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FORNASINI-MARCHESINI 2-D STATE SPACE MODELS:
TRANSFER FUNCTION COMPUTATION VIA THE DFTf

GEORGE E. ANTONIOU*, KELLY EMMONS*

A new algorithm is presented for the computation of the coefficients of the
determinantal polynomial and the coefficients of the adjoint polynomial matrix
of a given two-dimensional (2-D) state space model of Fornasini-Marchesini type.
The algorithm has been implemented in Matlab and uses the discrete Fourier
transform (DFT). The simplicity and efficiency of the technique are illustrated
by two examples.
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1. Introduction

During the past two decades there has been extensive research on two-dimensional
(2-D) systems. These systems describe physical processes which are characterized by
two independent variables. Applications of 2-D systems can be found in image pro-
cessing, computer tomography, geophysics, multipass processes, etc. (Dudgeon and
Mersereau, 1984; Galkowski, 1994; Kaczorek, 1985). State space techniques play a
very important role in the analysis and synthesis of 2-D systems (Galkowski, 1994).
An important problem is to determine the coefficients of a transfer function from its
state space representation and vice versa. In going from the transfer function to a
state space model a number of algorithms have been proposed. In the case where
a state space model is available the Leverrier and DFT algorithms with Vander-
monde matrices can be used (Antoniou, 1997; Antoniou et al., 1989; Lee, 1976; Luo
et al., 1997; Paccagnella and Pierobon, 1976; Yeung and Kumbi, 1988). The DFT
has been used for the evaluation of the transfer functions for linear systems (Lee,
1976; Paccagnella and Pierobon, 1976), singular systems (Antoniou et al., 1989), and
multidimensional systems (Yeung and Kumbi, 1988) of the Roesser type. Recently
the DFT was used in determining the coefficients of the Attasi-Kaczorek singular 2-D
model (Antoniou, 1997).

In this paper, a computer implementable algorithm is proposed, using the DFT,
for the computation of the 2-D transfer function for the Fornasini-Marchesini 2-D
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state space models (Fornasini and Marchesini, 1978). The proposed algorithm de-
termines the coefficients of the determinantal polynomial and the coefficients of the
adjoint polynomial matrix, using the DFT algorithm. The computational speed of
the algorithm can be improved using fast Fourier techniques to implement the DFT
(Oppenheim et al., 1999). It is noted that the algorithm has been implemented using
Matlab.

2. Background

Two-dimensional (2-D) state space models of the Fornasini-Marchesini (F-M) type
have the following structure (Fornasini and Marchesini, 1978):

First F-M model
{ Z(@+1,5+1) = Ajz(i + 1,5) + Aoz (4, § + 1) + bu(i, 5), Q)

y(i,5) = c'z(i, j),
Second F-M model

2(i+1,5+1) = Aiz(i + 1,5) + Asa(i, j +1)
+byu(i + 1,5) + byu(i,j + 1), ()
y(i,5) = ¢'z(3, ),

where z(i,§) € R*, u(i,j) € R™, y(i,j) € R*; Ai, k= 1,2 and b, ¢ are real
matrices of appropriate dimensions.

Applying the 2-D z-w transforms to the systems (1) and (2) with zero initial
conditions, their transfer functions respectively become

Ti(z,w) = ¢ [Tzw — A1z — Asw]™1b (3)
and
Ta(z,w) = ¢ [Tzw — A1z — Asw] 1 (b12z + bow). (4)
In the following section, an interpolative approach is developed for determining
the transfer function 7'(s), given the matrices Ay, k = 1,2 and b, ¢', using the
DFT. For the sake of completeness, a brief description of the DFT follows.

2.1. 2-D DFT

Given finite sequences X (ki,ks) and X(rl,rg), k1,71 = 0,...,M and ks,70 =
0,..., N, the following relationships are necessary in order for the sequences to con-
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stitute a 2-D DFT pair (Oppenheim et al., 1999):

M N
X(ri,ra) = DY X(k, ko)W By Fare, (5)
k1=0k2=0
1 M N
Xlkk) = Gy 2 2 XCem WIS 6)

where 7‘1:0,...,M, 7‘220,.“,N, k]_:O,...,M, kQZO,...,N,
X:[.'Bij], X:[.’i”], i:l,...,p, jzl,...,m
and

Wy = CZWJ/(M+1), W, = 273/ (N+1)

3. First F-M Model: Algorithm

Let the transfer function, T'(z,w), of the first F-M 2-D state space model be defined
as

T(ew) = 2, ™

where
N(z,w) = dadj[Izw — Az — Aywlb, (8)
d(z,w) = det [Tzw — A1z — Aguw]. (9)

Note that deg,[IN(z,w)] = deg,[IN(z,w)] =n and deg,[d(z,w)] = deg,[d(z,w)] =
n, where deg,[] and deg,[-] denote the degrees with respect to z and w, respecti-
vely. Consequently, (8) and (9) can be written in polynomial form as follows:

N(z,w) = ZZP’”'Z w’, (10)

k=0 r=0

d(z,w) = ZquTzkwr, (11)

k=0 7r=0
where Py, are matrices with dimensions p x m, while ¢, are scalars.

The numerator polynomial matrix IN(z,w) and the denominator polynomial
d(z,w) can be numerically computed at (n + 1)? points, evenly spaced on the unit
2-D disc. The (n + 1)? points can be chosen as (z,w) = [v(i),v(5)], 4,7 = 0,...,n,
or according to our definition as

‘l)]_(T') :UZ(T) :W*ra 7‘:07"')”: (12)
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where

Wi =W, =W = ™/(nt1), (13)
The values of the transfer function (7) at the (n + 1)? points form its corresponding
2-D DFT coefficients.

3.1. Denominator Polynomial

To evaluate the denominator coeflicients ¢g,, define

ai; = det[Tv1 (i)v2(j) — Arv1 (i) — Azva(j)]. (14)
Using (9) and (14), a;; can also be defined as
a,-j = d[’U1 ('I:),’Uz (])] ‘ (15)

provided that at least one of a;; # 0.
Equations (11), (12) and (15) yield

aij = i i g W 4T, (16)
k=0 r=0

In (16), [as;], [grr] form a DFT pair. Therefore the coefficients g, can be
computed using the inverse 2-D DFT as follows:

1 n n -
e = i 3 Y e, )

2
(n+1)" i3 §=0

where k,r =0,...,n.

3.2. Numerator Polynomial
To evaluate the numerator matrix polynomial Py, define
Fij = c'adj[Tvi (i)va(§) — A1v1 (i) — Asva(5)]b (18)

provided that at least one of F;; # 0. Using (8) and (18), F';; can also be defined
as

Fi; = Nvi(i),v2(5)]- (19)
Equations (10), (12) and (19) yield
Fij=3 ) PeW :m), (20)
k=0 r=0

In (20), [Fij], [Pkr] form a DFT pair. Therefore the coefficients Py, can be
computed using the inverse 2-D DFT as follows:

Py, = ! iiﬂjwikﬂ*, (21)

p)
(n+1)" = j=0

where k,r =0,...,n.
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Finally, the transfer function sought is
N(z,w)

T =—1 =
(Z, 'LU) d(z, 'LU) 3

where

d(z,w) = i i qrr 2w,

k=0 r=0
n n
N(z,w) = Z Z P2,
k=0 r=0
A synopsis of the presented algorithm is given in Table 1.

Table 1. Algorithm for the first F-M model.

Let
n = dimI = dim A; = dim A,

W = 2mi/(n+1)

for r =0 to n do

v(r)=v(r)=W™", r=0,...,n

for 1 =0 to n do
for j =0 to n do

Qi det [Ivy (2)va(j) — A1v1(3) — Ava(4)]
Fi; = cadj[Izw— A1z — Ayw]™'b

end for
end for

for i=0 to n do
for =0 to n do

G = — L 3OS awi

n+1 =0 j=0

Pk,,r — 2 Z Z Wzk-{-]r

i=0 j=0
end for
end for
n n
Z Z Py 2kbw”
T(z,w) — N(Ziw) _ k=07=0

d(z,w) X

S qerdtw’

k=0 r=0
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3.3. Example

Consider the system described by the following 2-D state space model:

z(i+1,j+1) = Aiz(i+1,5) + Asz(4,5 + 1) + bu(i, ),
c'z (i, 4),

| aeft)

¢=[10].

y(i,7)
where

01
1 0

‘We would like to determine the transfer function for this system using the technique

outlined above.

The direct application of the proposed algorithm yields

Qoo Qo1 (o2 -1 -1 -1
aio a1 a2 | = | —1 0.5-—2.5981j 2.0
| a0 a2 as -1 2 0.5 + 2.59814
and
[ Foo Fo Fos 0 -1.5-0.8660; —1.5+ 0.8660;
Fo Fi1. Fio | =10 1.73215 1.5 4+ 0.86607
| Fa Foi Py 0 1.5-0.8660j ~1.7321;
Using (17), the denominator coeffients are
[ g0 go1 qo2 0 0 -1
qo qu Q2 | = 0 0 0
| 920 g21 Q22 -1 0 1
From (21), the numerator matrix polynomials are
[ Po P Po 0 00
Po P P |=|-110
| Poo Po1 Pao 0 00

Once the denominator and the adjoint matrix have been computed, (22) can be
utilized to obtain the transfer function T'(z,w). Therefore we obtain

Piizw + Pz

Pew) = o —w (25)
or
, ZW — Z
Tew) = gt (26)
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4. Second F-M Model: Algorithm

Let the transfer function, T'(z, w), of the second F-M 2-D state space model be defined
as

7w = 32, (27)

where
N(z,w) = ¢ adj[lzw — A1z — Ayw][b1z + baw], (28)
d(z,w) = det [Tzw — Az — Agwl. (29)

Note that we have deg,[N(z,w)] = deg,[N(z,w)] = n and deg,[d(z,w)] =
deg,,[d(z,w)] = n, where deg,[-] and deg,[:] denote the degrees with respect to z
and w, respectively. Equations (28) and (29) can be written in polynomial form as
follows:

n n

N(z,w) = Y Y Py2tw, (30)
k=0 r=0
n n .

d(z,w) = ZqurzkwT, (31)
k=0r=0

where P, are matrices of dimensions p X m, while gz, are scalars.

The numerator and denominator polynomials (30), (31) can be numerically com-
puted at (n + 1)? points, evenly spaced on the unit 2-D disc. The (n + 1)? points

can be choosen as (z,w) = [v(i),v(j)], ¢, =0,...,n, or according to our definition
as

nr)=v()=W™", r=G0...,n, (32)
where

Wi =Wy =W = 2m/(n+1), (33)

The values of the transfer function (27) at the (n+1)? points form its corresponding
2-D DFT coeflicients.

4.1. Denominator Polynomial

To evaluate the denominator coefficients (gx-), define

aij = det[Tvy (i)v2(j) — Arv1 (5) — Azv2(j)]. (34)
Using (9) and (34), a;; can also be defined as
ai; = d[v1 (i), v2(j)] . (35)

provided that at least one of a;; # 0.
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Equations (31), (32) and (35) yield

n

ai; =) z": g W CEHIT), (36)

k=07r=0

Here [as;], [gkr] form a DFT pair. Therefore the coefficients g, can be computed
using the inverse 2-D DFT as follows:

1 n n o
Qer = SO e Wikt (37)

(n+1)° =0 =0

where k,7 =0,...,n.

4.2. Numerator Polynomial
To evaluate the numerator matrix polynomial Py, define
Fij = c'adj[Tvi (9)v2(§) — Arvi(8) — Agvz(5)] [brva (5) + bava (4)] (38)

provided that at least one of F;; # 0. Using (28) and (38), F;; can also be written
down as

Fij = Nv(i),v2(5)]. (39)
Equations (30), (32) and (39) yield
Fij =Y 5 Py Wk, (40)
k=0 r=0

In (40), [Fi;], [Pr) form a DFT pair. Therefore the coefficients Py, can be
computed using the inverse 2-D DFT as follows:

1 n n ) )
Py = —— P Wwiktir, 41
k (n T 1)2 Z Z i3 ( )

i=0 j=0
where k,7r =0,...,n.
Finally, the transfer function sought is

T(z,w) = % (42)
where
d(z,w) = Z qurzkwr, | (43)
k=0 r=0
N(z,w) = ZZszkwr. (44)

k=0 r=0
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4.3. Example

Consider the system described by the following 2-D state space model:
z(i+1,7+1) = Aiz(i +1,7) + A (i, j + 1) + bru(t + 1,7) + bau(i, 5 + 1),

y(6,5) = cz(i,j),

3w
b1=[(1)}, bz:“]’ c’:[o 1]

We would like to determine the transfer function for this system using the technique
outlined above.

where

The direct application of the proposed algorithm yields

ago QoL o2 -1 -1 -1
alp a1 aig | =} —1 0.5-—2.598j 2
Qo0 G211 Qo9 -1 2 0.5 + 2.5985
and
Foo For  Fos 3 1.5 + 0.8660; 1.5 — 0.8660;
Fio Fiu Fia | = 154259815 —0.6429 + 0.12375 0.75 — 0.4330j
Foy Fyy Fy 1.5 — 2.5981j 0.75 + 0.43305 —0.4286 + 0.49495
Using (37), the denonimator coefficients are »
[ g0 qo1 qo2 0 0 -1
quo qu q2 | = 00 0
| 920 G211 Goo -1 0 1

Based on (41), the matrix numerator matrix coefficients are

Poo Pou Po 0 0 0
P10 P11 P12 = O 2 ].
i Py Py Py 0 0 O

Once the denominator and the adjoint matrix have been computed, (42) can be
utilized to obtain the transfer function 7'(z,w). Therefore we obtain

2
T(z,w) = Puzw + Prpzw” (45)

22w — 22 — 2

and finally

2zw + zw?
Tew) = g —ur (46)
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5. Complexity of the Algorithm

The proposed algorithm has two parts. In the first part the matrices F;; and the
scalars a;; are evaluated with a cost of O(n®) operations. In the second part the
coefficients of Py, and g, are evaluated using the DFT with a cost of O(pm(n+1)%)
operations. For more efficient computation, especially for high-order systems, the fast
Fourier transform can be used to implement the DFT. In this case the coefficients
of qr and Py, are evaluated with computational costs [(n + 1) log,(n + 1)][(n + 1)
logys(n+1)] and pm[(n+1)logy(n-+ 1)}[(n + 1) logy(n + 1)], respectively (Oppenheim
et al., 1999).

6. Conclusion

In this paper, two algorithms are proposed for determining the coefficients of a 2-D
transfer function from its state space representation, having the Fornasini-Marchesini
stucture. The algorithms are simple and are based on the DFT. For the improvement
of the computational speed, especially for high order systems, the DFT algorithm can
be implemented with fast Fourier methods.
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