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DETECTION AND CONTROL PROBLEMS
FOR NON-LINEAR DISTRIBUTED-PARAMETER
SYSTEMS WITH DELAYS

ABDEIWAHED NAMIR*, Fouap LAHMIDI*
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First, we consider non-linear discrete-time and continuous-time systems with
unknown inputs. The problem of reconstructing an input using the information
given by an output equation is investigated. Then we examine a control problem
for non-linear discrete-time hereditary systems, i.e. the problem of finding a
control which drives the state of the system from its initial value to a given
desired final state. The methods used to solve these problems are based on the
state-space technique and fixed-point theorems. To illustrate the outlined ideas,
various numerical simulation results are presented.
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detection, control, fixed-point theorems

1. Introduction

When considering a mathematical model for a system of physical, chemical or econo-
mic type, it is often necessary to take into account some unknown parameters that
affect the system. Depending on the nature of the system, these parameters can be
of different origins: errors in the approximation of the original system, some external
perturbations, excitation of an unknown source, etc. The systems considered in the
first part of this work are assumed to be perturbed by an unknown action and our
objective is to develop methods to reconstruct this input (detection problem). This
problem has been investigated in the case of linear continuous-time systems (Afifi and
El Jai, 1994; 1995) and of linear discrete-time hereditary systems (Namir et al., 1999).
In those papers, the authors solved the detection problem using some properties of
linear operators on Hilbert spaces, their inverses and adjoints.

In this work, we examine the detection problem in the case of both discrete-time
non-linear distributed-parameter systems and continuous-time systems with delays.
Because of the non-linearity of the systems considered, the results presented in the
papers mentioned above cannot be directly extended to our case using the same tech-
niques. Instead, we solve the detection problem by different methods that are mainly
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based on fixed-point theorems. In recent years, this tool has ben used by a large num-
ber of mathematicians to treat various problems related to the control and analysis of
non-linear systems. In (Ichikawa and Pritchard, 1979) this technique was used to inve-
stigate the existence and uniqueness of solutions to evolution equations. Carmichael
and Quinn (1982) used it to solve an optimal-control problem. The controllability
and state-estimation problems were also treated by similar techniques (Felippe De
Souza, 1984; Pritchard, 1982).

In this work, we use the fixed-point technique to study detection and control
problems for non-linear systems. We formulate the detection problem as follows:
For every input f that perturbs the system, y(f) will denote the corresponding
observation. For a given output y%, our objective will be to characterize the set,
denoted by F.q, of all inputs f* € F for which »? is the corresponding output:

Faa={f* € Fly(f) =y},

F being a given Hilbert space.

A more classical problem in systems analysis theory is the control problem.The
objective of controllability is to find a control which steers the state of the system of
interest from its initial value to a desired given final state. This problem has been
intensively studied by many mathematicians and a large number of contributions can
be found in the literature. However, in most of the studies, the systems considered
were assumed to be linear. Only recently some authors have begun investigating
control problems for non-linear continuous-time systems (Felippe De Souza, 1984;
Kassara and El Jai, 1983; Magnusson et al., 1981).

In this paper, we examine the control problem in the case of non-linear discrete-
time hereditary systems in Hilbert spaces. This problem can be formulated as follows.
Let zo and z¢ denote respectively the initial state of the system and a given desired
final state. Our objective is to characterize the set U,q of inputs u* which steer the
state of the system from zy to z%:

Una = {u* €U | 24 (u*) = 2%},

where U is a Hilbert space and z(u*) is the final state of the system corresponding
to the initial state zp and the control u*. The fixed-point technique proves again to
be a good tool for solving this problem in the case of non-linear systems.

The paper is divided into four sections. In Sections 2 and 3, we investigate the
detection problem for discrete- and continuous-time non-linear hereditary systems,
respectively. In Section 4, we solve the control problem for distributed discrete-time
systems with delays.
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2. Detection Problem for Discrete-Time Systems
2.1. Preliminaries

In this section, we consider non-linear discrete systems of the type

14 q m
Gir1=) Ajbij+y Nj(6ij)+) Difij, 0<i<n—1, n=12,...,

=0 =0 =0 (1)

fe=¢r for —m <k < -1 and & is given for —max{p,q} < k <0,
with the output equation

Yi = C(&i;éi—l: L) )’Si—-r): 1<i<n with r < max{p,q}. (2)

Here A; : X — X are linear operators defined on a Hilbert space X (the state
space), N; : ¥ — X are non-linear operators, D; : FF — X are linear operators
on a Hilbert space F' (the input space) and ¢ : X"+ — Y is an operator (linear or
not) with values in a Hilbert space Y (the output space). Note that the operators
Aj, Nj, D; and { are not necessarily bounded. (¢_m,@P—m+1,...,¢9—1) is a given
sequence in F'. In the following, and without loss of generality, we assume that p > q.
(If p<g,wecanset A; =0 for j=p+1,...,q.)

. The sequence (f;)g<;<,_; Will always denote an unknown input that perturbs the
system (1). For every such input, eqn. (2) gives the corresponding output (y;), ..., €
V™. Assume now that we know a particular output (y%);. We recall that our objective

is to characterize the set Foq of all inputs (f;), for which (yf); is the corresponding
output:

Fad = {(fZ); € F™ | (y:);

(yg)i}'

Equations (1) and (2) describe the evolution of the state and output of a system
with delays in the state, input and output. However, one can rewrite this system in
a product space in such a way that these delays disappear from the state equation.
Consider the Hilbert space X := X?t! x F™ and set

T; = (gi,f,;_l, .. ,gi——p,fi—ly- .. ,f,;_m)T €X for O <i<n.
It is readily verified that the sequence (z;)o<i<n satisfies

{ T4 = Az; + N(z;)) + Dfi, 0<i<n-—1, )

:L‘()EX,

where

A= A A . N= “Ni;p O D= Dy ,
0 As 0 0 Dqs
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with the operators Ajy : APt — P A1y 0 F™ —y XPHL Ay Py FT
Nyp 0 P — XPHL Dy o F — XP*H and Dy : F — F™ respectively given by

Ao A - o 4 D, -~ ... ... D,
A11= 0 y A12= :
0 0 Iy O 0 0
0 0 No N, O 0
I : 0 0
Ap =1 o . - Sl Nu= : I
0o .- 0 Ir 0 0 -« - . .0
Dy Ip
0 0
D = , D=
0 0

Here Ix and Ir denote the identity mappings on X and F, respectively. Moreover
if we define

bl

C:z:= (Zi)USiSP‘f‘lJﬁm € XPHL x F™ C(z) = (20, 21,.. .,Z.,-) €y,
then the output equation (2) can be rewritten as

yi=C(z;), 1<i<n. (4)

2.2. Problem Solution

Clearly, the solution to (3) is given by

i—1 i—1
T =Aixo+ZAi‘j_1N(:z:j)+2Ai_j'1ij, 1<i<n. (5)

=0 =0
Introduce the operators

i-1
G:z € X" +— Gr e X™ with (Ga:)izz:Ai—j_lN(-Tj), 1<i<mn,

7=0
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and
-1
L:feF*+ Lfe X" with (Lf)i=)» A™77'Df;, 1<i<n.
=0
Equation (5) can then be written as
z=Azy+ Gz + Lf,

where Azg = (A'iib'o)lgign-

In the following, we shall need to inverse the operator L. But L is not invertible
in a general case. Consider then

Ly :z € ker(L)* — Lz = Lz € range (L).

This operator is invertible and its inverse, which is defined on range(L), can be
extended to range(L) @ range(L)* as follows:

L' : 24y € range(L) @ range(L)* — LT 'z € F™.

The operator L' is known as the ‘generalized inverse’ or ‘pseudo-inverse’ of L. If
range(L) is closed, then X™ = range(L) ®range(L)* and L' is defined on the whole
space X™. In particular, the mapping L' satisfies

LL'z =z, Vz €range(L),
L'Lf=f, Vfe€ker(L)*.

2.2.1. Method I

Let P:X™ — range(L) be any projection on range(L), Z be any fixed element of
range(L) \ {0} and £: X™ — X" be the mapping

€(z) =z — Azy — Gx.
Consider the operator H : X™ — X™ defined by
Hgz = Az + Gz + Pé(x) + |ly — vy~ 3, (6)
where || - |ly» is the norm on ¥™.
Proposition 1. We have the following properties:
1. If z* is a fized-point of H, then £(z*) € range(L) and
L¢(z*) + ker(L) C Faq.
2. If f* € Faq, then x* (i.e. the corresponding state) is a fized-point of H and

f* € LT¢(z*) + ker(L).
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Proof. (Part 1) Let z* be a fixed-point of H. We have

z* = Az + Gz* + PE(z*) + |ly* — v |lv»Z, (7)
where y* = C(z*), and hence

£(2*) = PE@") + |ly” — y?lly~7 € range(L).
Therefore P¢(z*) = £€(z*) and ||y* — y?|ly~-Z = 0. But since Z # 0, we deduce that
yt =y

Equation (7) becomes

z* = Azo + Gz™ + {(z").

Set v* = LT¢(z*) + ¢* with ¢* € ker(L). Since Lv* = {(z*), we can write
¥ = Azo + Gz* + Lv*,

{ y* =y
which means that v* € F,q. We conclude that

L¢(z*) 4 ker(L) C Faa-

(Part 2) If f* € Faq and z* (resp. y*) is the corresponding state (resp. output),
then

z* = Azo + Gz* + Lf*,
Hence
§(z*) = Lf* € range(L),
{ lly* = y?lly~ =0
and therefore
H(z*) = Azo+ Gz" + £(z*) = ="

We have f* = Lt&(z*) + (f* — L1€(z*)) and L (f* — L¥¢(z*)) = Lf* - €(z*) = 0.
We conclude that f* € L¢(z*) + ker(L). |

A characterization of the set F.q is given by the next assertion.
Proposition 2. Let Py denote the set of fizred-points of H. Then Faq is given by
Foa = {L¢(z*) | z* € Py} + ker(L).
Proof. Clearly, by Parts 1 and 2 of Proposition 1, we have
Faa= |J (L1é(z™) +ker(D)) = {LT€(z") | " € P} + ker(L).

z*€Pn
-]
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Remarks:

e The fixed-points of H depend on neither the choice of the projection P nor
the element %. For example, let P; and P, be two projections on range(L)
and let Z; and %, stand for two elements in range(L). Consider the mappings

Hy:z€X— Azog+ Gz + Pié(z) + |ly — y¥ly~31 € X,
and
Hy:z€Xv— Azg+ Gz + Pob(z) + |ly — y¥|ly~22 € X.
All we have to show is that if z* is a fixed-point of H;, then it is also a

fixed-point of H,. By Proposition 1, if z* € Py, then y* = y? and &(z*) €
range(L). It follows that Py£(z*) = {(z*) and

Hy(z*) = Axg + Gz* + £(z*) = 2.

e Clearly, Proposition 1 is still true if the expression ||y — y%||y» in (6) is sub-
stituted by the term ¢(y), where ¢ : Y™ — C is any function which satisfies
q(y) =0 if and only if y = y4.

By Proposition 2, the detection problem has been transformed into that of the
existence of fixed-points for H. Moreover, the set F,q will be completely charac-
terized if the fixed-points of H are known. This is illustrated with the following
example.

Example 1. Consider the system

xi+1:A(Ei+N(xi)+Dfi, OS'LSH“]., .n:172a"'7 (8)
zo = 0,
yi =C(zs), 1<i<n, (9)

with X = L>(0,1;R), F = R?, Y = R The operators A, N, D and C are
respectively defined by

o0
Az e X —r Ze“kz"z‘s(w,ek)xek € X,
k=1

m
N:zeXr——)Z(x,ek)g(ekeX, m=12,...,
k=1

D:(g)ERzi—)aeleX, C:ze X+ (z,e)% € R
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where § € Ry \ {0}, ex(-) = v2sin(kn.) and (-,-)x denotes the inner product on
X. One can easily check that the operators L, G and ¢, the sets ker(L), ker(L)t
and range(L) are, in this case, given by

L:f:=(f“) € (R)"+— Lf € X7,
fi2 [ ocicn
i—1
(Lf)i = e ™3 D e, 1<i<n,
L =
( G:ze X"+— Gz e X",

< m i—1

sz—zz e Wm0 (. e V2, 1<i<m,

§ k=1 j=0
[tz e X" — E(z) € X,

j—

m 1
&), =i — e~K*moti=i-1) (g, epVyer, 1<i<n,
i J X
k=1

= j:O

\

ker(L) = {f € (B)"| fa=0, 0<i<n—1},
ker(L { | fi =0, 05i5n—1},

range(L) = {(aiel)1gign €EX"|a; € ]R} .

Introduce the operator L; : f € ker(L)* —> Lf € range(L). L; is invertible
and its inverse is given by

L7t (ai€1)<icn € range(L) — f € ker(L)*,

where
for = a1,
fa=oaip1—e™%q;,  1<i<n-—1,
fi2 =0, 0<i<n-1

In fact, the operator L7 is the restriction of L! to range(L). Set Z = (e1,0,..., 0’
and let P be the projection

P:zeX"— ((mi,el)xel)KKn € range(L).
It follows that the mapping H : x € X™ — Hz € X" is then given by

m i—1

(Hz); = (zi,e1)xer +ZZ —kAm8(ij- 1)(:EJ ex)xer

k=2 j=0

+ly -y 7, 1<i<n
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Let z* be a fixed-point of H. We have

m i—1

2 250i i _
z} = (z},e1)xer + ZZe”’”z" 0G=1=(g* eryier + ly* — ¥y 3. (10)
k=2 j=0

Hence

(z1,e1)x = (zi,e)x + lly* — v lly-.

)1/3

Thus y* = y* and, consequently, (y¢)'~ = (z},e1)x, L <i<n.

For i = 1, eqn. (10) becomes z} = (yf)1/3 e; and by induction we can show that

¥ = (y‘.i)l/s e;, 1<i1<n. (11)

k3 3

Respectively, we can easily check that z* given by (11) is a fixed-point for H. Thus
we have shown that z* given by (11) is the unique fixed-point of H.

We have

(f (z*) )i = (yg)l/s _ ze_n25(i—j—1) (y;l)‘z/a e,

3=0
Let yd = 0. It follows that
1/3 .2 1/3 2/3
Li¢(z*) = ( (W) " =0 () - (v9) ) ’
0 0<i<n—1
and therefore

Fad = L1€(z*) + ker(L)

13 _ 1/3 2/3
= ( (W) =™ (u) " — (vd) ) | € R
0<i<n-1

a;
¢

2.2.2. Method IT

Now we present the other method to characterize the set F,q that can be used only
in case the output operator is linear. Assume then that the observation is given by

Yy =Cx;, 1<i<m,

where C': X — Y is a linear operator. Consider again the operators G and L as
defined in the previous section. Let M = X™ x Y™ and introduce the operators

A'.’l)o Gz
A:zp€ X +—> EM, tz € X" — ,
o (CA‘zo) Gio (cc;z)EM
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. n Lf
L:feF b—)(CLf)GM,

E:(j)eMH(j)—Amg—gxeM.

Let P : M +—— range(L) be any projection onto range(L) and consider the

mapping
H:(x>€M>—>AmO+Gx+PE( a:d)+( Od)eM.
z y zZ—y

Proposition 3. We have the following characterizations:

1. If (Z:) € M is a fized-point of H, then E(;;) € range(L) and

CiE ( ;d ) +ker(£) C Faa.

2. If f* € Faq, then (w*) is a fized-point of H and

yd
* e z*
frecLli¢ 4 | +ker(£),
Y
where ©* is the state corresponding to f*.

Proof. (Part 1) If (ﬁ:) is a fixed-point of H, then

(z:>:A$0+g$*+Pg( xd)+( = dv).
z Y 2 -y

Hence
~( z* ~f( z* 0
P = -

_ z* — Azy — Gx* 0

“\ 2*—CAzy - CGz* z* =y
= E( zd ) € range(L).

Y
‘We have

* * O . ~ *
(;d>=(;>—(z*_yd)=.4xo+§x +€<zd).
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v*=c*§<x;)+¢*,
)

where ¢* € ker(£). Since

‘CU*:E( ;d )’

we can write

Set

( md ) = Azg + Gz* + Lv*,
Yy

ie.
z* = Axy + Gz* + Lv*,
{ y? = CAzy + CGx* 4+ CLv* = Cx*,
which means that v* € F,q. We conclude that

crg( ° ) +ker(£) C Faa.
Y

(Part 2) If f* € Faqa and z* is the corresponding state, then we have
¥ = Azg + Gz* + Lf*,
y¢ = Cz*,
or, equivalently,
z* * *
d = Azg + Gz* + Lf*.
)

Hence £ (;:) = Lf* € range(L) and therefore

z* «, 7T _( =
n( )= amrere( D)= (5 )

Set

We have f* =v* 4+ (f* —v*) and L(f* —v*) = 0. Consequently, we conclude that

fre UE( d ) + ker(L).

T
Y
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Let Py denote the set of fixed-points of H and set

*
Py = {z* € X™ | 3z* € Y™ such that ( z* ) € Py}.
z

Proposition 4. The set of admissible inputs is given by

Faa = {L1E(x*) | z* € Py} + ker(L).

Proof. By Proposition 3, we have

Fa= | (L*E( ;’;d ) +ker(£)> = {L*Z( ';d ) | z* € P;{} + ker(L).
z*€PY,

Note that ker(£) = ker(L),

range(L) = { ( Cg'; ) |z € range(L)}
g z* — f((IJ*)
y? y? — CAzy— CGz* |’

Introduce the operator

and

Ly : f € ker(L)t — Lf € range(L).

We can check easily that its inverse is given by
Lot ( ; ) € range(L) — L'z € F", (z € range(L)).
x

The inverse of £; is the restriction of £! to range(£). Hence, for all z* € P}, we

have
-{-~ iL'* — -1 §($*) — t *
L { ( yd ) ‘Cl ( yd _ CA(E() — CGz* ) L f(.’l) )

This completes the proof. ]

Example 2. Consider again the system (8) and (9) given in Example 1. Now we
assume that the output operator is linear and given by

CizeX+—(z,e1)x ER



Detection and control problems for non-linear distributed-parameter . .. 449

From the knowledge of the operators GG and §, we deduce easily the form of operators

G and &:

m i—1

2.2 ;i K
DY) e Emit (g e )en
n k=17=0 1<in
G:ze X"+ — e M,
“fi—1
—n28(i—j—1 2
Ze ol )(931',61)1(
=0 1<i<n

m i—1
- § Sy i
~ T k=1 j=0 1<i<n
& EMr— - € M.
z

i—1
( = ezl (g, n)
=0

1<i<n

Introduce the projection

D ( T ) € M i—s ( ((%;61))(61)151511 ) € range(L).

((zi, el)X)15i5n

The mapping H is then given by
T ~[ x 0
z y -y

m i—1
~k2n2(i-j-1 2
(@i er)xer + Y Y e mi=i=D(g; e1)e;
k=2 j=0 1<i<n

d

((@isen)x)1cicn +2 Y
AT
z )]\ z

if and only if z* = (yfe;),,., . Therefore

One can easily check that (2.) € M is a solution to

Faa = LTé(z*) + ker(L)

d —m28 dy2
Y, —e y: — \Y;
( i+1 i (z) ) laiER , yg 0.
@i 0<i<n—1

¢
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2.2.3. Special Case

In order to characterize the set F,q, in the two previous methods we have transformed
the detection problem into that of finding fixed points of some mapping (H or H).
However, under appropriate conditions on C and D, the set F,q can be characterized
by a simpler method.

Proposition 5. If the operators C and D are linear and bounded and the operator
CD is one-to-one, then there exists a unique element f* € F™ such that y* = y¢. It
is given by

f§ = (D*C*CD)™! (f — CAzo — ON (a0))
fi = (D*C*CD) D C” [y;il - O(Ai“wo

-ZAZ IN (z ZA* ’Df)], 1<i<n-1

Proof. We have

i—1 i—1
= CAlzg+CY A™"'N(2}) +CY_A"'Df;, 0<i<n.
=0 =0

From y¢ = CAzo + CNzo + CDf}, we deduce that
fo =(D*C*CD)™! (y} — CAzo — CN (z0)) . (12)

The operator D*C*CD is invertible because it is self-adjoint and positive definite.

Assume that f3,...,f*;, 1 <i<n—2 have been calculated. Since

i—1
yd, = CA™ oo + CZA"’N(:E +CY_AIDf} + CDf},
3=0 j=0

it follows that

ff = (D*C*CD)"'D*C* [ng — CA™ 'z

i i—1
—CY ATIN(}) - CY_ATID f;} . (13)
j=0 j=0

This completes the proof. ]
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Proposition 5 suggests the following algorithm for determining the sequence f*:

Step 1: Calculate f§ using (12).

Step 2: Set i = 1.

Step 3: Calculate z} = Az}_, + N (z]_,) + Df}_,.
Step 4: Calculate f} using (13).

Step 5: Replace ¢ by ¢+ 1.

Step 6: If i = n then stop, else return to Step 3.

Example 3. Consider the following non-linear continuous-time system:
&(t) = Az(t) + M (z(t)) + Ef(t), 0<t<1,
z(0) =0,

with the output equation

y(t) = (z(t),e1)x € R, (15)

where z(t) € X = L2(0,;R), f() e F=R, BE:a€ R+ ae; € X,and M is a
non-linear operator defined on X by

m

M:zeX— Zsin((m,ek>x)ek €cX, m>1.
k=1

The Laplacian A is the infinitesimal generator of the strongly continuous semi-
group (S(t));>o defined by

s 2 2
Ze—k t:cek Yxer, x€X.
k=1
It is easy to check that the operator M is uniformly Lipschitzian with
HM (:El) - M(.’l‘g) ”X < ||:v1 - :Ef_),Hx, Vzi,z2 € X.
Hence the system (14) has a unique mild solutionin L?(0,T; X) (Balakrishnan, 1976).
It is given by

.’E(t):/o S(t—r)M(z(r))dr+/D St—r)Ef(r)dr

In order to sample the system (14) and (15), let § = 1/n, t; = id, z; = z(t;),
fi=Ff&), vi=y(t), n=1,2,.... For asmall § we make the approximations

z@t) =z, f@)=7fi forall te [t tipa]
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We have
t; t;
Tiy1 = z(t; +6) = S() ( S(t; — )M (z(r))dr + / St —r)Ef(r) dr)
0 0
i+0 i+8
+ (/t+ S(ti-l-é—r)Mdr) (z;) + (/H S(ti+(5—r)Edr) fi
ti ti
= Az; + N(z;) + Df;,
where

A=5(), N= / ' S(ryMdr, D= / JS(T)Edr.
0 0

For all a € R, we get

] -5
a
Do = /0 S(r)EBadr =« (/0 e da“) e; = 2 (1 - e‘”25) er.

Hence
CD:aceR+— —ag(l-e"”z‘s) e R
2

Thus the operators C' and D are linear and bounded, and CD is injective
(in fact, it is invertible). The assumptions of Proposition 5 are satisfied and, for all
n € N\ {0}, we can use the foregoing algorithm to reconstruct the corresponding
sequence (f)g<;<,_;- In the numerical simulation presented below, we have tested
this algorithm for the input (to be reconstructed) f(t) =e~t, 0 <t < 1. The second
column of Table 1 contains the exact values of f for some points in [0,1], and in the
other columns the corresponding approximations are given. Figure 1 constitutes an
alternative representation of the numerical results. ¢

Table 1. Some approximation of f.

n=2

n=4

n==6

n =10

1

1

1

1

0.904837

1

1

0.904837

0.818731

1

0.846482

0.882497

0.818731

0.740818

0.778801

0.846482

0.778801

0.740818

0.670320

1
1
1
1
1

0.778801
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Fig. 1. Approximation of f.

3. Detection Problem for Continuous-Time Systems

In this section, we examine the detection problem in the case of systems whose state
evolution is described by a non-linear, continuous-time, distributed-parameter system
with delays in the input. More precisely, we consider the systems which can be written
down after a transformation as

r

() = Az(t) + N(z(t)) + > _Dif(t — hy)

0 =0
+/_hD(r)f(t+r)dr, 0<t<T, (16)
z(0) =z € X, f(r)=4(r), re€[-h,0]

L O=ho<hi < <hp,=h<T<o0.

The non-linear operator N : X — X is defined on a Hilbert space X. The li-
near operator A is the infinitesimal generator of a strongly continuous semigroup
(5(t));>0 on X. Moreover, ¢ is a given function in L?(—h,0;F), D; € L(F,X)
and D(') € L?*(—h,0; L(F, X)) where F is a Hilbert space. To the system (16) we
associate the output equation

y(t) =C(z(t)), 0<t<T, (17)
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where C : X — Y is an operator (possibly non-linear) that takes its values in a
Hilbert space Y. We assume that y(-) € Y, where Y is a space of functions from
the interval [0,7] to the output space Y. In what follows, we write z := z(-) €
L*(0,T;X), f:= f() € L*(0,T;F) and y :=y(-) € V.

We recall that our objective is to characterize the set
Foa = {f € L*(0,T; F) |y =y},
where y? € Y is a given observation and y is the output corresponding to f.

Sufficient conditions for the existence and uniqueness of a solution for system (16) are
given by the following result:

Lemma 1. Assume that the operator N is uniformly Lipschitzian, i.e. there exists
0 < k < oo such that

“N (.’L’l) - N(il}g) “X < k|[z1 - (Ez”x, V1,20 € X.

Then the mild solution to (16) exists in L*(0,T;X) and is unique. It is given by

z(t) = S(t)zo + /0 S(t —r)N(z(r))dr + Z/o St —r)D;f(r — hi)dr
1=0

/St—r (/ D(s r+s)ds)dr (18)

Proof. See (Balakrishnan, 1976). [ |

In the sequel, we assume that the operator N is uniformly Lipschitzian. Mo-
reover, we choose S(f) = 0 for # < 0. We can then easily show that (18) can be
written as

z=a+ Gz + Lf,

where

a(t) = :1:0+Z/ S(t — s — h;)D;¢(s) ds

=0

+ /O’%S(t _s) (/:hp(e ~ $)6(6) d9> ds

G:z € L*0,T;X)+— Gz € L*(0,T; X),

/ S(t — s)N(z(s))ds,
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and

( L:felL?0,T;F)— Lf € L*(0,T; X),

Z/St—s— Dfs)ds-l—/St-—s(/D —3s)f dO)ds
0

< =0
0<t<h,

+ hts(t ~s) (/ D(8 - s5)f(6) dg) ds, h<t<T.

\

As for the discrete case, we now present two methods to characterize the set Fahq.
Both the methods are based on the fixed-point technique and their proofs are similar
to the ones presented in the case of discrete systems.

3.1. Method I

Let ¢ : Y — C be any function which satisfies ¢(y) = 0 if and only if y = y?, Z be
any fixed element of range(L) \ {0}, P : L%(0,T; X) — range(L) be any projection
onto range(L) and & : L%(0,T;X) — L*(0,T; X) be the mapping

{(z) =z —a-Gz.
Introduce the mapping H : L?(0,T;X) —s L*(0,T; X) with
Hzr =a+ Gz + P{(z) + q(y)Z.

Proposition 6. Let Py denote the set of fized-points of H. Then Faq is given by
Faa = {L¢(z*) | 2* € P} + ker(L).

Proof. 1t is similar to that of Proposition 2. ]

Example 4. Consider the system
£(t) = Az(t) + N(z(t)) + Df(t —h), 0<t<T,
z(0)=0; f(r)=0, re[-h,0], (19)
0<h<T <o,
with the output equation
y(t) = (z(t),e1)x € R, (20)

where z(t) € X = L>(0,1;R), f(t) € F=R, D:a € R+ ae; € X. Asis
well-known, the Laplacian A is the infinitesimal generator of the strongly continuous
semigroup (5(t));»o defined by

o0

2
26 Ko t (wo,ex)xer, Vo€ X,
k=1
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with ex(-) = v2sin(kn-). Moreover, N is a non-linear operator defined on X by
N(zp) = Zsin ({(mo,ex)x)er € X, m>1.
k=1

The operator N is uniformly Lipschitzian (cf. Example 3) and hence, by
Lemma 1, eqn. (19) has a unique solution in L2(0,T;X). Consequently, y €
L?*(0,T;R). We assume that y¢ € L?(0,T;R) and that it satisfies y?(t) = 0 for
0 <t<h and y* € H'(h,T;R). Clearly, the operators G and L and the sets
ker(L) and ker(L) are given by
[ G:ze%0,T;X)—s Gz € L*(0,T; X),
< i b e 2(tms) s
(Gz) (t) = Z / e " T T gin ((z(s),er) x) ds | eg,

0

\ k=1
(L:feL?(0,T;R)— Lfe L?(0,T;X),

0, 0<t<h,

{ -
(Lf) @) = (/t he—ﬂ'z(t-r-—h)f(fr) dr) er, h<t<T,
L 0

ker(L) = {f € L*(0,T;R) | f(t) =0 ae. t€[0,7 —h]},

ker(L)* = {f € L*(0,T;R) | f(t) =0 ae. t€ [T —h,T]}.
Let
z(t) =0, 0<t<h,

= L*(0,T; X
o {xe OTO| o) = ger, het<T,

with g € H* (h,T;R)} )

It is readily verified that range(L) C (. Let z € B and define
i) g(t + h) +m2g(t + h), 0<t<T—h,
o T_h<t<T.

It follows that f € L?(0,T;R) and Lf = z. Thus range(L) = 3.
Note that f € ker(L)*. The restriction of Lt to range(L) is hence given by

L' : z € range(L) — Liz € ker(L)*,
(t+ h),e1) + w2(z(t + h,e1), 0<t<T~h,
(Lt) () = (@(t + h), e1) (z( 1) <
0, T-h<t<T.
Introduce the projection |

P:z € L*(0,T; X) —> Pz € range(L),
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where we have

o if (z,e1)x € H'(h,T;R), then

(Pr)(§)={ 0<t<h,
T wexen, h<t<T,

e otherwise, (Pz)(t) =0 for 0<t<T.
Let Z be any fixed element in range(L) \ {0} and consider the mapping
Hg =Gz + P¢(z) + |ly — vl 120,1:v)Z-
We will prove that H has a unique fixed-point given by
z*(t):{o, 0<t<h,
yi(t)e;, h<t<T.
We have
(£@)(®) = 2°() - (Ga*) (1)

m

= z*(t) — Z (/Ot e~ K (t=s) sin ((z*(s), ex)x) ds) ek

k=1

Clearly, (¢(z*)) (t) =0 for t € [0,4)].
Let t € [h,T]. We get

m t
yi(t)e; — Z (/h e K (t=9) gin ((yd(s)el,ek)x) ds) ek,

k=1

(yd(t) - /:e‘”z(t“) sin (yd(s))ds) er.

Hence, by the assumptions on y¢, £(z*) € range(L). We have

(€M) @)

il

0
wm=0fm={

Therefore
Hz* =Gz* +¢{(z*) = Gz™ +z* — Gz* = 2™.

Furthermore, let z* be a fixed-point of H. Then y* := C2* = y?¢ and £(2*) €
range(L). Hence

yi(t) =y*(t) = (z*(t),e1)x, 0<t<T.
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On the other hand, since £(z*) € range(L), we have £(z*)(t) = 0 for 0 <t < h.
Thus

() = (G2 (1) =) ( /0 t e~ ¥ (t=9) gin ((2*(s), ex) x) ds) ek

k=1

Let 1 <k <m and gx(t) := |{2*(t),ex) x| We have

[ e sin (@ (e as| < [ @enxlds < [ outo)ds

gr(t) =

By the Gronwall Lemma we have
0 < gk(t) < gr(0)e* = 0.
Tt follows that z(t) =0 for 0 <t < h.
Let h <t <T. We have

2*(t) = (Gz") () + (P£(27)) (1)

m

2

k=1

_ ( / {09 in (2 (5), e1)x) ds) el

0

Il

/ e F ™9 5in ((2*(s), ex) x) ds) er + (z"(t),e1) xer

0

m t

yit)e, + Z (/ e=Fm*(t=9) gin ((z*(s),ex)x) ds> e
k=2 0

For 2 < k < m, we have

t
Fo(t) = (2" (), ex) x| = / =) sin ((2* (s), ex) x) ds

0

t
S /(; fk(s) dS,

and, again by applying the Gronwall Lemma, we deduce that (z*(t),ex)x = 0 for
h<t<T and 2 <k <m. It follows that

. 0, 0<t<h,
sW={
Yy (t)ely hStST

We conclude that H has a unique fixed-point given by (21).
We have

0, 0<t<h,

“) () = t
(6@M) @) (yd(t)_ [[em e in (yd(S))ds) er, h<t<T.
h
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Hence
S(z*)(t + h), + w2 (€(z*)(t + h), , 0<t<T—h
0, T-h<t<T,
y4(t + h) —sin (y¢(t + b)) + n2y4(t + h), 0<t<T —h,
1o, T-h<t<T.
Consequently,

Faa = LTE(z*) + ker(L),

f € L*0,T;R),

where o« € L2(T — h,T; R). ¢

3.2. Method 11
In this section, we assume that the observation is given by

where C : X —3 Y is a bounded linear operator, so that y € L?(0,T;Y).

Consider again the operators G and L as defined in the previous section. Let
M be the Hilbert space M = L%(0,T; X) x L*(0,T;Y),

=)

and introduce the operators
Gz
cx e L20,T; X) — EM,
G:z ( ) ( CGzx

) 2 , Lf
L: fAeL (0,T; F) —» ( cip ) €M

E:(z)GMr—}(w)~A—QzEM.
Z Z

Let P : M — range(£) be any projection onto range(£) and consider the mapping

H:(x)eM»—)A+Qm+P§~( ””d>+( 0 d)eM.
z Yy zZ—-y
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Let P4 denote the set of fixed-points of H. Set

Py = {:r,* € L*(0,T; X) | 32* € L*(0,T;Y) such that ( w* ) € PH} :
z

Proposition 7. The set of admissible inputs is given by

Fad = {LYE(z*) | = € Py} + ker(L).

Proof. 1t is similar to that of Proposition 4. |

4. Control Problem

Consider the non-linear discrete-time system

Tiv1 = Az; + N(z;) + Bu;, 0<1<n-1,
{ +1 (z:) (22)

g € X.

As usual, N : X — X denotes a non-linear operator defined on the Hilbert space
X, A: X — X and B:U — X are linear operators with U being a Hilbert
space (the control space). We write z = (2i)1<i<n and u = (ui)ogi<n—1-

Let z¢ € X be a given state. We recall that our objective is to characterize the
set of controls u* € U™ which drive the state of system (22) from zo at i =0 to z?
at i =n, i.e.

fad:{u*EU"|$:=zd},

where z?¥ is the state of system (22) at i = n corresponding to the initial state To
and the input u*. It turns out that this problem can be solved by the same methods
that we have used to treat the detection problem. So introduce the operators

i—1
G:z€X"+— Gz € X" with (Gz); = ZAi_j”lN(zj), 1<i<n,
j=0
and

i—1
L:ueU"— Lu€ X", with (Lu); =Y A"77'Bu;, 1<i<n.
j=0

The solution to system (22) can be written as

z=Axy+ Gz + Lu.
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4.1. Method I

Let P: X™ — range(L) be any projection on range(L), Z be any fixed element of
range(L) \ {0} and £: X™ — X™ be the mapping

¢(z) =z - Azy — Gr.
Consider the operator H : X™ — X" defined by

Hz = Azg + Gz + Pé(x) + ||zn — 2% xE.

Proposition 8. The set Unq is given by
Usq = {LTE(z%) | 2* € Py} + ker(L).

Proof. Tt is similar to that of Proposition 2. u

Example 5. Consider the system

{mi+1=Am,-+N(xi)+Bui, 0<i<n-1, n=12,..., (23)

IEU':O,

with X = L?(0,1;R), U = R. The operators A and N are as in Example 1, and
the operator B is defined by

B:aeR+— ae; € X.

The final desired state z? is assumed to be of the form z¢ = (2% e;)xe;. This
condition is necessary for z¢ to be reachable.

The operator L and the set range(L) are then given by

L:vueR*+— Lue X™,
(Lu); = ie‘”zé(i_j“l)ujel, 1<i<n,
=0
range(L) = {(aiel)lgign EX™o; € R} .
Clearly, the operator L is one-to-one and L' is given by
Lt: (ai€1),<i<, € range(L) — u € R”,

where

Up = a1,
2 .
Ui = Qi1 —e "%, 1<i<n-—1.
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Consider the same projection P and element Z as in Example 1. The operator
H: X — X is then given by

m i—1
226 (i
(Hz), = (zs,e1)xer +ZZ€"” 8= (g e ier
k=2 j=0
+ |lzn — 29| x %, 1<i<n.

Proceeding as in Example 1, we can easily verify that the fixed-points of H are given
by

Pu = {(aiel)1§i§n~l €X"|a; € Rand a, = (md,el)x} .

Therefore

Upa = {L1E(z*) | z* € Py}

2
= {(ai“—e o —a? | a; €R, and a, = (zd,el)x}.

)ogz‘gn—1

¢

4.2. Method II

Set M = X" x X and introduce the operators

A G
A:zp€e X —> o EM, G:zeX"r— N € M,
A”mo (G.'E)n

Lu
I.',:uEU"l——)( )eM,

(Lu

§:<w>eMr—~+(z)—Axo—gweM.
z2 V4

Let P : M — range(L£) be any projection onto range(£). Consider the mapping

H:(HC)EMHAmO—Fgm—i—’PEN( ‘”d)+( 0 d)eM.
2 T Zz—T

Proposition 9. The set Ug is given by

Usa = {L1¢(z*) | z* € Py} + ker(L).



Detection and control problems for non-linear distributed-parameter . .. 463

Proof. It is similar to that of Proposition 4. u

Example 6. Consider again the system (23) with the desired final state as in Exam-
ple 5. The operators G and £ are then given by

m i-1
_'2 2 j— 4 —
Z Ze k*m28(i—j 1)<xj,ek)§(ek

G:zeX"— k=17=0 1<i<n | € M

m n—1

k=1 j=0

and

o
2 25l . 9
g~y Y e F I (g er) e
£ % lem— k=1 §=0 1<i<n | € M.
z m n—1

—k2r25(i—j—1 2
Zi— ZZC 6 (i—J )(xj,ek)xek

k=1 j=0
Introduce the projection
T, €1)X€1) <icn
P’ )eM— (s en)xen e € range(L).
z (zn7el)Xel

The mapping H is then given by

H() gm+p5(;)+(z_‘)zd)

m i—1

~k2n28(i~j—1 2
(xi,e1)xel + ZZ& BEr%G=i-1(z; er) i er
= k=2 3=0 1<i<n
m n-—1
2, 2.
z+ (z%,e1)xe; — z% + Z Ze"“ mo8(i—j-1) (z},ex)kex
k=2 j=0

One can easily check that (2: ) € M is a solution to
z z
if and only if z* = (@i€1);<;cp . @ € R and a, = (z¢,e1)x. Therefore

Upa = {LIE(z*) | 7* € Pa}

2
={(a,~+1-—e‘” Sa; — a? | @i € R and anz(xd,el)x}.

¢

)ogign—1
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5. Conclusion

In this work, we have investigated the problems of detection and control for non-linear
distributed-parameter systems with delays. In our opinion, it will be also worthwile
to study the regulation, compensator, observer, stability, stabilizability and obse-
rvability problems for non-linear, discrete and distributed systems with delays. It
seems to us that the techniques used in this paper can be adopted to solve these pro-
blems (fixed-point theorems, state-space techniques, spectral decompositions, pseudo-
inverses, etc.). These possibilities are now under investigation.
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