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TIME-DOMAIN SYNTHESIS OF LINEAR CIRCUITS
WITH PERIODICALLY VARIABLE PARAMETERS

MACIE] SIWCZYNSKI*

A novel synthesis method of linear electric networks with periodically vari-
able parameters is presented. These types of networks can be implemented
as resistance-parametric, (conductance-capacitance)-parametric or (resistance-
inductance)-parametric multiports. The time-varying parameters are determ-
ined so as to extremize some specific optimisation criteria. Consequently, the
synthesis task has a unique solution. The starting point of the solution method is
the original theorem proved in the paper, which deals with the minimum-energy
networks.
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1. Introduction

The synthesis of linear time-varying networks seems a desert field. This results from
the fact that even the analysis of these networks is difficult. Although it is not possible
to use well-known analysis methods, complex analytic-numerical procedures can still
be applied.

Parametric networks can be implemented as four-terminal networks or, more gen-
erally, as correction multi-port networks for co-operation with non-linear systems or
as parametric amplifiers. In the present paper, a time-domain synthesis is performed
based on some optimisation criteria.
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Fig. 1. Multi-port network with periodically time-varying elements.
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Fig. 2. Classes of time-varying circuit elements and their
approximate wave forms in discrete time.

Within a synthetized multi-port (Fig. 1) there are resistance-parametric elements
or (conductance-capacitance)-parametric or dual (resistance-inductance)-parametric
ones (elements of class R,, G, (GC), or (RL),, respectively, where n €
{0,1,2,.. .}, i.e. the time is discrete):

® 75, (gn) — resistance-parametric class (R or G),,
® 9n, (cn) — (conductance-capacitance)-parametric class (GC) .,
® 7n, I - (resistance-inductance)-parametric class (RL),,.

Each component is a separate branch. The branches are connected into the network
and form an optionally connected structure.

The synthesis of a multi-port consists in finding a discrete-time function z,, =
vector (Tn, gn, Cn, In) (usually periodic), which expresses the variation of a vector of
elements inside the network, in such a way as to ensure some specified signal values
(usually also periodic) of currents and voltages of all the ports to which the sources
and receivers of the system are connected. The set of input signals constitutes the
so-called conditions on the edge. It is assumed that the conditions on the edge and
the vector =, have a common period and, consequently, a stable steady state.

In general, the search for , does not result in a unique solution. The theorem
concerning minimum-energy networks given in Section 2 makes it possible to uniquely
spread the current and voltage signals on particular branches inside the multi-port.

2. Theorem on Minimum-Energy Networks

Assume that some actual voltage vector v and an actual current vector j at the
edge (at ports) of a multi-port (Fig. 3) are given.

Theorem 1. For the assumed structure inside the multi-port there ezists a unique
distribution of branch voltages such that the sum of the squared instantaneous inner
voltages (Euclidean norm) is minimal and there ezists a unique distribution of the



Time-domain synthesis of linear circuits with ... 625

G AN,

Fig. 3. The assumed set of branches <> external signals v, j and unknown
instantaneous internal voltages and currents U and I, respectively.

inner branch currents which satisfies the rule of the minimum of the sum of their
squared actual values.

Proof. Inside the system there exists a vector (isomorphically a set) of free voltages
(branches) u and a vector of free currents 4. Either of them or both can be empty.

Calculation of the free voltages is performed according to the following scheme:

1. Select a tree beginning from the input (port) branch v.

2. Find the set of the free voltages:
"o TREE \ OUTER
~" ] BRANCHES BRANCHES [

The free currents are calculated using strings:

1. The input branches (ports j) are strings. Add the other strings in such a way
that the complement is a tree.

2. Calculate the set of free currents:

OUTER }

i= {STRINGS}\{ STRINGS

The instantaneous vector (set) of voltages of the inner branches is defined by the

formula
u

where P stands for the section matrix. In turn, the instantaneous vector (set) of
currents of the inner branches is defined by

r-o1]

where C is the cycle matrix.
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We select 7 in such a way as to minimize the scalar product
I*I — min,

or
[i* i) cTc [ J } — min.
1
Setting

CTC = [ By; By }

By B
we obtain the following‘ condition:
j*Blg’i + i*Bglj + ’i*Bgz’i — min.

The minimum is attained when, for any variation 4%, the following inequality is
satisfied:

J*B1201 + 81" Ba1j + 261 Baot + §i* Bysdi > 0
The matrix Bjs is positive definite, so for each §¢ we must have
§i* [23221' +(Ba + Bg)j] =0
which amounts to
Bysi + By j = 0.
The obtained set of equations has only one solution
i=—B3'Byj

because the matrix Bas is non-singular.

We can give an analogous proof for the voltages and obtain
u = —B3, By,

where the B;;’s result from the matrix decomposition

- v | ., .| Bu B v
[v u]PTP{u]—[v u]I:B21 Bgz]l:u]

This completes the proof. ]



Time-domain synthesis of linear circuits with ... 627

Remark 1. Simultaneous minimization of the instantaneous norms of the vectors of
branch voltages and currents amounts to minimization of the instantaneous index

c=VI'IVU*U — min.

This index can be called the instantaneous apparent power of the network inside the
multi-port.

Remark 2. It is easy to prove that the theorem on minimum-energy networks being
true for the instantaneous functionals

Vne{0,1,2,...}, I:I,—»min and Vn, U,U, — min,
remains valid for the functionals averaging along time, i.e.

Z I'I, —»min and ZU;UH—)min.
n€{0,1,2,... } n

Remark 3. The theorem is also true for the complex spectrum of the voltage and
current signals.

3. Minimization of the Voltage-Current Functionals

This method consists in distributing the voltage and current signals on the branches
inside the network in such a manner that at each moment the following functional is
minimized:

f(’u'v'i) =f (y) — min,

where y = [ %] denotes the vector of free voltages and currents.
The Taylor expansion gives
of o (of
by) =0y = +oyT— | == ) Oy >0
fly+dy) =0y o +oy 5 (6y Yy

for each Oy. The sufficient condition for optimality is the vanishing of the gradient,
ie.

8f__
oy~

and positive definiteness of the Hessian, i.e.

9 (0f
@(@%‘*

55 G~
oy \dy nm - OYnOym

where
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The above static equation for the gradient can be solved using the continuous version
of the steepest-descent method, which involves solving the equation

dy 6_f
i oy (1)

Then the condition for the Hessian coincides with the stability of a stationary point
of the system (1).

Accordingly, in practice the most important is the functional
UT (diagI* U = I7 (diagU)* I — min,

i.e. the sum of the squared instantaneous powers inside the multi-port.

Minimizing the functional for a fixed vector of currents I, we obtain the problem

VéR UTQU — min,

where
Q = (diagI)?, U:P[U }
u

From this we have the differential

dU:p[O}.

du

Since

)

(UT +dU") QU +dU) = UTQU + UTQU + dUTQU +dUTQdU

the optimality condition has the form

[vT uT] PTQP l d(; J + [0T du”] PTQP Z } =0

or
[ B B 0 B, B
[T wT] | 1 +[o7auT] | 2 U Y ] =
| Bai Ba du | Ba1 Ba U
Thus
[ By du v
T, T 12 T T
v + |du’ B2 du” Bo: =0
[ u ] 322 du [ v 21 Ct 22] [ u ]
or

2duT Bayu + duT (321 + B’{’;) v =0.
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Consequently, the optimality condition can be rewritten as
Vdu, du® (Byu+ Bayv)=0.

The corresponding optimal vector of free voltages is obtained by solving the system
of linear equations

ng'u. = -B21'Ua (2)
where

[Bn 312} = [PT(@egI’P] = Y sen()I,

By By o " pe{n}n{m}

n and m denote tree branches of the network, {n} stands for the section of the n-th
tree branch, {n}N{m} signifies the algebraic intersection of sets {n} and {m} (the
set of common elements and, at the same time, if an element has the same sign in
{n} and {m}, then it is included into the intersection with the ‘4’ sign, otherwise it
enters it with the ‘—’ sign), sgn(p) is the sign of p. Hence

[Ba2],m = > sen(p) I}, [Baly, = > sen(p)I2.
p € {n}n{m} p € {n}n{m}
internal sections internal outer

sections sections

The analogous problem
VAR I7 (diagU)* I — min

has the solution

Bzg’l: = »—B21j7 (3)
where

B

[ n Bw} = [cT @agUy’C] = Y sen@U

Bz Bz | " pe(nin{m)

and {n}, {m} are cycles (strings). Consequently,

[B22]p, = Z sgn(p) U7, [Baalyn, = Z sgn (p) UZ.
p € {n}Nn{m} p € {n}n{m}
internal sections internal outer

sections sections

The search for a minimum point of the voltage-current functional is conducted
by means of the differential

AUT (diag I)’ U+UT (diag I)? AU +dI7 (diag U)? T+17 (diagU)*dI = 0. (4)
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But this equation can be split into two parts, namely
2 2
du? (diag I’“) U+UT (dia.g I"") dU =0 = U*,
2 2
arT (diag U’“) I+1I7 (diag U’“) dI =0 = I+,
Therefore the following iterative algorithm is obtained:
UTU — min = U°, (initial distribution)
17 (diag U®)* I - min = I°,
ut (diagIO)2 U — min = U*,
17 (diag U')* I — min = I,

UT (diag I')* U - min = U?,

2
I7 (diagUk) I = min = I¥,
2
U’ (diag I’“) U — min = U1,

2
1T (diag U""‘“) I = min = ¥+

or
ITI = min = I°,
ut (diagIo)2 U — min = U°,
IT (diagU®)* I = min = I*,
U (diagI')’ U — min = U,

IT (diag U')* I - min = I2,

The circuit interpretation of the iterative algorithm is shown in Fig. 4.
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Fig. 4. Circuit interpretation of the iterative algorithm
of finding the minimum of the power function.

In each step, by means of the nodal (loop) method, we obtain the distribution
of the voltages (currents) in the network for which the conductances (resistances) are
equal to the squared voltages (currents) from the previous step.

4. Calculation of Parametric Elements in the Inner Branches of
the Network

The theorem on minimum-energy networks or minimization of voltage-current func-
tionals makes possible the calculation of instantaneous free voltage signals u, and/or
currents i, (in discrete time n). In order to calculate the vector of parameter changes
T,, we have the cyclic equations '

Alz, = [ v } (5)
or section (nodal) equations
Alz, = [ 0 } ®)

of the parametric network in discrete time n € {0,1,2,...}.

In each cyclic equation the elements of A, are formed by appropriate linear
combinations (with coefficients 0 or +1) of coordinate vectors j,, ¢, for the R,-
class or by such combinations of coordinates j,, in, Aj,, Atn for the (RL),-class
(At = ip — tn—1)-
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In the section equations the elements of A, set up the same combinations of the
coordinate vectors v,, u, for the G,-class or the coordinates v,, un, Av,, Au,
for the (GC)n-class.

The number of equations, both cyclic and section ones, is less than the number of
the calculated components (the dimension of the &, vector). In order to guarantee an
explicit solution, we need some extra conditions. According to the designer’s decision,
we can have e.g. the criterion of parameter smoothness:

AzT Az, — min (7)
subject to
stnwn ={dqn, (8)

where ¢,, is the input function of discrete time, @, stands for a positive-definite
matrix (in most cases the identity matrix) and Az, =z, — Tp—1.

The problems (5), (7), (8) and (6)—(8) have in general unique solutions which are
found by means of numerical methods. However, in rare cases the solutions may not

exist.
0
I UH
0

Fig. 5. Elementary parametric two-terminal network of the (CG),-class.
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For the elementary two-terminal network of the (GC),-class shown in Fig. 5, we

(k) (k)
y Ty = .
Cn

The nodal equation (6) for the k-th branch has the form

affﬂn = ISLk)’ (9)

get

Un
AU,

a, =

where Uy(),k) and I,(f) are the k-th coordinates of the inner vectors U, and I,,
respectively. The solution to the problem (8)—(9) is then given by

1
Zn = = (201 + Anan) (10)

n

where

2
B \/(mg_l Tn-1) (alan) — (alzn_y) S = Inpn —alz,
Hn = T 2 ’ nT T T
qn (afan) — (In) an0an
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The existence condition for the solution is thus

12
n>—n____‘_.
U+ (AU

The recurrent equation (10) is non-linear, but it becomes linear when we omit the
condition (8) (Siwczynski, 1998):

Unl,

AULIL, | ]’

an On-1 +
Cn Cn—1

The periodical solution for periodical changes of parameters can be found by means
of the so-called Poincaré projection (Kudrewicz, 1996). As has been demonstrated by
numerical experiments, the periodical solution generally exists.

(AU,) —U,AU,
—U AU (Up)?

1
'%mf+mmf(

The synthesis of variable parameters in an elementary branch ot the (RL),-class
is performed analogously.

5. Numerical Experiment

Figure 6 shows the graph of a chain network (it can be infinite). The matrices P
and C have the following forms:

P = 0 3 5 7 91 C = 0 4 6 8 10
1 1 0 0 0 0O 1 (-1 0 0 0 O
2/(-1 1 0 0 0O 20 1 0 0 0O
3] 0 1 0 0 OO 31 0-1 1 0 00
4| 0 -1 1 0 00 4,0 0 1 0 0O
5 o 0 1 0 00 ) 0 0-1 1 00
6 0 0 -1 1 0O 6, 0 0 0 1 0O
7, 0 0 0 1 0O 7 0 0 0 -1 10
8, 0 0 0-1 10 8 0 0 O O 1 0
970 0 0 O 1 0 9{ 0 0 0O 0 -1 1-
10/, 0 0 0 0 -1 0 of 0 0 0 0 01
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Fig. 6. Circuit graph of a chain structure.

Taking v = [u°] and j = [i°], we obtain the following matrix products:

PTp = 0 3 5 7 9 11 CcTc= 0 2 4 6 8 10
0] 2:=1 0 0 0 O 0l 1:-1 0 0 0 O
3]-1 3-1 0 0 0 21-1 3-1 0 0 0
5/ 0:-1 3-1 0 0 41 0:-1 3-1 0 0
71 0 0-1 3-1 0 6 0 0-1 3-1 0
91 0 0 0-1 3 -1 81 0 0 0-1 3 -1
11| 0 0 0 0-1 3 10| 0 0 0 0-1 3
Bol B’zz Bol Bol

The systems of equations for the corresponding minimization problems have the
following forms: ’

UTU — min = Bou=—Bsv:

3 -1 0 0 0 0 07[ w7 [u]
-1 3 -1 0 0 0 0 u® 0
0 -1 3 -1 0 0 0 u’ 0
0 0 -1 3 -1 0 0 v | =] 0
0 0 0 -1 3 -1 0 ull 0
0 0 0 0 -1 3 -1 ul? 0

ITI — min = Bagt = —321j :

3 -1 0 0 0 0 07[4 7] T[]
-1 3 -1 0 0 0 0 it 0
0 -1 3 -1 0 0 0 38 0
0 0 -1 3 -1 0 0 # -] o0
0 0 0 -1 3 -1 0 710 0
0 0 0 0 -1 3 -1 §12 0
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Fig. 7. Diagrams of equivalent infinite chains.

These equations describe infinite and homogeneous resistance chains with unit resist-
ances (Fig. 7). In order to solve them, it is convenient to calculate a conductance g
and a resistance r (input) of a chain. By means of the diagrams presented in Fig. 7,
we get

1 1+ 1 11
- 14+g’ T 147
or
g +g—-1=0.
Thus
_VE-1
=7
Accordingly, it is easy to calculate the distribution of the voltages and currents:
w2t = gt R = g 0 =0,1,2,...,
where

The diagrams of Fig. 7 give the initial distribution of the voltages or currents in our
network: The diagrams presented in Fig. 8(a) enable us to calculate the individual
iterative distributions.

A numerical experiment with the iterative procedure presented in Fig. 4 and the
system of differential equations (1) has been carried out. The alternative iterative
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Fig. 8. The chain of resistances C* (diag U)%C (a) and
the chain of conductances P” (diag I)?P (b).

procedure has proved substantially faster. In Fig. 9 the following graphs are presented:

* voltage signals of the chain obtained by means of the differential equation (1)
and the procedure of Fig. 4,

e resistances (u/i ratio) for individual elements, and
e power distribution for individual elements.

All the results obtained correspond to the signal values at a given moment.
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state vector x = | Uy

U,= 10, I,= 1, iteration 2358

U,= 10, I,= 1, iteration 14
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Fig. 9. Results of numerical experiments.
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