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SOLVING PARABOLIC EQUATIONS BY USING
THE METHOD OF FAST CONVERGENT
ITERATIONS

VictorR BONDARENKO*, PETER BIDYUK*, JuLIA BERNATSKA*

The paper describes an approach to solving parabolic partial differential equ-
ations that generalizes the well-known parametrix method. The iteration tech-
nique proposed exhibits faster convergence than the classical parametrix ap-
proach. A solution is constructed on a manifold with the application of the
Laplace-Beltrami operator. A theorem is formulated and proved to provide a
basis for finding a unique solution. Simulation results illustrate the superiority
of the proposed approach in comparison with the classical parametrix method.
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1. Introduction

There is a number of processes and systems that are described by partial differential
equations of parabolic type. As an example, heat and mass transfer, and diffusion
can be mentioned. The general form of the equation is as follows:

Ou 1 0 ~ Ou ou
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Here = = [z1,...,2"]7 € R*, ¢/*(z) and b*(z) are coefficients of diffusion and

transfer, respectively. The right-hand side of (1) contains summation with respect to
indices j and k (the summation symbol is omitted as is customary in tensor algebra).

As it was mentioned above, physical processes of type (1) are related to pheno-
mena of diffusion and heat transfer, what is common in automatic control systems.
In this case, the controlled process is usually characterized by a medium concentra-
tion or a temperature, and the solution u(t,z) represents these quantities. Control
system design and implementation require solving the corresponding equation in real
time when the calculation speed is highly important. So it is much desirable to have
a fast convergent method of solution. Parabolic equations are also used in ecological
monitoring to determine excessive contaminant concentrations (possibly very small),
which also requires fast convergence for an effective response.
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2. Existing Approaches to Solving Parabolic Equations

Equation (1) is supplemented by an initial condition u{0,z) = w(z) and, if z €
D C R?, boundary conditions are added in a region D. This paper is devoted to the
Cauchy problem for (1) in the whole space with a general solution form

u(t,z) = / oW)p(t, z,5) o(dy),
Rn

where p(t,z,y) denotes a fundamental solution to (1) and o(dy) is an arbitrary
unit in the space R™. In the case of Cartesian coordinates, we have o(dy) = IT dy*,
k=1,...,n.

An explicit form of fundamental solution is known only for a limited group of
equations, i.e. equations with constant coefficients g’*(z) and b*(z), for which the
fundamental solution is

1 1 ; ; SR . .
p(t,z,y) = @i exp {“‘é‘t‘gjk(yj — g — ) (y* - 2F tb’”)} ,

where g;;, is the matrix inverse to the diffusion matrix. A classical iteration technique
for constructing fundamental solutions for equations with time-varying coeflicients is
the parametrix method (Friedman, 1964) which provides the solution in the form:

i
p(t7$5y) :po(tazay) +/dT/p0(t—T,CII,Z)7'(’T,Z,y) U(dZ),
O .

n

where po(t,z,y) satisfies (1) with coefficients ‘frozen’ at the point y, and r(t,z,y) is
constructed via the iteration technique. An initial approximation py can be chosen
as :

1 1 J_ g
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If coefficients of (1) satisfy Lipschitz conditions, the residual can be assessed using

the estimate
c llz — vl?
< — |14+ F
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i.e. it has an integrable singularity as time vanishes. Actually, this inequality guaran-
tees convergence of the iteration process while constructing the function r(t,z,y).

Opo
Lpg ~ —8—;

At the beginning of the 1970°s parabolic equations (1) were extended to Rie-
mannian manifolds. Foremost, the works (Cheng and Yau, 1975; 1981) should be
mentioned whose authors were awarded Field’s medal.

The equations of type (1) are most often solved by making use of numerical tech-
niques presented in abundant relevant literature. A thorough description of numeri-
cal techniques, such as finite differences and finite elements, collocations, non-linear
two-point boundary problems, can be found in (Na, 1979; Shih, 1984). Details and
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numerous examples regarding the Galerkin method are presented in (Fletcher, 1984).
The analytical methods discussed in the next section proved to be too slowly conver-
gent. The references (Bakry et al., 1997; Bondarenko, 1997; Grigoryan, 1998) contain
rather good estimates of solutions to (1), but they do not provide a procedure for
obtaining the solutions themselves.

In this paper we propose an iteration method for obtaining solutions, which
generalizes the parametrix method.

3. Problem Statement

As an illustration of the influence of the initial approximation on the convergence
rate, the following one-dimensional equation is considered:

Ou 10 ( ,, \0u du ' _
= rm (P@F) +Hage w0 =le) ®
where o(x) > ¢ and ¢ is continuous.
Let
1 (P e
z
t: 3 = —— —_— + —_— d
m(t,2,) 2nto(y)o(z) =P 2t / o(2) 0?(2) ¢

The following relation is true:

o]

13301 o(y)m(t,z,y) dy = o(z),

-0

which is proved via the substitution

v, v:\%/&%, y= fo(Vi),

where the transformation f;(u), fz(0) = z is inverse with respect to
y
/ ds
— =u
o(s)
x

The inverse transformation exists because of the monotonicity of v as a function of y.
The discrepancy for eqn. (3) is

. Om 190 om om
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If c; < A(z) < ¢ then, according to the maximum principle for the fundamental
solution, we have

p(t,z,y)
m(t,z,y)

The fundamental solution can be found in the form:

exp(—cot) < < exp(—eit).

i [e]
pt.a) =mit,op) + [dr [ me-r,0,90(0) 0
0 —_
where the sought function is

tl‘y) erntxy TO:h‘(t)I:y):

H o0
ro(t, z,y) = /dT / h(t = 71,2, 2)rp—1(7, 2,9) dz.
4] —00

From the estimate
|h(t,2,y)| < em(t, z,y)

it follows that

i 00
]rl(t, z, y)[ < CZ/dT / m(t — 7,2, 2)m(T, 2,9) dz < tm(t, z,y),
0 —00

which is proved by making the following substitutions:

/ / t—T/ ds
Z2=u, u=
t—T

y
t— —
i=f 7( T)u+t 7/ ds

t t o(s)

T

The estimate for the n-th iteration

Cn+1
< n! tnm(t, Z, y):

Irn(ta Z, y)l
produces

fr(t, z,y)| < c1 exp(ct)m(t, z,y).
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Consequently, for ¢ € (0,7 we have
p(t,z,y) < m(t, z,y) (1 + crtexp(t)).

If a heat transfer kernel is to be built for a multidimensional case, an approxi-
mation different from (2) is used. The new approximation is based on the fact that
the diffusion matrix induces in the space R® a new Riemannian distance defined by

T

Pa) = min T [ g ((5)) 3 (5)7(5) ds, @)
0

where the minimum is taken among different curves connecting the points z,y € M.
Thus it is obvious to consider (1) on the Riemannian manifold M formed by inducing
the distance (4) on the initial space R".

4. Notation and Conditions

Let M be a Riemannian manifold. The geodesic line connecting points z and y
in M (i.e. the solution to the variational problem (4)) will be denoted by ~(s), where
s is a natural parameter, v(0) =y, v(p(z,y)) = . The matrix gix(z) is inverse to
the diffusion matrix and forms the metrics tensor of the manifold, which is used to
determine the connection coefficients (Cromol et al., 1968)

. 1 .. (0g;r Ogir 0Ogij
k _ L ke [ OGjr r _ 08ij
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and the curvature tensor

I _ P T4 _ TP ¢
Biji = 52i0c  driock | 0zidd B:vjawk) * 990 (515 — TRT5).
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2

The sectional curvature of the manifold in directions u and v is determined by
r = ~Rynuiviufo! = — ((R(w)u,v)u,v),

up to a positive multiplier. Denote by ¢(dy) an arbitrary unit of the manifold. The
following assumption will be needed throughout the paper.

Assumption 1. The manifold is complete and one-connected. Moreover, its sectional
curvature is non-positive at every point and decreases fast enough as ||z]] = oo (for
details, see Cromol et al., 1968). '
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One of the manifold characteristics is a Jacobi field Z(s) along a geodesic ~(s),
which is defined as a solution to the Jacobi equation

Z"(s) = R(v(s)) (¥(5), Z(5)) ¥(s)-

In a linear space, Z(s) is a linear function of the parameter s. For a manifold of
a nonpositive curvature, ||Z(s)|| is a function convex downward, i.e. it increases faster
than s. This occurence allows us to determine basic Jacobi fields Zx(s), k=1,...,n
which form an orthogonal basis at the point z. Introducing such fields allows us to
find a solution to the problem of choosing basis vectors in the manifold. The problem
is non-trivial while a tangent displacement of the vector along different curves in the
manifold leads to different results.

If the condition holds, then for every couple of points z,y € M a nonnegative
function a(z,y) can be introduced, which is defined in terms of the basic Jacobi fields
(Bondarenko, 1997) and depends on the manifold curvature. Let

p(z.,y)

ooy = [ 04,
0 ~.
where
a(z,) = Y (pZ4(p) = Zu(p), Zu(0))

k=

[ M)

Zy(p) are basic Jacobi fields at the point = = v(p), and a(z,y) satisfies

0< a(z,y) < / rRic(v(r)) (4(r),4(r)) dr,

where Ric(z) is a convolution of the curvature tensor. The condition imposed on the
manifold guarantees that the function a(z,y) is bounded.

5. Constructing the Equation on the Manifold

Consider again (1) while assuming that the transfer coefficients are defined in the
following way:

B (z) = 3T (2)g™ (@)

In this case (1) takes the self-adjoint form
Ou 1
ot 2
where A is the Laplace-Beltrami operator. Therefore p(t,z,y) = p(t,y, z).

Au, (5)
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Introduce the function

m(t, z,y) = (2rt) "% exp {_Pg(;t, y) w(ﬂ; Y) } _

Lemima 1. If the condition given above is fulfilled for the residual

1 om
h(t,z,y) = EAm ~ B

then

[h(t,m,y)l <em(t,z,y), t>0, =z,y€ M.

Proof. Let Z; is a basis of the Jacobi fields along the geodesic vy, «(0) = v,
v(p(z,y)) = z. Calculate the derivatives of the function m(¢, z,y):

gadmt,z.9) = ~m(t, ) (25240) + Jerade(an)).

am(t,,9) = mita,5) (228 4 20D (graa (1), 4(2)

12 t

1 s 1
+ 7 lgrad oz, y)||” + 3A¢(@,y)

- Azy) 5 (zg(p),zk(p))),

1]

om(t, z,y) PP(zy) ﬁ)
o - o) ( 2% 2t )"

From

> (24(p), Zk(p)) = n + a(z,y)

it follows that the residual is
1 2 1
h(t,,y) = m(t,z,y) g[lgrad o(z,9)|" + 5A¢(,9) ) -

As far as |jgradp|| and Ay are bounded, the above statement is proved. ]

The fundamental solution for (5) is written as

t
p(t, z,) = m(t, z,y) + / dr / m(t — 7,2, 2)r(r, 2,y) o (dz), (6)
0 M
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where the sought function r satisfies the integral Volterra equation

r(t,o,y) = hit, z,y) + /dr/h(t— .3, 20t 2, y) 0(dz). (7)
0 M

Theorem 1. Under the conditions of Lemma 1, eqn. (6) has a unique solution
satisfying the estimate

2

T
]r(t,a:,y)’ < cexp(ct) exp {_p (2); y) } ,
where ¢ is a constant.

Proof. Using the ordinary iteration technique to solve (7), we get

r(ty) = bt ay) 1S ralha,), ®)

n=1

where
t
tq;y :/dT/h,t—’T,l?Z'f'n l(TZy) (dZ)
0

In much the same way as in the one-dimensional case, the estimate of the first
iteration

t

ri(t,z,y) = /d’T /h(t—T,z,z)h(T,z,y)o(dz)

0 M

is determined via substitution of the integration variable z =+ v € T, M, where T, M
is a tangent to the space

z=ex, ( R Tp(m,ymm) , o)

t

the exponential mapping exp, being a ‘projection’ of the vector tangent at the po-
int z onto the manifold. Equality (9) allows us to find the estimate

2 T
[7'1 (t,$,y)| < Ct(Zﬂt)_n/2 exp {ﬁg__%%’_:_y_)} ]

Then it is easy to establish the estimate for the n-th iteration

" 2(x,y)
—_ /2 _P ay
Ira(t, z,9)| < —@mt)™" exp{ 5 }

which is our claim. [ ]
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Remark 1. In the classical parametrix method, the r, asymptotic behaviour as
t"/2 T'(n/2) takes place with respect to n, where I'(z) is the gamma function. Thus
the series (8) exhibits slower convergence. The acceleration of the convergence propo-
sed in this paper is achieved via an appropriate selection of the initial approximation
m(t,z,y) and a small (not containing singularities with respect to t) innovation
h(t, z,y).

Corollary 1. The representation (6) for the fundamental solution takes place together
with the following estimate:

jd’r/h(t —7,2,2)r(7, 2,y) 0(dz)| < ctexp(ct) exp {__p_?%,_yl} .
0o M

To find the fundamental solution the Riemannian distance p(z,y) and the func-
tion ¢(z,y) must be calculated, which is a non-trivial problem. The Riemannian
distance p(z,y) is a solution to the variational problem (4) transformed into a set of
Euler equations (in this case, they are called geodesic equations), which allows us to
determine the geodesic «:

79 = ¢ (06) (352 006) = 2506 ) #(6) (10

10)=y, () ==z,
and, even in the two-dimensional case, assumes a rather sophisticated form

.. 1 50011 1 10911 0912\ /.1\2
1_ 1 1 1y 12 1
T= (29 o2z 27 8zt Y Bat (+)

0911 0922\ .1.
[ n 12 1.2
(g oo ol R

+ (l 119912 1 120922 11 8.(]12> (#2)2‘

2g Ozt 29 oz? g Oz?

The solution to the geodesic equation depends on the derivatives of the matrix g;z.
The function ¢(z,y) allows us to reduce the influence of the terms in the residual
h(t,z,y) with singularities at ¢ | 0. Its computation is based on the formula

P(myy)

ole,) = 0/ (a0 -221) g, (a1)

Thus, constructing the fundamental solution for (1) by using the method pro-
posed here requires some extra calculations in comparison with the known approach,
but it does provide faster convergence.
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6. Numerical Simulation

As mentioned above, the algorithm of constructing the fundamental solution requires
extra (with respect to the classic parametrix method) calculation of the Riemannian
distance p(z,y) and the function ¢(z,y) for computing the initial approximation
m(t,x,y). The Riemannian distance p(z,y) is determined as a solution to the bo-
undary problem for the geodesic equations (10), which is numerically calculated by
Newton’s method. The function ¢(z,y) is calculated based on the formula (11) and
using numerical integration and finite-difference approximation for determining Ap’.

In order to demonstrate that the initial approximation m(t, z,y) provides faster
convergence than the classical parametrix one, their residuals are compared. The
smaller residual is obtained, the better approximation is chosen, and the faster con-
vergence takes place.

Numerical simulation of both the initial approximations was performed on the pa-
rabolic hyperboloid defined by the formula z = zy in the Cartesian coordinates, which
satisfies Assumption 1. Results of the simulation are presemted in Fig. 1 (t = 0.5,
z = (1,0.1), y =(-1,0.5)) and Table 1 (¢ = 0.01, z = (0.1,0.1), y = (-0.5,0.3)).

classical parametrix method

— -~~~ modifted parametrix method
035
030 F
025
020
0.15 N
0.10 |- discrepancies
005
0.00 M
005 [
010 L e e v

00 05 1.0 15 20

geodesic length

Initial approximations
to the fundamental solution

Fig. 1. Initial approximations to the fundamental solution and the corresponding
discrepancies on the manifold of a parabolic hyperboloid with ¢ = 0.5.

The advantages of the proposed modification of the parametrix method become
obvious when the parameter ¢ vanishes. In contrast to the classical parametrix ap-
proximation whose residual has a singularity while ¢ | 0 (the maximum value reaches
22.5), the modified parametrix approximation produces a discrepancy of a substan-
tially smaller order. We may assert that this order is less than 0.0001, despite the
values in Fig. 1 and Tab. 1, because the peak near s = 0.1 is caused by the errors
of numerical simulation of the residual itself. Calculating the modified parametrix
approximation and its residual on a sphere, for which an analytic formula for the
residual exists, shows exactly this order (Table 2).
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Table 1. Initial approximations of the fundamental solution and the corresponding
discrepancies on the manifold of a parabolic hyperboloid with ¢t = 0.01.

Initial approximation Initial approximation m(t,z,vy)

Length | of the classical parametrix method | of the modified parametrix method

8 approximation discrepancy approximation l discrepancy
0.066 12.8032645 22. 511593 12.7504588 0.0250228
0.1319 6.5952518 1.1187486 6.6185392 —1.9982935
0.1979 2.1409309 —18.4730502 2.2241829 —0.2676849
0.2638 0.4311178 —12.3559834 0.4839477 —0.031716
0.3297 0.053061 —3.3780994 0.068209 —0.0027715
0.3956 0.0039395 —0.4590479 0.0062316 —0.0001695
0.4614 0.0001746 —0.0329347 0.0003694 —7.21E - 06

Table 2. Initial approximations of the fundamental solution and the cor-
responding residuals on the manifold of a sphere with ¢ = 0.01.

Initial approximation Initial approximation m(t,z,)
Length | of tpe classical parametrix method | of the modified parametrix method
$ approximation discrepancy approximation discrepancy

0.014 15.76013 —0.46079 15.76064 4.29E—05
0.028 15.30318 —1.75403 15.30462 0.000117
0.042 14.57123 —3.63054 14.57367 0.000199
0.056 13.60567 —5.73129 13.60865 0.000282
0.07 12.4588 —7.65817 12.46131 0.00036
0.084 11.1891 —9.04923 11.18968 0.000427
0.098 9.856279 —9.64257 9.853239 0.000478
0.112 8.516741 -9.31629 8.50845 0.00051
0.126 7.219816 —8.09865 7.20501 0.000522
0.14 6.005198 —6.14962 5.983206 0.000515
0.154 4.901622 —3.72082 4.872491 0.000491
0.168 3.926746 —1.10477 3.891245 0.000454
0.182 3.088033 1.415375 3.047538 0.000407
0.196 2.384344 3.606327 2.340643 0.000354
0.21 1.807932 5.309668 1.76299 0.000301
0.2239 1.346529 6.450102 1.302252 0.000248
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7. Conclusions

In this paper we have proposed a modified parametrix method with an initial ap-
proximation that is much closer to the fundamental solution to a parabolic partial
differential equation than the classical parametrix one. The estimate obtained in a
one-dimensional space and on a Riemannian manifold proves faster convergence of
the iteration process. This result has been confirmed by numerical simulation on the
manifold of a parabolic hyperboloid.
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