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EXISTENCE AND COMPUTATION OF THE SET
OF POSITIVE SOLUTIONS TO POLYNOMIAL
MATRIX EQUATIONS

TADEUSZ KACZOREK*, RAFAL LOPATKA*

Necessary and sufficient conditions are established for the existence of positive
solutions to polynomial diophatine equations. A method of computing of the
set of positive solutions to a polynomiai diophatine equation based on extreme
points and extreme directions is proposed. The effectiveness of the method is
demonstrated on a numerical example.
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1. Introduction

Polynomial matrix equations have been considered in many papers and books (Emre
and Silverman, 1981; Feinstein and Barness, 1984; Kaczorek, 1986a; 1986b; 1987;
1992; Kucera, 1972; 1979; 1994; Kucera and Zagalak, 1999; Qianhua and Zhongjun,
1987; Solak, 1985; Sebek, 1980; 1983; 1989; Sebek and Kudera, 1981; Wolovich, 1987).
Recently the positive systems theory has become a field of great interest and research
(Kaczorek, 1997; Maeda and Kodama, 1981; Maeda et al., 1977; Ohta et al., 1984,
van den Hof, 1997). Some automatic-control problems can be reduced to finding posi-
tive polynomial matrix solutions to suitable polynomial matrix equations (Kaczorek,
1992, Kucera, 1979). In (Kaczorek, 1998) necessary and sufficient conditions for the
existence of positive solutions to polynomial matrix equations have been established
and two methods for computation of the positive solutions have been proposed. The
main subject of this paper is to present a method of computing of the set of positive
solutions to the polynomial diophatine equation.

2. Preliminaries and Problem Statement

Let R?*P be the set of ¢ x p real matrices and R? := R?*!. The set of ¢ x p
polynomial real matrices in the variable s will be denoted by R?*?[s] and R?[s] :=
R7*1[s].

Consider a polynomial matrix of the form
A(s) = Aps® + Ap1s™H + -+ Ars + Ag € RPX9s]. (1)
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If A, is a non-zero matrix, then a non-negative integer n is called the degree
of A(s) and it will be denoted by deg A(s). The polynomial matrix (1) is called
regular if p = ¢ and det Ag # 0. Let RY*? be the set of ¢ x p real matrices with
non-negative entries.

Definition 1. The polynomial matrix (1) is called positive if 4; € RY? for i =
0,1,...,n.

Consider the well-known diophantine equation
A(s)X (s) + B(s)Y (s) = C(s), (2)
where
A(s) € R¥*t[s], B(s) € R**V[s], C(s) € R¥*9]g]
are given and
X(s) e R[], Y (s) € R¥*[s]
are unknown. Equation (2) can be written as
D(s)Z(s) = C(s), 3)

where

kx 7 X(S) X
D(s) == [A(s), B(s)] € R**P[s], Z(s):= ERPXs], p=t+u.

s)

A pair of positive polynomial matrices X (s) and Y (s) (resp. Z(s)) satisfying (2)
(resp. (3)) is called a positive solution to (2) (resp. (3)). The problem under consi-
deration can be stated as follows: Given polynomial matrices A(s), B(s) and C(s),
establish conditions under which there exists a positive solution X(s), Y (s) to (2)
and give a procedure for computation of the set of positive solutions to (2) (if, of
course, this set is not empty).

3. Existence of a Positive Solution
Let

D(s) = Dps™ + Dy 18" + -+ D15+ Dy € R¥*P[s] (4a)
and

C(8) = Cons™ + Crae18™ 1+ -+~ + Crs + Cp € R3], (4b)

From (3) it follows that the minimal degree of Z(s) is equal to n —m = r.
Substituting (4) and

Z(8) = Zo8" + Zr_15"" 4+ Zys+ Zo € RPXY[s] (5)
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into (3) and comparing the coefficients at the same powers of s, we obtain for r+n >
m and n>r

DyZy = Gy,
Di1Zy+ DoZy = Ch,

D.Zo+D, 171+ +DoZ, = Cr;

(6)
D,Zo+ DpaZy + -+ DnvZy = Cp,
DpZmn+Dp1Zmenyr+ -+ DpyZp = Chy.
Equations (6) for 7 + n = m can be written as
DZ=0C, (7)

where

Dgy 0 0 0 0
D, Dy 0 0 0
D, D, Dy 0 0
_ DT Dr~1 Dr-—2 Dl DO
D= c wat7
Dr—-l-l Dr -Dr——l D? Dl
Dn Dn—l -Dn—2 Dn—r—l Dn—r
L0 0 0 0 D, |
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Co
Ch
F 7y
7
Z = Z2 € Rtx:;’ C — Cr c waq’
7. | Cn
L Om |

I

w:= (m + 1)k, t:=(r+1)p.
The problem of finding a positive polynomial solution Z(s) € RE*? to (3) has

been reduced to finding a suitable positive real matrix Z € R\*? of (7) for given real
Ce n -
matrices D and C.

A vector b € R™ is called a positive linear combination of vectors a; € R”,
i=1,...,k if there exist non-zero scalars n; > 0 such that b= Zle 7:Q4-

Definition 2. (Cohen and Rothblum, 1993) The smallest non-negative integer ¢
is called the nonnegative column rank of A € RP*? (denoted by rank, A) if there
exist ¢ columns in A such that each column of A is a positive linear combination of
columns of A.

Theorem 1. (Cohen and Rothblum, 1993) Let A € R™*™ be a non-negative matriz.
Then rank A <rank;A < min(m,n).

Let cone A be the cone generated by the columuns of the matrix A, i.e. the set of
all positive linear combinations of the columns of A.

Theorem 2. The polynomial equation (3) (or equivalently (2)) has a positive solution
Z(s) if and only if one of the following conditions is satisfied:

1. rank, |D,C| = rank,; D, or

2. ¢ €coneD for i=1,...,q, where & is the i-th column of C.

Proof. From Definition 2 it follows that eqn. (7) has a positive solution Z € R4
if and only if every column of C' is a positive linear combination of the columns
of D and this holds if and only if the first condition is satisfied. Note that the

second condition is equivalent to the fact that each column of C' is a positive linear
combination of the columns of D. ]

Theorem 3. (Rudin, 1998) If M is a closed subspace of H, then there exists only
one pair of transformations P and Q such that P transforms the space H into the
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subspace M, Q transforms the space H into the subspace M+ (which is orthogonal
to the subspace M ), and

z=Pz+Qr

for any x € M. Moreover, the transformations P and @ have the following proper-
ties:

1. Ifx€M, then Pr =2, Qz=0;if £ € M+ then Pxr =0, Qz = z.
2. ||z — Pz|| =inf{l|lz —yl|: ye M, z € H}.
3. |lzll* = | Pz|* + [|Qz||>.

4. P and Q are linear transformations.

Theorem 4. (Rudin, 1998) If {u1,...,ur} is an orthonormal setin H and x € H,

then for arbitrary scalars A1,...,\r we have
k k
llz = > (@, u)uill < flz =Y Ajuyll
o =t j=1

and the equality occurs if and only if A\; = (x,uy) for j = 1,...,k, where (-, ")
denotes the inner product. The vector

x
> (@, ug)u;

=1

is the orthogonal projection of the vector x onto the subspace [ui,...,ug]. If §

represents the distance between x and [uq,...,ug], then

k

2
Do l@u) = llel® - 6.
=1
Consider

lwr ... wp]K = wy,
where |wy ... wp] is the set of p columns taken from a matrix W, w, is the ¢-th
column of the matrix W, ¢ ¢ {1,...,p} and K € R?. An orthonormal basis U, of
the matrix |w; ... wp] can be obtained via SVD (Singular Value Decomposition, cf.
Golub and van Loan, 1989). By Theorem 4, if the condition [|[UTw,|| = |jw,]| is satis-
fied, then w, can be expressed as a linear combination of the columns |w; ... wp)].
The desired coefficient matrix is given by K = [w; ... zwy)tw,, where the upper

index + denotes the pseudoinverse which can be calculated based on SVD.

From Theorems 1, 2 and 3 we have the following algorithm for the computation
of the positive rank of W. The algorithm will be presented based on the notation
used in MATLAB.
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Algorithm:

Step 1. rank; W :=1; i = 0; assume matrix X to be empty (X :=[]).
Step 2. If 4 — 1 = min(m,n), then the algorithm ends.

Step 3. i:=1i+ 1.

Step 4. Augment X by the i-th column of the matrix W (X := [X w;]).
Step 5. As w; choose the (i + 1)-th column of W.

Step 6. Calculate SVD of X([U,%,V]=svd(X); X = UZVT).

Step 7. Extract U, from U(U, :=U(:,1:7), r =rank X).

Step 8. If ||[UZw,|l # |lw,ll (w, cannot be expressed as a linear combination of
columns of X), then rank; W :=rank; W + 1 and go to Step 2.

Step 9. Calculate K = X*tw,, X+ =VE-1U”.

Step 10. If the components of the vector K are positive, then go to Step 2 (w,
can be expressed as a positive linear combination of the columns of X).

Step 11. Vector w, cannot be expressed as a positive linear combination of the
columns of X. Therefore ranky W :=rank, W + 1. Go to Step 2.

4. Determination of the Set of Positive Solutions

For (2) we usually have ¢ > w. It is assumed that the matrix D has full row rank w.
Let A® B be the Kronecker product of the matrices A = [a;;] € R™*" and B
defined by

anB  apB -+ a,B
anB  apB - awB

A®B = (8)
0m1B  amaB QmnB

Using the Kronecker product we may rewrite (7) in the form

Az =0, (9a)
where
A=D®I, e R™ x 7, IZI[Zl,zg,...,Zt]TERﬁ,
e - N _ _ (9b)
b:=[c1,c2,...,¢y] €R™,  mi=wq, A=ty
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and Z; and ¢'; are the i-th and j-th rows of Z and C, respectively. Therefore the
problem of determination of the set of positive solutions to (2) has been reduced to
the problem: Given A and b, find a set of z > 0 satisfying (9a). Note that if ¢t > w
and rank D = w, then the matrix A also has full row rank.

Let S be a non-empty set defined by S:={z: Az =85, =z
al., 1993). A point z is an extreme point of S if and only if A
decomposed into [B, N] such that det B # 0 and

> 0} (Bazaraa et
€ R™*™ can be

B~1p

0 > 0. (10}

If rank A = m, then S has at least one extreme point. The number of extreme
points is less than or equal to @l/m!(A — m)L

A vector d is an extreme direction of S if and only if A can be decomposed
into [B, N] such that det B # 0 and

[ —B_laj
d= [ >0, (11)
Bj

where a; is the i-th column of NV and e; is an 7 — ™ vector of zeros except for
unity in position j. The set S has at least one extreme direction if and only if it is
unbounded. The maximum number of extreme directions is bounded by a!/m!(A —
m— 1)l

Let z1,29,...,2; be the extreme points of S and dy,ds,...,d; be the extreme

directions of S. It is well-known (Bazaraa et al., 1993) that every = € S can be
written as

k l
T = Z )\jzj + E wid;, (12)
i=1 =1

where A; >0, j = 1,...,k, 325, A =1, 4 >0, i = 1,...,I. From the above
considerations we have the following procedure for computation of the set of positive
solutions to (2).

Procedure:

Step 1. Given polynomial matrices A(s), B(s) and C(s), find the coefficient

matrices D, C' and next, using (9b), the matrix A and vector b.

Step 2. Decomposing the matrix A into |Bj,N;], j = 1,...,k such that
det By # 0, find the sequences Bj, Bs,..., By and Ny, Ns,...,N;.

Step 3. Find

T; =

Bj“lb ,
>0 for j=1,...,k (13)
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and

—Bj_laj,- ]: 1,...,]6,
dji = > 0 for ) (14)

€j
where aj; is the 4-th column of NNj.

Step 4. Find the desired set

k ! k
S=<zx: mZZ/\jﬂ?j-FZ/J,idi, A; >0, Z)\jzl, wi >0 ). (15)
=1 i=1 =1
Example 1. Consider (2) with

s 1 0 s 252
A= , B= , C= ) (16)
0 s+1 1 1 25+ 2

Using the foregoing procedure, we perform their consecutive steps.

Step 1. In this case, we have

D(s) = [A(s), B(s)] = { ©o 0 SJ = D15 + Do,

0 s+1 1 1
01 0 0 1 0 01
Do— ,Dl— ’
0111 01 0 0
242
C(s) = = Cys® + C1s + Cy,
25+ 2
2 0
CZ: 701:00: ;
0 2
010000 0 0]
01 1100 0O
Dy 0
_ 1 001 0100
A:DZD1D0= 5
01 000111
0 Dy
000 01 0 01
(00000100,
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Co
b= | ¢ :[0 2 0 2 2 O]T.
Cy

Step 2. Let a; be the i-th column of the matrix A. Decomposing A into |Bj, N;],
j=1,...,28, we obtain the result listed in Table 1.

Table 1. Decomposition of the matrix A in Step 2 of the Example.

j Bj detB]- j Bj detBj
1 [al,az,ag,a4,a5,a6] 0 15 [al,ag,as,ae,a7,a8] 0
2 | [a1,a2,a3,a4,a5,a7] 0 16 | [a1, a3, a4, a5, Gs, a7] 0
3 | [a1, a2, a3,a4,as,as] 0 17 | [a1, a3, a4, a5, ag, as] 0
4 [al,ag,ag,a4,a6,a7] 0 18 [al,ag,a4,a5,a7,a8] 0
5 | [a1,az,as, a4, ag, ag] 0 19 | [a1, a3, a4, as, a7, as] 0
6 [al,ag,ag,a4,a7,ag] 0 20 [a 037‘1570'670'770'8] 0
7 [al,az,ag,a5,a6,a7] 21 [a a4,a5,a6,a7,a8] 0
8 | [a1,a2,as, as, as, as] 22 | [ag, a3, a4, as, as, a7)

9 | la1,a2,as,as,a7,as] 23 | [ag, a3, a4, as, ag, as]

10 | [a1, a2, a3, as, a7, ag) 24 | [az2, a3, a4, a5, a7, ag] “
11| [a1, a2, a4, as, as, a7] 0 25 | [a2, a3, a4, a5, 07, G5] |

12 | [a1, 02,04, a5, as, as] 0 26 | [ag, a3, as, as, a7, as] 0
13 | [a1, az, a4, a5, az,ag] 0 27| [az, a4, a5, a6, a7, as) 0
14 | [a1, a2, aa, ag, a7, ag] 0 28 | [as, a4, as, as, a7, ag) 0

Step 3. Using (13), (14) and Table 1, we obtain

[a1,a2,03,05,a6,a7] [020220] = 2! =[00202020]",
[a1,a2,03,05,a6,a5] [020220] = a2=[00200002]",
[a1,02,a3,06,a7,a5] 1[020220] = 2*=[00200002]",
a2, a3, a4,05,06,07] ' [020220] = a*=[00202020]", o
a2, a3, a4, 05,a6,a5] '[020220]" = 2 =[00200002]"
[a2,a3,a4,06,a7,a5) ' [020220] = 2=[00200002]".
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Note that in this case the set of extreme directions is empty, a! = z4, 22 = 23 =
2% = 2% and the set S is bounded. -
Step 4. In this case the desired set (15) has the form
( [0 [ 0] [0 ] )
0 0| 0
2 2 2
S 0 A 0 (1-X) 0 A€ 0,1] (18)
={z: z=| |A+ -\ = , A€01]p.

2 0 2\

0 0 0

2 0 2\

. L 0 ] L 2 | L 2(1—=X) | )
Hence
2)s
0
Z(s) =
2As + 2

2(1-X)s

and
2)s
X(s) = 0 , Y(s)=2(1-X)s for 0<A<1.
2As +2

5. Conclusions

Necessary and sufficient conditions for the existence of positive solutions to polynomial
matrix equations have been established. An algorithm for computation of the positive
rank of a given real matrix has been presented. A method of computation of the set of
positive solutions to the polynomial diophatine equation (2) based on extreme points
and directions has been proposed.
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