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ROBUST DYNAMIC INPUT RECONSTRUCTION
FOR DELAY SYSTEMS

Franz KAPPEL* VyAcHESLAV MAKSIMOV**

A problem of reconstruction of a non-observable control input for a system with
a time delay is analyzed within the framework of the dynamical input reconstruc-
tion approach (see Kryazhimskii and Osipov, 1987; Osipov and Kryazhimskii,
1995; Osipov et al., 1991). In (Maksimov, 1987; 1988) methods of dynamical
input reconstruction were described for delay systems with fully observable sta-
tes. The present paper provides an input reconstruction algorithm for partially
observable systems. The algorithm is robust to the observation perturbations.
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1. Introduction and Problem Statement

Consider a dynamical system described by a pair of evolutionary equations in Hilbert
spaces (X1,]-|x,) and (Xa,|-|x,):

£1(t) = A1z (t) + CDzo(t) + f1(t),
B2(t) = Apwa(t) + f(t, 21(t), Dz2(t)) + B(t, w1 (t))u(?), (1)
teT=[0,9], z.(0)= m(()l) € Xy, xz(0)= m(()z) € Xs.

Here A;’s are the infinitesimal generators of strongly continuous semigroups of boun-
ded linear operators X;(t) : X; — X; (t € T), D : Xy — X signifies the projection
onto the subspace X, C Xa, (|z|r = |z|x, Vz € Xz), C C L(X,; X1) is a continu-
ous linear operator, fi(-) € Lo(T; X1) stands for a given disturbance, f(¢,z1,z2)
denotes a Lipschitz function, f(0,0,0) =0, (U,|-|y) is a uniformly convex Banach
space of controls, B(¢,z1) stands for a family of operators satisfying the following
conditions:

(i) D(B(t,z)) =U, B(t,z) € L(U,X3) forall (t,z) € T x X; (D(B) is the domain
of the definition of the operator B),

(11) IB(tPT) - B(tay)IL(U,X2) S le - le:\ for all z,y € Xl:
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(111) ’B(t, a:)IL(U,Xz) < d‘l‘KIl‘lxl for all z € X, and
(iv) the mapping (t,z) — B(t,z) € L(U, X3) is continuous.

A weak solution to the system (1) corresponding to a control u(-) € Ur and
an initial state zo = {xf)l),xgz)} is defined to be a continuous function z(t) =
{z1(t),z2(t)} € X1 x Xo, t € T, satisfying the equalities

t

21() = 40)a” + [ 2 - 1){CDaa(r) + A0} dr,
0

and
¢
z2(t) = Xy (t)w(()z) + / Xo(t — T){f(’]’, z1(7), Do (T)) + B(T, T (T))’LL(T)} dr.
0

Here U is the set of admissible controls,
Ur = {u() € Ly(T;U): u(t)e P aa.onte T},

where P C U is a convex, bounded and closed set. In what follows, we assume for
simplicity that the initial state zp is known precisely. Using Conditions (i)-(iv) and
the principle of contraction mappings in an ordinary way (Varga, 1975), it is not
difficult to show that for every zp € X; x X2 and every u(-) € Ur there exists
a unique weak solution to (1). We denote this weak solutions by z(-;zo,u(-)) =
{z1(;z0,u(+)), z2(-;Z0,u(-))}. We shall be concerned with the following problem
of robust input reconstruction: Let the motion of the system (1), i.e. the evolution of
the state z(t) = z(¢; o, u(-)), start from zo under the action of the input control
u(-) € Ur. At discrete, sufficiently frequent time instants 7; € 7', 7; = 7;_1 + 4,
i €{l:m], 9 =0, 7 = ¥, the component z;(r;) of the state vector z(7;) is
observed. The observation results ¢ € X; are in general inaccurate and satisfy the
inequalities

|z1(73) — filxl < h. 2

It is required to provide an algorithm of real-time reconstruction of an input w(-)
generating the observed output z1(-).

Now we give an exact statement of the problem: Fix a family (Aj), h € (0,1],
Ap = {Thi}idy, Tho =10, Thms,="1 (3)
of uniform partitions of the segment T with the diameters
8(h) = 6(An) =Thit1 — Thi — 0 as h — 0. (4)

Choose some u,(-;z1(-)) in the set U(z1(-)) € Ur of all controls compatible with
the output z1(-).
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Definition 1. A family Dy, h € (0,1), of operators acting from Z7 into Ur is
called regularizing if for any output z;(-)

,{EI},S“P{IDhﬁ(')‘“*(‘?xl('mm(r;v): £0) eE(m1(~),h)} =0.

Here Z(z1(-),h) is the set of all admissible measurements, i.e. all piecewise
constant functions &(t) = &, t € [1,Tit1), T = Th; € Ap satisfying (2), Ep =
{E(@1(-),h) « he(0,1), 2(-) € XY}, Xr = {z(-;to,z0,u(-)) : u(-) € Ur} is
the set of all trajectories of the system (1), and X}l) (X:(FZ)) denotes the projection
of X7 onto the space C(T;X1) (C(T;X2)).

The problem of real-time robust input reconstruction consists in constructing a
family of algorithms

Du: {7, &om ()} — vfl,,n“(-) € Uririna
such that
|o™ () -u*(.;xl(.))le(T;U) -0 as h—=0

under a suitable relation between h and 4 = d(h). We denote by Uy, .., (respecti-
vely, by Uﬁ-,nﬂ( +)) the restriction of the functional set Uz (resp. the function v*(.))
to the interval [r;, 7y41)-

Our approach is based on the use of auxiliary control models (Krasovskii and
Subbotin, 1988; Osipov and Kryazhimskii, 1995). A solution procedure is organized
as follows: We select an auxiliary dynamical system M (we call it the model) whose
motion originates from some initial state wo € X and is identified with a (weak) so-
lution of an appropriate system of differential equations. We shall denote the model’s
motions by

wh(t) = M (h,&(-),v(+);wo) (t)
Zwh(t§w0,€0,t('),vo,t(')) eX, tel. (5)
Here X = X; x X, with the norm

1/2
os,22} | = (Jl, +1m2l,) s Ve = La(T3 X x U),

v(+) = {vP"(-),v"(-)} € Vr is the model’s control and &(-) € Er denotes an
observation result. In the present paper, we assume that

wWoe = To. (6)

The rules of forming controls v(-) will be called the strategies (we use the
terminology of the theory of feedback control, see Krasovskii and Subbotin, 1988).
Each strategy is identified with a pair Sp = (Ax,Un). Here Ap = {m}2% is
a partition of the segment T and U is a function which assigns to every triple
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(75 60,7 (+ ), wo,r: (), 4 € [0:mp—1], (i = 7wy, &o,n(+) € E(@1(+), h)o,s, wo,r(-) €
C([0,]; X), z1(-) € X}l)), an element

{ort ()l O} =Un (o (w0 () € Vs (1)

Thus, for every h € (0,1), the triple (M, Ap,Up) determines a real-time algo-
rithm Dy : E7 — Vr which transforms sach observation result &(-) € E(z1(-),h)
into an output {v}*(-),v"(-)} = Dpé&(-) € Vi through the feedback model control-
ler (5)—(7). Later, we shall group algorithms of this kind into a desired regularizing
family Dy, h € (0,1). Each algorithm Dy will be defined by the triple (M, Ap,U).

For a fixed h, an algorithm Dy runs in real time step by step. At a preliminary
step, before the starting time £y, a partition A = Ay = {r;}2, (s = Ths, m = my)
of the segment T is fixed. The i-th step is performed during the time interval
[7i,Ti+1) and comprises the following operations. The state z;(r;) is observed with
accuracy h, and an observation result ¢; satisfying (2) is accepted. A model’s control
is designed using the rule (7). Finally, the history of the model’s trajectory, w”(t),
t € (13, Tit+1], is memorized. The procedure stops at time 9. We call a triple

Dy = (M, An,Un)

defined by the relationships (5)—(7) a positional modelling algorithm. Below, we shall
describe a regularizing family of positional modelling algorithms.

2. Solution Algorithm

Let us turn to the description of the algorithm for solving the problem. In accordance
with the approach stated above, we should indicate a rule of choosing the model M
as well as the form of the strategy Sn = (A, Up), h € (0,1).

We define the model M to be a mapping which puts into correspondence to every
triple (wo,&(-),v(-)) € X x Er x Vp, where v(-) = {vVF(-),v"(-)}, wo = 20, a
weak solution to the system

Wwh(t) = Ajwh(t) + CoV " () + f1(2),
Wy (t) = Awl(t) + F(t,€(t),v " (2)) + B(t, £(t))v"(2),

i.e. the continuous function w(t) = wh(t;wo,&4(*),v0:(+)) = {wh(t), wh(t)} €
C(T;X) of the form

wh(t) = X (Hw /;cl t—T){Cvlh(T)+fl( )}
0
wh(t) = X (tywl?

-I—O/Xz (t—1) fh (7', 5(7),111”‘(7)) + B(T,E(T))vh(t)} dr.
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Here

Fa (1, €(1), 0P (1)) = Fmi &,0p ™), B(r,€(7)) = B(7i, &)
for almost all t € [y, Tix1), Ti = Ths € Ap, 1 € [0:mp —1].

In what follows, for brevity we write 7; instead of 74 ;. Let the family A, of
partitions (3), (4) be fixed. We define a strategy Sn = (An,Up), h € (0,1), by

Un = Un (10,65, 0" () = {0}, ()00 o, ()] (8)
vPh(t) = o} " = argmin {l (a, v, 89) v € Sx(di)},

v(t) = vf = argmin {lo(B,v,s): v € P}, tE€[r,Ti+1),

where a(h),B8(h): Rt - Rt = {r € R: 7 > 0} are some functions which play the
role of Tikhonov’s regularizators,

i (a0, 8)) = a(h)vk, + 2(32,@)1, Sp(ds) = Xr N S(ds), (9)
sy = exp(—2w1 i) {wi(n) — &}, S)={veXs: fulx, <d.},

b (B,0,5%) = BW)Ioly + 2 (s, DB(mi, &)v(7)),,

sh = exp(—2waTit1) {Dwg(n) - u;’h} , i€ [0:ms—1]

A number d, < +co is such that sup{|z(-)|c(r,x): =(-) € X7} < di. Tt is easily
seen that the set X7 is bounded in C(T;X).

Let the following conditions be fulfilled:

C1. In the space X, the norm |-|; generated by some scalar product (-, -); is
equivalent to the norm |- |x,, i.e.

al-lj <\ |x; el ljy c1,02 = const € (0,+00),

and the semigroup X;(t) is wj-dissipative on X}, with respect to |- |;, i.e.
|X;(t)z|; < exp(w;t)lel;

holds for every z € X, where j =1,2.

C2. There exists a family Y () € L(Xy,Xr), t € T of one-to-one operators such
that :

CQI/Y(T)Dy(T) dr

o]

¢
< —
« S |/X1(t 7)CDy(7)dr X
0

Vy()ec+(T’X2)$ t€T7 CO>07

t—>Y®)yt) € CH(T; Xy) Vy(+) € CH(T; Xq).
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C3. The semigroup A;(t) possesses the following property: for every bounded set

X, C X, there exist d, € (0,1), ko = ko(X) € (0,+00) and () : [0,6.) —
R* continuous at zero and satisfying v(0) = 0 such that the inequality

1(;«1 (8), X1 (81)CDv(8,)), — (m,CDv(él))ll < koy(6)

holds uniformly with respect to z € X, 6 € (0,4,), &1 € (0,6], |v(d1)|x, < ds.

C4. DYr = {y(-): y(t) = (V"1(t))*Das(t) VteT, zs(-) € X} C V(T; Xy).

C5. The semigroup Xa(t) possesses the following property: for every bounded set

Y, C X3 there exist 6, € (0,1), ks = k.(Yy) € (0,+00) and v1(-) : [0,d,) —
R* continuous at zero and satisfying 71 (0) = 0 such that the inequality

|(%(0)2, X2(6)B(t,y)v(81)), - (D2, DB(t,1)0(81)), ] < ke (9

holds uniformly with respect to all z,y € Y, d € (0,4,), &1 € (0,4], [v(1)|v <
d. and a.e.on T.

Here C*(T;X1) is the space of all piecewise continuous functions with a finite

number of discontinuity points, V(T'; X,) denotes the space of all functions ¢ —
y(t) € X, with the bounded variation varx, (T;y(-)), and symbol (Y ~(¢))* denotes

the adjoint operator of operator Y ~1(¢).
Let ¢x(-) be the modulo of continuity of the set X7, i.e.
wx(6) = sup{,:z:(ﬁ) —z(r)|y: m,meT,
=7l <6, a(-) €Xr}-0 as 6 0.
Moreover, let

wp(6) = sup {]B(T, z1(1)) — B(t,21(2)) !L(U;Xg)'; t,7eT,

t—71 <6, a(-)={o1(-),2()} € X1} >0 as 50,
Assume that the following relationships between the parameters take place:

a(h) =0, ha~l(h) -0,
(10)
(6(h) + 7(5(h)))a‘1(h) —0 as h—0,
B =0, o) = { (h+ () +7(5(h)) + ()"

(k8w +1(6w) et W)} B =0,

(11)

(72 (6) +9x (6() + 95(5(w) )8~ (h) =5 0 as k0. (12)
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Fix a sufficiently large K € (0,+00) and set
Uk (Xs) = {xz(—) €V(T;Xy): varx, (T; Das()) < K}.

Before passing to the proof of the main result of the section (Theorem 1), we
formulate auxiliary statements which are necessary in what follows.

Proposition 1. (a) Every motion of the system (1) possesses the semigroup property.
(b) Every motion of the model M which corresponds to a disturbance £(-) €

Z(z1(:),1), z1(-) €2 7(}), possesses the semigroup property.

Proposition 2. Let u;(+), u«(-) € Up, u*(-) € U(z1(+)), wi(+) = ui(-) weakly
in Lo(T;U), and

ilglg ' /Xg(t —7)B(7,21(7)) {us(7) — (1)} d*rl2 — 0.
0

Then u.(-) € U(z1(-)), where U(z1(-)) is the set of all the controls compatible with
the output z1( ).

Proposition 1 can be easily checked with the help of the semigroup property of
the operators A;(t), j = 1,2 and Conditions (i)-(iv). Proposition 2 is proved by
contradiction.

Define the set

WT(I())
={w(): wt) =w(t:zo,bos(-),u0e(), tET, (-)€S(d),
EC)€Er(m()h), u()ex, he©D}comx).
Using Conditions (i)-(iv), one can easily prove the following.

Proposition 3. The set Wr(xzg) is bounded in C(T;X).

Proposition 4. (Maksimov, 1994; Osipov and Kryazhimskii, 1995) Let X be a Ba-
nach space, u(-) € Loo(T; X™), v(-) € V(T;X), |f m)dr|x- <€, |v(t)|x < K
vteT. Then

J
| [ )yt <o (5 var(mio( ).
0
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Lemma 1. Let Conditions C1-C4 be fulfilled and z3(-) = za(+;zo,us(-;21(+))) €
Yr NUk(Xs). Then

o) = Das ()}, iz
<w(h) = do{ (h+3+7(0) +0)"* + (h+ 8+ 7@)a"'}, (13)
where § = 6(h), and a = a(h).

Proof. Introduce the Lyapunov functional

Mn (8, 2(-), v (), wi () = @7 (h) exp(—2wit) [wh () — 21 (8)]]

+ [Pl - el }or
0

and estimate the increment in

en(t) = a(h)An (t,2(-),v"" (), wi ().

Due to Proposition 1, for ¢ € [7;,7i+1) the following relations hold:

w{‘(t) =X((t- Ti)’w{?’(ﬁ) + / Xyt — T){C’Ul’h(T) + fl(T)} dr,

:El(t) = Xl(t-—Ti)CBl(Ti)+/X1(t*——T){CDZE2(T)+f1(T)}dT.

Furthermore, we have

2
exp(—2w1Tip1) [wh (ig1) — 21 (Tign)]]

Ti41

< exp(-ZwlTi_,_l){]sﬂ% + 2(5;, /X](Ti+1 -7)C {Ug’h — ng('r)} dT)
1

s 71‘/1’1 (Tig1 — 7)C {vil,h _ sz(T)} lde}’

where

S; = Xl (Ti+1 - Ti){w{’(n) — I (Ti)}.
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Therefore, for ¢ € [0 : m — 1] owing to (2) and Condition C1, the following
estimates take place:
2
en(Tit1) < exp(—2wi7) [wi(m) — a1 (m)|, + N + i

Ti41

+a®) [{l Ol - Del, ) dn [t -5, < kb, (19
to

where
§i = X (riy — ) (Wi () — &),

Tit1

A = 2exp(—2w17'i+1) (gi, /Xl(Ti+1 -7)C {'ug’h — D:[:Q(T)} dT) + k16h,

1

Tit1

pi = dexp(—2w; 7;) / ‘C {ng('r) - vllh}'j dr.

On account of Condition C3 and Proposition 4, we have
Tit1

(s / Xy (tiz1 —7)C {v;’h - D:CQ(T)} dT)

Ti

1
Titl

- (si, / C {v}h - DIZ(T)} dT)

i

1

si = wy () = &.

Using the boundedness of X7 in C(T; X), we find that there exists a number ks
such that

pi < k36, 6 =4(h). (16)
Combining (14)-(16) and the definition of strategy Sh, we get
en(tiv1) <en(r) + ksd{h+d+~(6)}, i€[0:mp-1]. (17)
Then from (17) we obtain
A (rirn, 2 (), 00 (), wi () < An(mi,2(-), 0" (), i (1)) + @il6, ), (18)
where
@i(6,h) = ka6{h + 6 +~v(8) }a~*(h),

m}.k—l

> wil8,h) < ks{h+38+~(8)} et (h). (19)

i=1
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Due to the choice of the initial state of the model, c.f. (6), along with the rela-
tions (18) and (19), we conclude that

An(Tigr, z(-), M (), wl () < ks{h+d+v(6)}a™t, i€[0:ms—1]. (20)
Hence, we see that
Iw?(Ti) - $1(Tl)|f < ke{h+6+~v(8) + a}, i€[l:my). (21)

From Condition C2 and estimate (21) we derive

t
sup /Y(T) {vh(r) - Dzy(r)} dr| < k{0 +~v(0)+h+ a}1/2. (22)
teT
0 ki3
From (20) for i = mp — 1 it follows that
2 _
o O gy < D22 sy + Rs (B4 6+ 2(@)a™t (23)

Applying (23) we have

|U1,h( ) — Dz (- )Iiz(TiXW)

9
= l“l’h(')Iiz(T;X,,) - 2/(Ul’h(T),D£IZ2(T))X" dr + 'Dzz(.)lL(T;Xﬂ)
0

9

2

< 2|Dazs(- )ILz(T;X,r) - 2/(”1”1(7)’17“32 (7)) , dr

0
+ks{h+6+v(6)}at.

This fact, (22), Condition C4 and Proposition 5 imply the estimate

[ub R () - sz(')lia(T;X«)

)
<2 (Vi) (Dualr) - o*4(0) (7 (0) Do) ar
0

+ks{h+6+7(8)}at
< ks{64+ v +h+a} +hs{h+ 6+ v(8)}at.

Consequently, the lemma is proved. |
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Introduce the notation
t

Uo(21(+)) = { )EUT: Dxa(t) = D{Xz(t)mE)z) + /;\(Q(t —7)

0
x{f(r, z1(7), Dzo (7)) + B(T,.’L‘l(T))’LL(T)} dT} for t € T}.

In the sequel, we assume that Up(zi(-)) = U(z1(-)). The proposition below follows
from this equality and Lemma 1.

Proposition 5. For every output z:(-) € X of system (1), the set U(z1(-)) is
convez, bounded and closed.

From this result, it follows that the set

U (21(+)) = argmin {ju()zorwy = u(-) € Uloa()) }
is a singleton, i.e. Us(z1(+)) = {u.(-;21(-))}

Theorem 1. Let zo(-) = z2(-;z0,us(;21(+))) € YrNUk(X2). If conditions (10)-
(12) are fulfilled, then

’z)h(-)'—)u*(';ml(')) m Lz(T,U) as h — 0.

In other words, the family of positional modelling algorithms Dy = (M, Ay, Up)
constructed above is regularizing provided that (10)—(12) are satisfied.

Proof of Theorem 1. Let us now estimate the increment in

Vh,(t) = ﬂ(h)lih (t:$2( ')5vh( ):wg( )) ;

where

pn (8,22 (<), 0 (), wh(+)) = B (R) exp(—2wst) |ws(t) — wz(t)!z

—l—/ ]v — | ( )'?j} dr, (24)

us(+) = us(-;21(+)). Conditions (i), (ii), (iv) and inequalities (2), for ¢ € [r;, Tiy1)
imply the following relations:

IB(T,Il(T))'U - B(Ti,&)’ulz <b{h+epd)}, YveP, 7€[nnn] (25)
Then we see that
2
gi+1 = exp(—2waTit1) lwél (Ti+1) — 12(7i+1)|2

4
= exp(—2w27i+1){]sslz + ZPEJ)},

=1
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where

s{ = Xp(ripr — 1) {wh(m:) — 22(7)},

) :2(ss, / Xo(tip1 — ) {B(ri, &)™ (8) — B(r,21(7))us(7) } dr) :

P,('2) = 2<3§"7 /X2(T'i+1 —T) {f(Tz‘,Ez',Uil’h) - f(r, ml(T)aDzz(T)” dT) )
' 2

Tit1 2
PP =2 / X (Tiy1 = 7) {B(73, &)™ (8) — B(7,21(7))ua(r)} dr

Ti

7

2

2

49 =2 [ s =0 {1 8003") = 1 (), Daa(r) } 0]

2

Owing to Condition C1, Proposition 3, and the Lipschitz condition for the function
f, we have

exp(—2w2Tit1) |s§]5 < gi < by < +o0, (26)

‘f(Ti,fi,U,'l’h) — f(7,21(7), Dz2 (1))

X2

< L{lr =7l +1a1(r) - &lx, + [0} — Dza(7)] .}

<L{o+h+wx(6)+ |} - Dua(n)y. }, TE Tl @D

Taking into account (13), (26) and (27), we get

mh—l

S {7 +h <) =t {h+s+ux@+r 20}, (29)

=0

mp—1

=0
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Now consider the value pgl). We have (cf. (25), (26) and Condition. C5)

D <2 ( [ Fatrin =18 6) {5() = ua() dr) +bs5{h+ 5(0))
. > 2

Ti41

<2 / (Dwg(n) — v} DB(mi, &) {v(r) - u*(r)}> i
+b50{p5(8) +1(6) + h} +bed v " — Daxa(7)| (30)

Here we also used the equality Du; =l " Combining (28)—(30) and using the

definition of the control v/(-), we get
U (Tig1) < vn() + wi(h) + b6 I’U;’h - D$2(Ti)lx2, (31)

mh-—I

> wi(h) < bou @ (h),

pO(R) = b+ 6+ wx (8) + v'/2(h) + 05(8) + M (8), & =5(h).

From (13) it may be concluded that

mh—l

3" bed [u}" = Daa(m), < b5 {x(8) + 11 2(B)]} (32)

=0
In turn, from (31) and (32) we obtain
v (Tiy1) < va(ri) + bop @ (R).
Thus, taking into account the equality wg = zo, we have

pin (Tip 1, @2( ), 0" (), wh () < biop@ (BB (R).

Therefore
[wh(n) = @a(m)]; < bup@(R), i €[0:ma), (33)
M) oo < 1 () oy +b1un® (W)B7 (R). (34)

From (13), (25) and (31) we deduce that

u —-7)B TCL‘lT us (1) — 0™ (7r T
sup| to/xzt (7)) {me(r) = 0" (7)} dr| < (O, B)

where

w(d,h) >0 as 6—0, h—0.
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Now the use of Proposition 2, inequality (34) and a standard argument in the spirit
of (Kryazhimskii and Osipov, 1987; Osipov et al., 1991; Osipov and Kryazhimskii,
1995) complete the proof. [ |

Further, along with Conditions C1-C5, we assume the following ones:

C6. There exists a family Z(t) € L(U,U), t € T, of one-to-one operators, such that
V()€ X, teT, w(-), uz(-) € Up

t

0 /Z(T){’U,l(’r) —ug(7)}dr

0

U
t

< '/Xz(t —7)B(7,z(7)) {ua (1) — uz(7)} dr K Cc® >0,

0

t—= Z(t)u(t) e CH(T;U) VYu(-) € Ur.

C7. z(-) € Xv ={2(-) € Xp: Z7 u.(-521(-)) € V(T;U),vary (T; 2 ua (-5 21(+)))
< K}, where (Z7'u,(-52:1(-)(®) = (Z71(t)*ua(t;21(+)) for almost all
teT.

Theorem 2. Let Conditions C1-C7 be fulfilled. Then we have the following estimate
of the convergence rate for our algorithm:

0" () = (53 ( le o) € {“(0)(h)1/2 + “(0)(h)ﬁ_‘1(h)} - (39)

Here the constant C' does not depend on u.(-) and p®(h) is defined in (31).

Inequality (35) is established similarly to (13). For this purpose, we use the
estimates (33), (34), and the inequalities

() = u (521 ( [Lz (T;U)

9
<2 / (2() (wa (r322()) =0%(0), (271(7) " wa (s ()) a7
0
+b11,u(0) (h)ﬂ_l (h)7

1/2

7‘){ ) — us (1321 (- ))}dT pr( 0)(h))

U

t

'/XZ(t—T){B(T,:L‘l(T)) _B(Taf(T))}’Uh(T) dr

0

< bus (@ () 2.
2
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3. Delay System
3.1. Bilinear System with Scalar Control

Consider the system of equations with time delay

&1 (t) = Ly (z1:(s)) + Crz2(t) + folt),

4

.’Eg(t) = Lz(xgt(ﬁ‘)) + E(QIl (t)) + U(t)B(L'l (t), t e T,

(36)
l; ]
Li(ye(s)) => APy (t ~ ) /A Neyy(t+s)ds, j=1,2
) =0 e
with the initial conditions
z1(0) = 2%, z1(s) = zi(s) for s€ [—Tl(ll),O],
(37)

25(0) =23, wa(s) = ah(s) for s€ [—7,0].

Here wl(t) € RV, z(t) € B*, w(t) € R, 20 ¢ RV, 2§ ¢ R*, zl(s) €
Ly([=r 05 BY), ai(s) € Lo([-n,05R?), 0 = 7 < o < ... < 9,
z1t(s): s = 1t +5), s € [—Tl(l),[)], To(s): s = z2(t +5), 5 € [—le),O]
Moreover, A,Ej), B, and C; are constant matrices of the dimensions N x N (for
j=1), nxn (for j =2), nx N and N x n, respectively. The elements of the
matrix functions s — A (s), s € [~7‘l(j),0], J = 1,2, are square integrable and
E(-): R¥ - R" is a matrix function satisfying the global Lipschitz condition.

Following (Banks and Kappel, 1979; Kappel, 1986), we denote by X; = RV x
LQ([——TI(II),O];]RN ) the Hilbert space of all pairs z = (2°,z!(s)), with the scalar
product

0

@)x = (@) + [ (@087 9))gn ds
0
and the norm |- |x,. In a similar manner, we define the space X, = R" x

Lo([-7); 0] RY).

Substantially, the input reconstruction problem we are concerned with consists
in the following. Let the system (36) be affected by a non-observable control input
u=u(t) € P =[o,f], —00 < a< B < +oo. Let the first state component, z; (13),

be observed at every time 7;. The observation results are represented by vectors
& € RY such that

lz1(75) — &ilgw < B

Our task is to reconstruct the input u(-) in real time.
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The equation
;(t) = Lj(z4:(s)), 7=1,2

is known to generate a Cp-semigroup of bounded linear operators X;(t), ¢ > 0 which
are defined as follows (see Bernier and Manitius, 1978; Banks and Kappel, 1979). Let
s;(-) be a unique solution of the functional-differential matrix equation

l.
ds;(t) ; G ;
=L = A1)+ Y APsi(t+ 1)
=1

0
+ /A(*j)(S)Sj(t+S)d$ aa.on T

()
_le

with the initial state s;(¢t) = E*, t < 0. Here E* is the ¢ x ¢ identity matrix. The
9([—7‘1(;),0]; R?) — L2([—r,(j),0};11i24) has the form

operator Bﬁj ). L

(BY9) () =3 APxp00 7o~ 7 = 1) + [ AP (€l - ) e

(3)
—rd

for almost all 7 € [wrl(jj),O]. Moreover, =N if j =1 and g=mn if j =2, x[a,4(-)
is the characteristic function of the interval [a,b] and F;: X; — X, is given by

(Fip)* =¢°,  (Fy)' = BP9 (0= ("6 (s)) € X;).
The following equality holds (Bernier and Manitius, 1978, p. 903):
Xi(t)p = GiFjp + S;(t)p, (38)
where G%: X; = Xj,
0

(thp)l('r) =s;(t+7)p" + /sj(t+‘r+§)(,01(§) d¢, 7€ [—Tl(jj),O],

e

(@) = (@) 0. (S5;09)" =0,

(Si(t)e) (1) = ot + T)x;_, 0 (7).
[~ 4

In what follows, we assume that U = R. Recall that P and Uz are defined in
Section 1. For each u(-) € Ur let &(t;zo,u(-)) = {Z1(t; 2o, u( ")), Z2(t; 20, u(-))},
(mo = {a:(()l),z((f)}, ;cél) = (29,71(s)) € Xi, wéz) = (29,73(s)) € X3) be a uni-
que Carathéodory solution to eqn. (36) with the initial conditions (37), Z:(s) =
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{#14(5),%2:(s)} € X = X1 x Xo. Let z(t;z0,u(-)) be a weak solution to the diffe-
rential equation (1), where we set

Dy=(4°,0) C X,, CDy=(Cy’,0) € X1 Yy= (14" (s)) € Xo,
XmB i) (e (5w,

f(t,(l?,D’y) = f(iL') = (E (z.O) ’0) 3
B(t,z) = B(z) € L(U, X2): B(z)u = (uBz%0), (39)

(uEU, z = (2°,2%(s)) € X, OELQ([“TI(22);0];Rn)).

The operator D is defined in Section 2. In turn the operator A; is given by (Bernier
and Manitius, 1978, Proposition 2.1):

D(45) = {p = (¢°,¢'(5)) € X;:
P ) e W ([- 70,0l E), @10) =¢°}, (40)

A0 = (L (¢'),9'(5)), 9= ("¢ (s) € D(4).
Then A;: D(A4;) C X; — X, is the infinitesimal generator of the Co-semigroup
X;(t), t >0, of the form (38).
The following theorem establishes a one-to-one correspondence between the Ca-

rathéodory solutions to the system (36), (37) and the weak solutions to the system (1)
with the operators A;, j = 1,2, of the form (40) and the operator B of the form (39).

Theorem 3. For every z3 = (29,z1(s)) € X1, 2§ = (22,74(s)) € Xa, 70 =
{:v(()l),z((f)}, u(-) €Ur, and t € T, we have

z(t;zo,u(+)) = ((ﬁ(t;xo,u(-)),:Y:t(s;mo,u(-))).

The proof of this theorem is based on Lemma 2.4 from (Bernier and Manitius,
1978).

In the space X; (j = 1,2) define the norm |- |; equivalent to the norm |- |x;:

° 1/2
(o), = (1o [P ORasmIar) L () e Xy

D
where g(7) = k for 7 € (—Tl(ﬂk‘l, —Tl(j_)_k , k €[1:1;]. The scalar product corre-
sponding to the norm |- |; has the form

0

(9", (@7 () ). = (& #)ge + / (' (), 8" (1) g 9(r) dr-

j .
""'1(;)
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As follows from (Banks and Kappel, 1979, Lemma 2.3) for the norm |-|; in X}, the
semigroup X;(t), t € T is wj-dissipative:

jz’l’j(t)zlj <exp(wit)lzl; (z€X;, 7=1,2),

where
0

w; = 1+l’+|A |+ Z[A“)|+ / 14D (r

(1
J

and |A| stands for the matrix norm.

Proposition 6. Let Xo C X be bounded. Then the set of all solutions to the
system (36),

X(Xo) = { (v;zo,u(-)): o € Xo, ul(-) GUT}
is bounded in Wh2(T;RNVT") = {2(-) € Ly(T; RVNH7): x4(-) € Lo(T; RV},
Proposition 7. Set

wi(s) € Cr ([ =7V, 0L RY),  wl(s) € ([ -2, 0] R™), (41)

in (87). Then the semigroup X1(t), t € T (Xa(t), t € T) satisfies Conditions C3
and C5 for v(8) = 8% (1 (8) = 7(6)).

We omit the proofs of Propositions 8 and 7, since they utilize standard alge-
braic transformations and Gronwall’s inequality. In what follows, we assume that
condition (41) is fulfilled.

Thus, for system (1), which is equivalent to the system of functional-differential
equations (36) and (37), all the assumptions of Section 2 are satisfied. Therefore, for
solving the input reconstruction problem we use the method presented earlier. Let us
describe it in detail. Referring to the definition of the operator B, cf. (39), and using
Theorem 3, we conclude that the model M is described by the delay system

Wi(t) = Ly (wu(s)) + CroB () + fo(t),
wy(t) = Ly (why(s)) + E(£(t)) + " ()BE(Y), teT,
wl(s) = zj(s) for s€ [—7,0], j=1,2

with controls v™*(t) € R", v"(¢) € R. We denote by w"(t;zo,£(-),v(-)) the Ca-
rathéodory solution of this system on the segment 7. Define a positional strategy
Sp = (Ahauh)a h € (031) by (3)3 (4) and

u(l) u(l (Thgi’wh(n)) = {ﬁ"l’i’flﬂ-u(')’ﬁzfri+1(.)} ’
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o4 (t) = 57" = argmin {Ll (o,0,80): we So(dl)}, (42)

Here

Ly (a0, 8) = a(®)vlaw +2(57, Crv)gas

La(8,v,57) = I +2(5%, BE) gt
8 = (wi(n) — &) exp(—2wiTit1),

~%

S = ("Ug(ﬂ') - fhlh) exp(—2waTit1),
d; = sup{ lmz(t;mo,u(-))]w: u(-)eUr, te T},
So(dy) = {v ER: |ulg- < dl}.

Assume that the following relationships between the parameters are valid:
alh) =0, B(h) =0,
1/2 1/2 1/2 -1 -1
(h + 812 (h) + a(h)) + (h +6 (h)) a ') i) 50 (43)

as h — 0. For example, we can set § = h?, a = h'/2, = h*, v € (0,1/4).

Theorem 4. Let a control "(-) be determined by (42). Let n < N and the
following conditions be fulfilled:
(a) inf |sTH (t)z|pw > dilzlry Yz €RY  (dy > 0), (44)
(b) there exist a number dy > 0 and an n-th order minor of the matriz s,(t)C,

such that the n X n-matriz s1(t)Cy corresponding to this minor satisfies the
inequality

. s i
inf [5:()Crvlre > dafulg (45)

for all v € R,

(¢) for-any solution z5(-) to the system (36), (37) we have (s1(9 —t)C1) 1z (t) €
V(T;R™).

Then
() 2 ua(521(+)) in Lo(T;R).
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Let the following conditions be also fulfilled:
. -1 1 \ 7 1
(d) inf |57 (7| g > dVzlrn Yz e R (dY > 0)

(e) there ezists a coordinate of vector sz(¥9 — t)Bzi(t) (denote it by {s2(d —
t)Bz1(t)}«) such that

}2%‘1]{52(19 - t)Bxl(t)}*I > 0.

If {s3(9 —t)Bz1(8)} 7 tus(t, z1(+)) € V(T; R), then the following estimate of the rate
of convergence takes place:

|'6() ——’U,*(',.'El |L2 (TR) = C{M(l)(h)l/z —}—j.,l,(l)(h)ﬂ_l(h)} ’

where
pO () = (h+ 542() + a(n) RN ((n+am) orl(h))”2 .

Proof. To prove the first statement, we refer to Theorem 1. One can easily see that
conditions (44) and (45) imply Condition C2. Indeed, in this case, due to (44), for all
y(+), t = y@) = {4°(t),yi (s)} € CF(T; X5), we have

l/ 1(t — T)CDy(T) dT /sl (t—7)C1y°(t —7)dT
0 '

RN

t
/31 -T) Cly (t—r)dr
0

RN -

s1(0 = 1)Cry°(t — 7)dr

RN

s1(0 —7)Cry°(t — T)dr

Rn

!
/

=d

oy

bl

X

t
/ Y(r)Dy(r)dr
0

where
Y(t)o = (s1(0 —t)C12°,0): Xp = X. CXo, z=(2°0)€ Xn.

(Thus, in Condition C2 one can take ¢o = d;.) The injectivity of mapping Y (¢),
t € T follows from (45). The validity of Conditions C3 and C5 may easily be derived
from the form of the operators C' and B(z) (see (39)) and Proposition 7. The
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conditions (9)—(11) follow from (43) and Proposition 4. The correctness of the equality
Uo(z1(-)) = U(z1(-)) is easy to check. Finally, Condition C4 is a consequence of
condition (¢). The validity of the second statement of our Theorem follows from
Theorem 2. |

3.2. Linear System with Vector Control

Substitute the term w(¢)Bz(t) on the right-hand side of the second equation of (36)
by Bu(t), where u(t) € P C R", P is a convex bounded closed set, and B is an
n X r-matrix, i.e. the system to be solved is of the form

£1(t) = L1 (z1¢(s)) + Criz2(t) + fo(t),

.'i)z(t) =1Ls (mQt(s)) + E(ﬂ:l (t)) + Bu(t), teT,

. , . (46)

Li(n(s)) = Y APy (t - n»(j)) + /AS,") (s)y(t+s)ds, j=1,2
=0 e
\ 4

r

with the initial conditions (37). For reconstruction of a vector control wu.(-;zi(-))
generating the solution z1(-) of (46) we use the scheme described above. As the
model we take the system

W (t) = Ly (wiy(s)) + Crv™™(t) + fo(t),
Wy (t) = Ly (why(s)) + B(E(t)) + Bv™(t), teT,
V() € R, oMt) ERT

with the initial state coinciding with the one of the system (46). Define the strategy Sy
according to (3), (4), (42), where we assume, though, that

Ly(B,v,57) = B(R)|vlg~ + 2(5], Bv)p,-

Theorem 5. Let conditions (a)—(c) of Theorem 4 be fulfilled. Then
() = u(;3(+)) in Lo(T;R").
Let condition (d) of Theorem 4 and the following conditions be also fulfilled:

{a) there exist a number dy > 0 and an r-th order minor of the matriz so(t)B, such
that the r X r-matriz so(t)B corresponding to this minor satisfies the inequality

gg;ls;(t)BUth > d2|U[Rr

for all ve R",
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(b) for any solution z2(-) of (36), (37), we have {(s2(9 — t)B) ™ Yu.(t,z1(-)) €
V(T;R").

Then the following estimate of the rate of convergence takes place:
[5(-) = e (+321)) | iy < Ce P B2 + 1D (B (1)}

Let us recall that the prime above indicates transposes.

4. Example

The algorithm described was tested by a model example. The following system was
considered (Kappel, 1986):

() = —r 7Lz (t) + krtas(t — 1),
$2(t) = z3(t),
£3(t) = —w?zo(t) — 2qwza(t) + wiu(t),
on time interval T = [0,2]. It was assumed that w = 1,1, ¢ = 0,1, z,(t) = 1 for
t € [-7,0], z2(t) = a/b sinbt, z3(t) = a cosbt, u(t) = —a(w?d)~! sinbt+ab~! sinbt+
2gaw™! cosbt. At moments 7; the value
& =x2(1i) + hsinMm;
was measured. As a model we took the system
W (t) = —r~ w () + ke D (¢ - 1),
iy () = 5MA (1),
W (t) = —w?é(t) — 2qwws(t) + w?o"(t)
with the initial state w1 (0) = 21(0), w{"(0) = 22(0), wa(t) = z3(t) for t € [-7,0].

Controls 1”)11 * and o1 at moments 7; were calculated from condition (42) which, in
this case, was of the form

ﬁil,h _ argmin{zgg)vl,h + a(h) (vl,h)?': Ivl,hl < K} ,
{;:‘ = argmin {s?vh + B(h) (Uh)g: |vh| < L} ’

9= (wz (1) — vil’h) exp(—2waTiy1),

S
5= (wgl)(ﬂ') - fz') exp(—2wi Tit1),

wp =1+7r"1+0.5(kr™1)2, woy = 0.5 + 2£w.
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In Figs. 1-3 the results of calculations are presented for the case when §(h) = kA2,

a(h) = koh/2, B(R) = ksh*, 7 =1, r

0.9, k =001, ki = 1, ky = 0.1,

k3 =008, v =022, M =10, a =5, b=5, K =5, L =5. Solid (dashed) lines
represent the real trajectory z3(t) and the control u(t) (model controls #'*(¢) and

oh(t)).

=N WaW

Qe N W

s NoW oA WU

(=B A U

1
T
2.00 ¢

Fig. 2. Numerical results for h = 107%2
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x2,v1

N WA U
ocoo0oOoQ

T T T T T
6.40 0.80 1.20 \K\Z'Du t

=0

Fig. 3. Numerical results for h = 1072,
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