemma 1 it follows immediately that every z € G has a unique expression
of the form z = ;- -z, where z; € G;.

Now the main result, which is essentially a stabilizability criterion for a control
system I', can be stated and proved. It is shown that under certain hypotheses
a stabilizing feedback controller can be constructed for the system I'. The main
condition con the system is that its subsystems I'N.D*L defined on the Lie subgroups
of G corresponding to the D¥ L’s have the accessibility property. The exact statement
is the following;:

Theorem 1. Let G be a real analytic, simply-connected and solvable Lie group
with Lie algebra L and T a control system on G. If T = —T (symmetry) and
Lie(TND*L) = D*L for k=0,1,..., then T is stabilizable.

In the proof of Theorem 1 a preliminary technical lemma is used (see also a
similar well-known result in (Varadarajan, 1984, Corollary 3.7.5)). Let L be solvable
and di = dim(D*L). Since the derived subalgebras strictly decrease, there exists a
basis {X1,...,X,} of L such that the first d; vectors constitute a basis of D*L
for every k. For this kind of basis one has the following:

Lemma 2. Let L be a solvable Lie algebra. Assume that {X1,...,X,} is a basis of
L of the form described previously. Then M; = span{X1,...,X;} is a subalgebra of
L and an ideal of Miyq for i =1,...,n-1.

Proof. By construction of the basis, for every i there exists a maximal %k such
that M; C D¥L. M; is a subalgebra of L since [M;,M;] C D*1L c M;. If
M; # D*L, then M;;; C D*¥L and [Mi1, M;) € D¥'L € M;. If M; = D*L, then
M1 CDF1L (= L if k=0) and [M;11, M;] C D*L = M;. In both the cases M;
is an ideal of M;,; and the proof is complete. [ |

Proof of Theorem 1. We shall first prove that I' contains a basis of L of the form
previously described. Indeed, I' contains a basis of D*L forevery k= 0,1,..., such
that D*L is non-trivial. To see this, let m be the maximal integer such that D™ L #
0. Since D™L is abelian and Lie(' N D™L) = D™L, it is clear that T’ contains a
basis of D™L. Now, if I contains a basis of D*L for some 1 < k < m, then T also
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contains a basis of D¥~1L. If this is not the case, then span(I' N D*~1L) # D*-1L
and

[r AD*'L, N D’““lL] C D*L C span(T'N D*~'L) # DF'L,

which contradict the hypothesis Lie(' N D*~'L) = D*~!'L. Thus one can choose a
basis of Lie(G) contained in I’ which is of the desired form. Let {Xi,...,X,} be
such a basis. Now we are going to construct a feedback controller for I" which is a
piecewise left-invariant vector field V. It will then be proved that V steers every
initial state z to e. From Lemma 2 it is clear that Lemma 1 applies. Thus

G=G1---G,, G;=expRX;.
For k =1,...,n define the following subsets of G:
Sk = G-+ Gy,
S =Gi+Gr1expRT X,
Sy =G1---Gr_1expR™ Xy,
S =Gy Gy = Sp-1.

Observe that S, = G, S? = {e}. Furthermore, the sets S?,5%,SF,...,5% are
pairwise disjoint and cover G. On each of these sets define a vector field V as
follows:

~Xr on Sy,
V =
Xk on Sk_

Since (from symmetry) —X; € T for i =1,...,n. On S? = {e} we naturally define
V = 0. Also observe that for £ € S; we have zexptV € S; for every t such that
—e < t < € for some ¢ > 0. This fact ensures that V is well-defined as far as the
existence and uniqueness of integral curves are concerned. It is now easy to see that
V steers every initial state z to e.

Consider any initial z € G. For example, let = € S;. There exists some t; > 0
such that

T =121 - Tp—y explrXg

for some z;’sin G;, i = 1,...,k — 1. Thus the application of —X}, leads the state
to the subset Sk_; within the finite time ¢, since

zexptr(—Xi) = 1 Tp—1 exp(trXg) exp(—txXg) = 21+ Tp—1 € Sk-1.

Inductively, one can see that the state eventually reaches SY = {e} and remains
there under the application of the zero vector field. Thus V is a stabilizing feedback
controller for T' and the proof is complete. |
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Remark 1. If a feedback controller which steers every initial state to a point z # e
is desired, then the stabilizing vector field V = ¥X}, on Kf = xSki.

Remark 2. The stabilizing vector field constructed as before depends on the basis
of L which is contained in I'. Thus the stabilizing feedback controller is not unique
and depends on the choice of a particular basis of L contained in T

Remark 3. Since the proposed feedback control law is piecewise constant and incor-
porates only a finite number of values of the control parameter, it can be used in the
case where the control parameter is restricted to belong to a discrete subset of the
control space.

Remark 4. As shown in the proof of Theorem 1, the conditions of this theorem imply
that span(I') = L. This is a stronger assumption than the accessibility condition
Lie(I'y = L. However, in order to construct the presented stabilizing control law, this
assumption is necessary.

Example 1. The following simple and illustrative example will clarify the technique.
Let G be the Lie group consisting of the 2 x 2 real matrices of the form:

a b
, a>0, belR
0 1

This is the connected component of Aff(1), the affine group of the line, containing
the identity element. The Lie algebra of G is then

(32 e

It is well-known that G is solvable. Consider the following control system on G:

s oa) =00}

It is clear that I' is symmetric and contains the basis

((22)-(2 )} oo

of L. Then we have

a a—1

expRX = ), a>0,,
0 1
1 a

expRY = , @€R,,
0 1
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a
0 1

alb+1) -1
, a>0, b<0;,

(
("
(
[

alb+1)-1
, a,b>0;,

Sy @ ol € (0,1)
= , a , .
! 0 1
Thus
( 1
(0 on Si,
0 0
01 on S;,
00
V=4
(1 on S,
00
11 on S;.
{ 00

3. The Semi-Simple Case

In the previous section it was shown that if the state space G is solvable, a general
stabilizability criterion is valid. In this section the case where G is semi-simple and
non-compact is examined. Another stabilizability criterion for systems on such a
state space will be proved. Some mathematical preliminaries which are also treated
in much greater detail in (Helgason, 1978) are given below.

Let L be a Lie algebra. The radical of L, rad(L), is the maximal solvable ideal
of L.

Definition 2. A Lie algebra L is called semi-simple if rad(L) = 0.

A Lie group G is called semi-simple if the corresponding Lie algebra is semi-
simple. Let L be a semi-simple Lie algebra and consider the Cartan decomposition
L =L, ® P, where L; is a compact subalgebra (i.e. there exists a compact Lie group
with Lie algebra isomorphic to L;) of L and P denotes a subspace of L. Assume
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that A is a maximal Abelian subspace of P (all the subspaces of this kind have the
same dimension). An element o belonging to the dual space A* of A is called a
restricted root of (L, A) if

a)={X€eL: [Y,X]=a(Y)X forevery ¥ € A} #0.

Fixing a Weyl chamber, we can order the roots and determine the set of pos1t1ve
roots TF. Then we get the following decomposition of L:

L=L,@oA®LT,

where Lt = span{L(a),a € ¥} and Ly = A® Lt is solvable. This decomposition
of a semi-simple Lie algebra is known as the Iwasawa decomposition.

Theorem 2. Let G be a real analytic, connected and semi-simple Lie group with Lie
algebra L. Consider the Iwasawa decomposition L = Li®@A®LT. Let Hy, Ha,HT be
the Lie subgroups of G corresponding to Ly, A, L*. Then the mapping (z1,z4,z%) —
z1z42" is an analytic diffeomorphism of Hy x Ha x HY onto G. Furthermore, H4
and HY are simply connected.

A proof of this theorem can be found in (Helgason, 1978, Chapter VI, The-
orem 5.1). One can express the Iwasawa decomposition in the form

L=L,®L;, G=HH,,
where Ly = A® L*, Hy = HyHT. Next we impose the following hypothesis on G:

(H) Let G be a Lie group with Lie algebra L. If L = L; & L, is an Iwasawa
decomposition of L, then L; is solvable.

Hypothesis (H) implies that L; is Abelian. Since L; is compact, it follows that
(cf. Helgason, 1978; Chapter II, Proposition 6.6) Ly = centre(L;) @ DL; with DL,
semi-simple. But DL, has also to be solvable as a subalgebra of the solvable algebra
Li. This means that DL; = 0 and L; is Abelian. The presented stabilization
technique can be applied in the case of Lie groups satisfying (H). Taking into account
the classification of semi-simple Lie algebras (cf. Sagle and Walde, 1973), it follows
that L satisfies (H) iff it is of the form

L=51(2,R) ®-- - &sl(2,R),
I gmes

where sl(2,R) consists of the 2 x 2 real matrices of zero trace. In the following the-
orem a slightly modified decomposition is used in order to examine the stabilizability
of a control system on a semi-simple Lie group.

Theorem 3. Assume that G satisfies (H) and let T' be a control system on G. If
I'=-T, Lie('NL;) = L; and Lie(' N D¥Ly) = D*L,y for k=0,1,2,..., then T
15 stabilizable. '
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Proof. Since @ is simply connected, so is H;. Furthermore, I' contains a ba-
sis {X1,...,X,,Y1,..., Y.} of L such that {Xy,...,X,},{¥1,...,Y,} are bases of
Ly, Ly of the form described in Lemma 2. This is true because, as observed before,
L, is Abelian and L, is solvable. Now we can write

G = exp(RX1) - - - exp(RX,) exp(RY}) - - - exp(RY, ).

In a manner similar to that of the proof of Theorem 1 we can construct a vector field
V which steers every initial condition to e. Thus T is stabilizable and the proof is
complete. [ ]

Example 2. Consider the semi-simple Lie algebra sl(2,R). Then sl(2,R) = L; @ P,

where
1 1 1 0 0 1
Li1=R , P=R + R
-2 -1 0 -1 10

is a Cartan decomposition. Set
1
A=R 0 .
0 -1
Then a simple calculation shows that

L+:R(O 1).
0 0
( 1 1) (1 0) (0 1)
sl(2,R) =R &R ®R .
-2 -1 0 -1 00

4. The General Case

Thus

In the previous sections, the cases where the state space was solvable or semi-simple
were treated. These special cases are very important because every Lie algebra can be
decomposed into a solvable and a semi-simple subalgebra. In this section, the general
case is examined. Let G be any real analytic and simply-connected Lie group with
Lie algebra L. Let us now remind what the Levi decomposition of a Lie algebra is (for
a complete treatment the reader is referred to (Varadarajan, 1984)). If L, = rad(L),
then the quotient algebra L/L, is semi-simple. A Lie subalgebra L,, of L is called
a Levi subalgebra if

L=L,&L,.

A Levi subalgebra of L is isomorphic to L/L,, so it is semi-simple. Now we
have the following theorem (cf. Varadarajan, 1984, Theorem 3.14.1).
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Theorem 4. Any Lie algebra admits Levi subalgebras.

Thus every Lie algebra can be decomposed into a solvable subalgebra and a
semi-simple subalgebra. For the corresponding Lie groups we have the following
(Varadarajan, 1984, Theorem 3.18.13).

Theorem 5. Let G be a real analytic and simply-connected Lie group with Lie
algebra L. Assume that L = Ly, ® L, is a Levi decomposition of L and G,,,G,
denote the Lie subgroups corresponding to L.,,L,. Then G,,,G, are closed and the
map (Tm,Tr) = TmZy 18 an analytic diffeomorphism of G,, ® G, onto G.

From this theorem it follows immediately that G,, and G, are simply connected.
Since Gy, is semi-simple, it follows that G, admits an Iwasawa decomposition.
Hence we can write

Lm:Ll @L27 Gm:Gl ®G25
where L1,L3,G1,G2 are defined as in Section 3. For notational simplicity, we let

L3 = L,,G3 = Gr. Now the stabilizability of a control system on G is examined by
stating and proving the following theorem.

Theorem 6. Let G, L be as before. Suppose that L., is any Levi subalgebra
satisfying the hypothesis (H). Let T' be a control system on G. If T = —T, Lie(I'N
L)) = L, and Lie(T N D*L;) = D*L; for i = 2,3 and k = 0,1,..., then T s
stabilizable.

Proof. It is evident that G = G1G2G3. Using the same arguments as in The-

orems 1 and 3, it can be concluded that T' contains a basis {Xi,...,X,, ¥3,..., Y.,

Z1,..., 4y} of L such that {Xi,...,X)}, (V1,..., Y.}, {Z1,...,2,} are bases of
Ly, Ly, L3, respectively, of the form described in Lemma 2. Hence

G = exp(RX})---exp(RXy) exp(RY} ) - - - exp(RY), ) exp(RZ; ) - - - exp(RZ,, ).

In a manner similar to that introduced in the proof of Theorem 1 we can construct a
vector field which steers every initial condition to the identity element and the proof
is complete. |

Example 3. Consider the Lie algebra gl(2,R) consisting of all 2 x 2 real matrices.
The radical of gl(2,R) is

L =R 10
6 1

and sl(2,R) is isomorphic to gl(2,R)/L,. Thus the following decomposition emerges:
10
gl(2,R) =R 01 @& sl(2, R).

Taking into account Example 2, it follows that

(1 0) ( 1 1) (1 O) (O 1)
g(2,R) =R o R e R ®R .
0 1 —2 -1 0 -1 0 0
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5. Conclusion

In this paper, the problem of the stabilizability of invariant control systems on Lie
groups has been treated. A stabilization technique, based on an appropriate decom-
position of the state space, has been introduced. As has been shown, under certain
hypotheses concerning the structure of the state space and the system itself, this tech-
nique can lead to general criteria assuring the existence of a constructed stabilizing
feedback controller. In order to extend the application field of these criteria, it is
necessary to relax some of the conditions or to replace them by milder ones. This
problem is currently under investigation.
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